JPH03202499A - Controlling method for thickness of plated film - Google Patents

Controlling method for thickness of plated film

Info

Publication number
JPH03202499A
JPH03202499A JP34401089A JP34401089A JPH03202499A JP H03202499 A JPH03202499 A JP H03202499A JP 34401089 A JP34401089 A JP 34401089A JP 34401089 A JP34401089 A JP 34401089A JP H03202499 A JPH03202499 A JP H03202499A
Authority
JP
Japan
Prior art keywords
plating
measuring
thickness
plated
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34401089A
Other languages
Japanese (ja)
Inventor
Kazuhiko Amemori
和彦 雨森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP34401089A priority Critical patent/JPH03202499A/en
Publication of JPH03202499A publication Critical patent/JPH03202499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To control thickness of a plated film while indirectly and realtimely measuring it by providing a plating part for measuring thickness of the plated film as an integral body or a separated body for the member to be plated and measuring the electric resistance of the plated film which is coated to this plating part in a plating stage. CONSTITUTION:A coil is formed by providing a photoresist 4c having a coil pattern 4b on the surface of a wafer 4 and arranging the wafer 4 to the inside of a plating device and impressing plating current from the introduction parts 4d and coating a conductive film on a sealing layer. A plating part 4e for measuring thickness of a plated film is provided on the wafer 4. The resistance between the terminals 4e1, 4e2 of the plated film coated to this plating part 4e is measured in a plating stage. Thickness of the plated film is controlled on the basis of the measured value of this resistance while indirectly and realtimely measuring thickness of the film plated on the wafer 4.

Description

【発明の詳細な説明】 〔概要〕 この発明は、たとえば薄膜磁気ヘッドのコイルをフォト
リソグラフィ技術、メッキ技術などによって形成する際
のメッキ膜厚の制御方法に関するもので、 測定用メッキ部のメッキ膜厚の電気抵抗をメッキ工程中
に測定することにより、間接的に被メッキ部材のメンキ
膜厚をリアルタイムで測定しなから膜厚を制御すること
を目的とし、 導電材料を被膜状に被着させるメッキ工程において、被
メンキ部材と一体あるいは別体にメッキ膜厚の測定用メ
ッキ部を設け、この測定用メンキ部に被着されているメ
ンキ膜の電気抵抗をメンキ工程中に測定することにより
、被メッキ部材にメッキされているメッキ膜厚を間接的
に測定しながらメッキ膜厚を制御するようにしたことを
特徴とするものである。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for controlling the thickness of a plating film when, for example, a coil of a thin film magnetic head is formed by photolithography technology, plating technology, etc. By measuring the electrical resistance of the conductive material during the plating process, we can indirectly measure the coating thickness of the plated member in real time and control the coating thickness. In the plating process, a plating part for measuring the plating film thickness is provided either integrally or separately from the part to be coated, and the electrical resistance of the coating film applied to this measuring part is measured during the coating process. The present invention is characterized in that the thickness of the plating film plated on the member to be plated is controlled while indirectly measuring the thickness of the plating film.

〔産業上の利用分野〕[Industrial application field]

この発明は、たとえば薄膜磁気ヘッドのコイルをフォト
リソグラフィ技術、メッキ技術などで形成する際のメッ
キ膜厚の制御方法に関するものである。
The present invention relates to a method for controlling the thickness of a plating film when, for example, a coil of a thin-film magnetic head is formed using photolithography technology, plating technology, or the like.

〔従来の技術〕[Conventional technology]

近年、コンピュータ・システムの高速化・小型化の要求
に伴い、磁気ディスク装置も高速・大容量・小型化が要
求されている。このため、磁気ディスク装置に用いる7
R膜磁気へノドは、高記録密度で高性能なものが必要で
あり、これを歩留り良く製造することが求められている
In recent years, with the demand for faster and smaller computer systems, magnetic disk drives are also required to be faster, larger capacity, and smaller. For this reason, the
The R-film magnetic hen is required to have high recording density and high performance, and it is required to manufacture it with high yield.

そのための要件として、たとえば薄膜磁気ヘッドのコイ
ルの電気抵抗を比較的に小さく一定化して、電磁変換特
性を一定化させる必要がある。
As a requirement for this, for example, it is necessary to keep the electrical resistance of the coil of the thin-film magnetic head relatively low and constant, and to make the electromagnetic conversion characteristics constant.

たとえば、前記コイルに一定電流を流しても、コイルの
電気抵抗が変われば、発熱はI2Rで変化し、それに対
応して熱雑音の量も変化することが知られている。
For example, it is known that even if a constant current is passed through the coil, if the electrical resistance of the coil changes, the heat generation will change due to I2R, and the amount of thermal noise will change accordingly.

前記のような薄膜磁気ヘンドのコイルの形成方法は、メ
ッキ、スパッタリング、蒸着など種々あるが、現在量も
多く採用されているのは、第5図に示すようなメンキ方
法である。
There are various methods for forming the coil of the thin-film magnetic hend as described above, such as plating, sputtering, and vapor deposition, but the one most commonly used at present is the Menki method as shown in FIG.

この図において、lはメッキ槽、2はメッキ液3の中に
配設したアノード電極、4はメッキ液3の中に配設した
被メッキ部材であり、具体的には表面に導電性のメンキ
ヘースであるシードレイヤー4aが付着されているウェ
ハー(基1)である。
In this figure, l is a plating tank, 2 is an anode electrode placed in plating solution 3, and 4 is a plated member placed in plating solution 3. A wafer (base 1) on which a seed layer 4a is attached.

このウェハー4のシードレイヤー4aを直流電源5の一
極に接続し、前記アノード電極2を直流型a5の半極に
接続して電流を流すと、メッキ液3中の金属イオンがシ
ードレイヤー4aに付着する。なお、6はメッキ電流を
測定する電流計である。
When the seed layer 4a of this wafer 4 is connected to one pole of the DC power source 5, and the anode electrode 2 is connected to a half pole of the DC type a5, and a current is applied, metal ions in the plating solution 3 are transferred to the seed layer 4a. adhere to. Note that 6 is an ammeter for measuring the plating current.

このようなメッキ技術によってウェハー4上にコイルを
形成する場合には、第6図の(A)(B)に示すように
、予めフォトリソグラフィ技術によってウェハー4のシ
ードレイヤー4a上に、コイルパターン4bの部分を残
してフォトレジスト4Cを付着させておく。このような
コイルパターンは、たとえば直径3インチ(約7.62
CI)のウェハーの表面に約800個形成されている。
When forming a coil on the wafer 4 using such a plating technique, as shown in FIGS. A photoresist 4C is attached leaving the portion . Such a coil pattern may have a diameter of, for example, 3 inches (approximately 7.62 mm).
Approximately 800 of them are formed on the surface of the wafer of CI).

このようにしたウェハー4を、第5図に示すようにメッ
キ槽1のメッキ液3に入れてメッキを行うと、コイルパ
ターン4bに導電膜が付着してコイルが形成される。
When the wafer 4 thus prepared is placed in the plating solution 3 of the plating bath 1 and plated as shown in FIG. 5, a conductive film is attached to the coil pattern 4b to form a coil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来一般のメッキ方7去において形成される
コイルの電気抵抗は、発熱および熱雑音の発生の関係で
余り大きくない方が良い。コイルの電気抵抗を小さくす
るには、メッキで形成される導電膜厚を厚くすればよい
が、その後にこのコイルの上に絶縁層や磁性膜を付着さ
せる関係で余り厚くしないで均一に管理する必要がある
The electrical resistance of the coil formed by such conventional plating method 7 should not be too large in view of the generation of heat generation and thermal noise. In order to reduce the electrical resistance of the coil, it is possible to increase the thickness of the conductive film formed by plating, but since the insulating layer and magnetic film are then attached to the coil, it must be kept uniform and not too thick. There is a need.

このように導電膜厚を管理するには、導電膜厚はメンキ
時間にほぼ比例して厚くなって行くので、メッキ時間を
管理することによって、ある程度の導電膜厚の管理を行
うことができる。
In order to control the conductive film thickness in this way, since the conductive film thickness increases almost in proportion to the plating time, the conductive film thickness can be controlled to a certain extent by controlling the plating time.

しかし、メッキ液の濃度や温度などの各条件も正確に管
理しなげれば、導電膜厚にばらつきが発生する課題があ
った。
However, unless various conditions such as the concentration and temperature of the plating solution are accurately controlled, there is a problem in that the conductive film thickness will vary.

この発明は、測定用メッキ部のメッキ膜厚の電気抵抗を
メッキ工程中に測定することにより、間接的に被メッキ
部材のメッキ膜厚をリアルタイムで測定しなから膜厚を
制御することを目的とするものである。
The purpose of this invention is to measure the electrical resistance of the plating film thickness of the measurement plating part during the plating process, thereby indirectly measuring the plating film thickness of the plated member in real time and controlling the film thickness. That is.

[課題を解決するための手段] この発明は、前記のような課題を解決するため、第1図
および第2図に示すように、導電材料を被膜状に被着さ
せるメッキ工程において、被メッキ部材(実施例におけ
るウェハー4)と一体あるいは別体にメッキ膜厚の測定
用メッキ部4eを設け、この測定用メッキ部4eに被着
されているメッキ膜の電気抵抗をメッキ工程中に測定す
ることにより、被メッキ部材にメッキされているメッキ
膜厚を間接的に測定しながらメッキ膜厚を制御するよう
にしたことを特徴とするメッキ膜厚の制御方法としたも
のである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention, as shown in FIGS. A plated part 4e for measuring the thickness of the plating film is provided integrally with or separately from the member (wafer 4 in the example), and the electrical resistance of the plating film coated on this plating part 4e for measurement is measured during the plating process. Accordingly, this method is characterized in that the thickness of the plating film plated on the member to be plated is controlled while indirectly measuring the thickness of the plating film plated on the member to be plated.

〔作用〕[Effect]

この発明によれば、メッキ膜厚の測定用メッキ部4eに
被膜されるメッキ膜の電気抵抗をメッキ工程中に測定す
ることにより、間接的に被メッキ部材のメッキ膜厚をリ
アルタイムで測定しながらメッキ膜厚を制御することが
できる。
According to this invention, by measuring the electrical resistance of the plating film coated on the plating part 4e for measuring the plating film thickness during the plating process, the plating film thickness of the member to be plated can be indirectly measured in real time. Plating film thickness can be controlled.

〔実施1(’IIE 以下、この発明のメッキ膜厚の制御方法の実施例を説明
する。
[Embodiment 1 ('IIE) Hereinafter, an embodiment of the method for controlling the plating film thickness of the present invention will be described.

薄膜磁気ヘッドのコイルをメッキ方法で形成する原理は
、前記第5図および第6図とともに説明した場合と同し
である。
The principle of forming the coil of the thin film magnetic head by the plating method is the same as that described above with reference to FIGS. 5 and 6.

この発明は、導電材料を被膜状に被着させるメッキ工程
において、被メッキ部材と一体あるいは別体にメンキ膜
厚の測定用メッキ部を設け、この測定用メンキ部に被着
されているメッキ膜の電気抵抗をメッキ工程中に測定す
ることにより、被メッキ部材にメンキされているメッキ
膜厚を間接的に測定しながらメンキ膜厚を制御するよう
にしたことを特徴とするメッキ膜厚の制御方法であり、
これを第1図乃至第4図に示す実施例にしたがって前記
従来例と同一部には同一符号を付けて詳細に説明する。
In the plating process of depositing a conductive material in the form of a film, this invention provides a plating part for measuring the coating film thickness, either integrally or separately from the member to be plated, and the plating film adhered to the coating part for measurement. Control of plating film thickness, characterized in that the thickness of the plating film coated on the member to be plated is controlled while indirectly measuring the electrical resistance of the plated film during the plating process. is a method,
This will be explained in detail with reference to the embodiments shown in FIGS. 1 to 4, with the same parts as those of the conventional example being given the same reference numerals.

すなわち、被メンキ部材であるウェハー4のシードレイ
ヤー4a上に、コイルパターン4bおよびメッキ電流の
導入部4dの部分を残してフォトレジスト4cが付着さ
れている点は、従来例と同しである。
That is, it is the same as the conventional example in that a photoresist 4c is attached on a seed layer 4a of a wafer 4, which is a member to be polished, leaving the coil pattern 4b and the plating current introduction part 4d.

この発明においては、ウェハー4のシードレイヤー4a
上に、さらにメッキ膜厚の測定用メンキ部4eを設け、
このウェハー4を第3図に示すようにメンキ槽1のメッ
キ液3の中に入れてメッキを行い、その際に、メッキ膜
厚の測定用メッキ部4eの端子4el、4ezに電気抵
抗の測定器7を接続する。
In this invention, the seed layer 4a of the wafer 4
A coating part 4e for measuring the plating film thickness is further provided on the top,
As shown in FIG. 3, this wafer 4 is placed in the plating solution 3 of the coating tank 1 and plated. At that time, the electrical resistance is measured at the terminals 4el and 4ez of the plating part 4e for measuring the plating film thickness. Connect device 7.

このようにすると、第4図の曲線Aに示すように、メッ
キ膜厚が大きくなるにしたがって電気抵抗は小さくなっ
て行くので、この電気抵抗を測定することにより、メッ
キ膜厚を間接的に測定することができる。この際には、
メッキ膜厚の測定用メッキ部4eの端子4el、4ez
がシードレイヤー4aで短絡されているので、端子4e
4ez間の電気抵抗は比較的に小さい。そこで、端子4
el、dez間の電気抵抗を大きくして、測定感度を高
めるためには、端子4e、はメ・ツキ電流の導入部4d
に連接させておき、この端子4e、から端子4e2に至
るパターンの周囲を予めノードレイヤー4aから切り離
しておけば、第4図の曲線Bに示すように、端子4el
  4e2間の電気抵抗を大きくして測定感度を高める
ことができる。
In this way, as shown by curve A in Figure 4, the electrical resistance decreases as the plating film thickness increases, so by measuring this electrical resistance, the plating film thickness can be indirectly measured. can do. In this case,
Terminals 4el and 4ez of the plating part 4e for measuring the plating film thickness
is shorted in the seed layer 4a, so the terminal 4e
The electrical resistance between 4ez and 4ez is relatively small. Therefore, terminal 4
In order to increase the electrical resistance between el and dez and increase the measurement sensitivity, the terminal 4e is connected to the lead-in part 4d of the current.
If the periphery of the pattern from the terminal 4e to the terminal 4e2 is separated from the node layer 4a in advance, the terminal 4el and
The measurement sensitivity can be increased by increasing the electrical resistance between 4e2.

なお、第1図に示すように、メッキ膜厚の測定用メッキ
部4eを2箇所に設けたのは、2箇所の測定結果を平均
してより正確なメッキ膜厚を測定するためである。
As shown in FIG. 1, the reason why the plating portions 4e for measuring the plating film thickness are provided at two locations is to measure the plating film thickness more accurately by averaging the measurement results at the two locations.

また、この実施例においては、メッキ膜厚の測定用メッ
キ部4eを被メッキ部材であるウェハー4に一体に設け
たが、必ずしもこのようにしなければならないものでは
なく、ウェハー4の近傍にメッキ膜厚の測定用メッキ部
を別体に設けても、はぼ同様にメッキ膜厚を間接的に測
定することができる。
Further, in this embodiment, the plating part 4e for measuring the plating film thickness is provided integrally with the wafer 4, which is the member to be plated. Even if the plating part for thickness measurement is provided separately, the plating film thickness can be measured indirectly in the same way as in the case of Habo.

また、この実施例においては、薄膜磁気ヘッドのコイル
をメッキ法で形成する場合のメッキ膜厚の制御方法につ
いて説明したが、これに限定されるものではなく、あら
ゆるメンキ膜厚の制御方法に適用することができる。
In addition, in this example, a method for controlling the plating film thickness when forming a coil of a thin film magnetic head by a plating method was explained, but the method is not limited to this and can be applied to any method for controlling the plating film thickness. can do.

[発明の効果] この発明は、以上説明したように、導電材料を被膜状に
被着させるメッキ工程において、被メッキ部材と一体あ
るいは別体にメッキ膜厚の測定用メンキ部を設け、この
測定用メッキ部に被着されているメンキ膜の電気抵抗を
メッキ工程中に測定することにより、被メッキ部材にメ
ッキされているメッキ膜厚を間接的に測定しながらメッ
キ膜厚を制御するようにしたことを特徴とするメッキ膜
厚の制御方法としたので、メッキ膜厚の測定用メッキ部
に被膜されるメッキ膜厚の電気抵抗をメッキ工程中に測
定することにより、間接的に被メッキ部材のメッキ膜厚
をリアルタイムで測定しながらメッキ膜厚を正確に制御
することができる利点がある。
[Effects of the Invention] As explained above, in the plating process of depositing a conductive material in the form of a film, the present invention provides a coating part for measuring the plating film thickness, either integrally with or separately from the member to be plated, and performing this measurement. By measuring the electrical resistance of the coating film applied to the plating part during the plating process, the plating film thickness can be controlled while indirectly measuring the plating film thickness on the plated part. Since the method for controlling the plating film thickness is characterized by The advantage is that the plating film thickness can be accurately controlled while measuring the plating film thickness in real time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のメッキ膜厚の制御方法における被メ
ッキ部材の表面のフォトレジストのパターンを示す図、
第2図はそのメッキ膜厚の測定用メッキ部の拡大図、第
3図はこの発明のメンキ膜厚の制御方法におけるメッキ
装置を示す図、第4図はメッキ膜厚の測定用メッキ部の
膜厚に対する電気抵抗の変化を示す図、第5図は従来一
般のメッキ装置を示す図、第6図の(A)は従来一般の
メッキ技術によってウェハー上にコイルを形成する場合
のフォトレジストのパターンを示す正面図で、(B)は
左側面図である。 1・・・メンキ槽 2・・・アノード電極 3・・・メッキ液 4・・・被メッキ部材であるウェハー 4a・・・シードレイヤー 4b・・・コイルパターン 4C・・・フォトレジスト 4d・・・メッキ電流の導入部 4e・・・メッキ膜厚の測定用メッキ部4e、  4e
z一端子 5・・・電源 6・・・電流計 7・・・電気抵抗の測定器
FIG. 1 is a diagram showing a photoresist pattern on the surface of a member to be plated in the method for controlling plating film thickness of the present invention;
Fig. 2 is an enlarged view of the plating part for measuring the plating film thickness, Fig. 3 is a diagram showing the plating apparatus in the method of controlling the plating film thickness of the present invention, and Fig. 4 is an enlarged view of the plating part for measuring the plating film thickness. Figure 5 is a diagram showing the change in electrical resistance with respect to film thickness. Figure 5 is a diagram showing a conventional general plating equipment. Figure 6 (A) is a diagram showing a photoresist used when forming a coil on a wafer using conventional plating technology. It is a front view showing a pattern, and (B) is a left side view. 1... Plating bath 2... Anode electrode 3... Plating solution 4... Wafer 4a which is a member to be plated... Seed layer 4b... Coil pattern 4C... Photoresist 4d... Plating current introduction part 4e...Plating part 4e, 4e for measuring plating film thickness
z-terminal 5...power supply 6...ammeter 7...electrical resistance measuring device

Claims (1)

【特許請求の範囲】[Claims] 導電材料を被膜状に被着させるメッキ工程において、被
メッキ部材と一体あるいは別体にメッキ膜厚の測定用メ
ッキ部(4e)を設け、この測定用メッキ部(4e)に
被着されているメッキ膜の電気抵抗をメッキ工程中に測
定することにより、被メッキ部材にメッキされているメ
ッキ膜厚を間接的に測定しながらメッキ膜厚を制御する
ようにしたことを特徴とするメッキ膜厚の制御方法。
In the plating process in which a conductive material is deposited in the form of a film, a plating part (4e) for measuring the plating film thickness is provided integrally with or separately from the member to be plated, and the plating part (4e) is deposited on the plating part (4e) for measuring the thickness of the plating film. A plating film thickness that is characterized by controlling the plating film thickness while indirectly measuring the plating film thickness on a plated member by measuring the electrical resistance of the plating film during the plating process. control method.
JP34401089A 1989-12-28 1989-12-28 Controlling method for thickness of plated film Pending JPH03202499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34401089A JPH03202499A (en) 1989-12-28 1989-12-28 Controlling method for thickness of plated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34401089A JPH03202499A (en) 1989-12-28 1989-12-28 Controlling method for thickness of plated film

Publications (1)

Publication Number Publication Date
JPH03202499A true JPH03202499A (en) 1991-09-04

Family

ID=18365963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34401089A Pending JPH03202499A (en) 1989-12-28 1989-12-28 Controlling method for thickness of plated film

Country Status (1)

Country Link
JP (1) JPH03202499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958202A1 (en) * 1999-12-02 2001-07-12 Infineon Technologies Ag Process for producing a metal layer with a predetermined thickness
JP2011063888A (en) * 1999-05-03 2011-03-31 Freescale Semiconductor Inc Method for forming copper layer on semiconductor wafer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063888A (en) * 1999-05-03 2011-03-31 Freescale Semiconductor Inc Method for forming copper layer on semiconductor wafer
DE19958202A1 (en) * 1999-12-02 2001-07-12 Infineon Technologies Ag Process for producing a metal layer with a predetermined thickness
US6303401B2 (en) 1999-12-02 2001-10-16 Infineon Technologies Ag Method for producing a metal layer with a given thickness
DE19958202C2 (en) * 1999-12-02 2003-08-14 Infineon Technologies Ag Process for producing a metal layer with a predetermined thickness

Similar Documents

Publication Publication Date Title
US5883762A (en) Electroplating apparatus and process for reducing oxidation of oxidizable plating anions and cations
US6193860B1 (en) Method and apparatus for improved copper plating uniformity on a semiconductor wafer using optimized electrical currents
US5620581A (en) Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
US6391168B1 (en) Plating apparatus utilizing an auxiliary electrode
JPH0133548B2 (en)
JPS5823316A (en) Manufacture of thin magnetic head
JPH03202499A (en) Controlling method for thickness of plated film
US6802950B2 (en) Apparatus and method for controlling plating uniformity
CN109087902B (en) Wiring structure, manufacturing method thereof and display device
US4302316A (en) Non-contacting technique for electroplating X-ray lithography
US3556954A (en) Method for obtaining circumferential orientation of magnetic films electroplated on wires
KR20010010788A (en) Electroplating technology using magnetic fields
JPH03183136A (en) Manufacture of semiconductor device
JP2000096292A (en) Method for plating wafer
JP3639105B2 (en) Wafer plating method
JPS59195887A (en) Manufacture of ferromagnetic substance magnetoresistance effect element with yoke
JP2000054198A (en) Plating device for producing thin film magnetic head, and thin film magnetic head
US3436813A (en) Information storage devices
JPS5891516A (en) Manufacturing device of thin film magnetic head
JPH02101189A (en) Method and device for precise electroplating
JPS60117684A (en) Manufacture of amorphous si solar battery
SU728158A1 (en) Method of manufacturing cylindrical magnetic films
JPH11100693A (en) Nickel-iron alloy electroplating method and plating film using the method
JPH0718499A (en) Electroplating device
JPS63210264A (en) Formation of film