JPS5891516A - Manufacturing device of thin film magnetic head - Google Patents

Manufacturing device of thin film magnetic head

Info

Publication number
JPS5891516A
JPS5891516A JP18970781A JP18970781A JPS5891516A JP S5891516 A JPS5891516 A JP S5891516A JP 18970781 A JP18970781 A JP 18970781A JP 18970781 A JP18970781 A JP 18970781A JP S5891516 A JPS5891516 A JP S5891516A
Authority
JP
Japan
Prior art keywords
plating
sample
plating solution
sample holder
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18970781A
Other languages
Japanese (ja)
Inventor
Takaaki Tomita
孝明 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18970781A priority Critical patent/JPS5891516A/en
Publication of JPS5891516A publication Critical patent/JPS5891516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To exactly control prescribed film thickness of plating, by putting the whole sample into a plating liquid, applying a current from the outside circumferential part of the sample, and equalizing the current density of the plating part. CONSTITUTION:A titled device is constituted of a base 21, a plating tank 22 provided on said base, a heater part 23 provided in this plating tank 22, a plating liquid stirring part 24, an anode part 25, a smaple holder part 26, a plating liquid temperature control part 27, a magnetic field applying part 28, and plating liquid evaporation preventing covers 29, 30. The plating tank 22 has plating liquid resistance, consists of materials such as a non-magnetic material, glass of heat resistance, etc., and has a U-notch part 31 for fixing the sample holder part 26, a U-notch part 32 for fixing the anode part 25, and a notch part 34 for drawing out a lead part 33 of the heater part 23 to the outside of the plating tank 22.

Description

【発明の詳細な説明】 本発明は、電気メッキにより薄膜を形成する薄膜磁気ヘ
ッドの製造装置に関するものであるっ従来の薄膜磁気ヘ
ッドの強磁性体膜を電気メッキにより形成する場合の作
業方法および装置について第1図〜Wi4図に基づいて
説明する。試料(1)は、#!1図に示すように導体基
板(2)上に絶縁体膜(3)を0.1μm〜数μm程度
、スパッタまたは蒸着等により形成し、その上部に強磁
性体材料から成る予備膜(4)を0.05μm = 0
.2μm程度、スパッタまたは蒸着等によ抄形成した後
、その上部にレジスト(5)をスピンナー等により一定
厚に塗布し、そしてフォトリソ技術等を用いて強磁性体
パターン(6)、到       − 電気パターン(7)を形成すること1%成されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing a thin film magnetic head that forms a thin film by electroplating. The apparatus will be explained based on FIGS. 1 to 4. Sample (1) is #! As shown in Figure 1, an insulating film (3) of about 0.1 μm to several μm thick is formed by sputtering or vapor deposition on a conductive substrate (2), and a preliminary film (4) made of a ferromagnetic material is formed on top of the insulating film (3). 0.05μm = 0
.. After forming a paper with a thickness of about 2 μm by sputtering or vapor deposition, a resist (5) is applied to a certain thickness on top using a spinner, etc., and then a ferromagnetic pattern (6) and an electrical pattern are formed using photolithography or the like. (7) is formed by 1%.

また従来のメッキ装置は、第2図、第8図に示すように
、メッキ槽〈8)と陽極部(9)と試料ホルダ一部曽と
ヒータ部(ロ)および電源部(2)とから成っている。
Furthermore, as shown in Figures 2 and 8, the conventional plating apparatus consists of a plating bath (8), an anode part (9), a part of the sample holder, a heater part (b), and a power supply part (2). It has become.

前記メッキ槽(8)は、耐メツキ液性、および耐熱性を
有するガラス等の材料で形成され、前記陽極部(9)は
Ni材から成り且つ試料(1)のメッキ面より大きな面
積を有したam板であり、取付ブロックa4に取付けら
れてメッキ槽(1)内に位置されると共に□電源部(2
)と接続されている。前記試料ホルダ一部曽には、非磁
性体で非導電性で且つ耐メツキ材から成る試料ホルダー
ベース朝の両サイドに、試料(1)のメッキ膜の磁化容
易軸方向に磁界が印加されるように試料(1)より大き
なマグネット曽妨が配置され、耐メツキ液性材でコーテ
ィングされている。
The plating tank (8) is made of a material such as glass that has plating liquid resistance and heat resistance, and the anode part (9) is made of Ni material and has a larger area than the plating surface of the sample (1). It is an am board that is attached to the mounting block a4 and located in the plating tank (1),
) is connected. A magnetic field is applied to a portion of the sample holder on both sides of the sample holder base made of a non-magnetic, non-conductive, and plating-resistant material in the direction of the axis of easy magnetization of the plated film of the sample (1). A larger magnet holder than sample (1) is arranged as shown in the figure, and it is coated with a plating liquid-resistant material.

前記マグネット04四の中間部において、導電性材いる
。なおヒータ部(2)にはヒータの温度を調整する調整
機構が内肩されている。
There is a conductive material in the middle part of the magnet 044. Note that the heater part (2) has an adjustment mechanism for adjusting the temperature of the heater.

次に作業手類について説明すると、まず第2図に示すよ
うに、メッキ槽(8)内にメッキ液(2)を一定量注入
し、このメッキ液(6)の温度をヒータ部(ロ)で最適
温度にコントロールする。メッキ液(6)が最適温度に
成った後、前述の試料(1)のレジスト(5)と、複数
個の強磁性体パターン(6)および電極パターン(7)
以外の導体基板(2)の外部表面とをレジスト材で完全
に覆い、前記試料(1)を試料ホルダ一部(2)の磁場
印加用マグネット(至)Qηの中央にセットし、電流数
個の強磁性体パターン(6)全体がメッキ液(へ)中に
沈む位置に試料ホルダ一部輪をセットし、電源部(2)
の電流を最適温度にセットした後、電流を導入し、所定
時間メッキを行なう。その後、メッキ液(至)中より試
料ホルダ一部(2)を取出し、水洗いを行って試料(1
)を試料ホルダ一部(転)より外し、レジスト(6)と
導体基板(2)の外部表面に塗布したレジストを除去し
た後、予備膜(4)をスパッタエツチングにより除去し
て、l14図に示すような強磁性体膜を形成する。もち
ろん、最適電流、最適メッキ液量、時間と膜厚の関係等
は予じめ実験で条件出しを実施している。
Next, to explain the work procedures, first, as shown in Fig. 2, a certain amount of plating solution (2) is injected into the plating tank (8), and the temperature of this plating solution (6) is controlled by the heater part (b). to control the temperature to the optimum temperature. After the plating solution (6) reaches the optimum temperature, the resist (5) of the sample (1) described above, a plurality of ferromagnetic patterns (6) and an electrode pattern (7)
Completely cover the external surface of the conductor substrate (2) with resist material, set the sample (1) in the center of the magnetic field applying magnet (to) Qη of the sample holder part (2), and apply several currents. Set one ring of the sample holder in a position where the entire ferromagnetic pattern (6) is submerged in the plating solution, and then remove the power supply part (2).
After setting the current at the optimum temperature, the current is introduced and plating is performed for a predetermined period of time. After that, take out part of the sample holder (2) from the plating solution (1), wash it with water, and
) from a part of the sample holder (transfer), remove the resist (6) and the resist applied to the external surface of the conductive substrate (2), and then remove the preliminary film (4) by sputter etching, as shown in Figure 14. A ferromagnetic film as shown is formed. Of course, conditions such as the optimum current, the optimum amount of plating solution, the relationship between time and film thickness, etc. are determined through experiments in advance.

したがって、前述のような方法および装置でメッキ作業
を実施する場合は、 i、  試料(1)の電極パターン(7)が、試料(1
)のメッキ液(至)外部の一箇所に形成されているため
、メッキ数(2)の上面からの深さで電流密度が異なり
、強磁性体膜の膜厚のバラツキが発生する。例えば、試
料の大きさが17mmX4mmで、厚みが1000人の
F e −N i合金で、比抵抗が10〜50μΩ・c
m 41度の予備膜でメッキを実施した場合、メッキ液
に)上面より1mmの深さのメッキ膜厚に対し、深さが
16mmの部分では約1/2程度の膜厚である。薄膜磁
気ヘッドの特長の1つである1プレートに複数個のヘッ
ドを形成して成る方法において、個々のヘッドの強磁性
体膜の膜厚が大きく異なることは、均一なヘッド特性が
得られないことで最大の欠点となる。
Therefore, when plating work is carried out using the method and apparatus described above, i. the electrode pattern (7) of sample (1) is
), the current density differs depending on the depth from the top surface of the plating number (2), causing variations in the thickness of the ferromagnetic film. For example, if the sample size is 17mm x 4mm and the thickness is 1000mm Fe-Ni alloy, the specific resistance is 10~50μΩ・c.
When plating is performed with a preliminary film of 41° m, the plating film thickness is about 1/2 of the plating film thickness at a depth of 1 mm from the top surface (in the plating solution) at a depth of 16 mm. In the method of forming multiple heads on one plate, which is one of the features of thin-film magnetic heads, the large difference in the thickness of the ferromagnetic film of each head makes it difficult to obtain uniform head characteristics. This becomes the biggest drawback.

b、導体基板(2)上に絶縁体膜(3)を形成後、その
上部に予備膜(4)を形成し、レジスト(6)を塗布し
現像して強磁性体パターン(6)と電極パターン(7)
とを形成し、前記強磁性体パターン(6)のみに選択メ
ッキを実施する場合、導体基板(2)に絶縁体膜(3)
を形成後、各エッチ部にピッチング、カケ等が発生した
状態で予備膜←)を形成すると、導体基板(2)の予備
l[(至)との関がリーク状態に成ることがしばしば起
り、との状敲でメッキ作業を実施すると、メッキ液に触
れた導体基板(2)の外部表面はメッキが成される。複
数個の強磁性体パターン(6)全体の面積−に比べて不
必要部分のメッキが非常に大きくなり、メッキ時間が増
加し、メッキ液の寿命を短かくするとともに、前記の不
必要部分のメッキ面積を管理できないため、強磁性体膜
の膜厚コントロールが困難であるため、前述のように、
レジスト(5)と強磁性体パターン(6)と電極パター
ン(7)以外の導体基板りりの外部表面をレジストで覆
ってメッキ作業を実施する必要があり、作業能率が非常
に悪い。
b. After forming the insulating film (3) on the conductor substrate (2), forming the preliminary film (4) on top of it, and applying and developing the resist (6) to form the ferromagnetic pattern (6) and the electrodes. pattern (7)
When performing selective plating only on the ferromagnetic pattern (6), an insulating film (3) is formed on the conductive substrate (2).
If the preliminary film ←) is formed with pitting, chipping, etc. occurring in each etched portion after forming the preliminary film ←), a leakage condition often occurs between the conductor substrate (2) and the preliminary film ←). When the plating work is carried out under the above conditions, the external surface of the conductive substrate (2) that has come into contact with the plating solution is plated. The plating of the unnecessary parts becomes very large compared to the entire area of the plurality of ferromagnetic patterns (6), which increases the plating time, shortens the life of the plating solution, and reduces the plating of the unnecessary parts. As mentioned above, it is difficult to control the thickness of the ferromagnetic film because the plating area cannot be controlled.
It is necessary to cover the external surface of the conductive substrate other than the resist (5), the ferromagnetic material pattern (6), and the electrode pattern (7) with a resist before performing the plating work, resulting in very low work efficiency.

C1従来装置は、ヒータ部(2)がメッキ槽(8)の外
部に設けであるため、メッキ液(2)の′温度を上昇さ
せる時間を多く必要とし、また温度コントロールが困難
であった。
In the C1 conventional apparatus, the heater section (2) is provided outside the plating tank (8), so it takes a long time to raise the temperature of the plating solution (2), and temperature control is difficult.

d、磁場印加用のマグネット@的が試料ホルダーベース
(ト)と一体化されているため、試料(1)の大きさが
変更に成った場合、前記マグネットに)(ロ)を含めて
試料ホルダ一部輪を設計変更する必要がある。
d. Since the magnet @ target for applying a magnetic field is integrated with the sample holder base (G), if the size of the sample (1) changes, the magnet (2) and (B) should be attached to the sample holder base. It is necessary to change the design of some wheels.

等の欠点があった。There were other drawbacks.

本発明は、かかる欠点を除去すべく成されたもので、非
磁性体で耐熱材から成るメッキ槽と、このメッキ槽内部
に、メッキ液を外周より囲うようにフレキシブルなヒー
タをコの字状に形成して配設したヒータ部と、陽極部と
、試料が非導電体材で囲われメッキパターンがメッキ液
中に露出し試、1  料全体をメッキ液中に挿入するよ
うに構成した試料ホルダ一部と、メッキ槽外部にメッキ
材に配向性を与えるための磁場印加部とからなり、電気
メッキを行なうようにした薄膜磁気ヘッドの製造装置を
提供するものである。かかる構成によると、試料の外周
部に導電性ゴムを密着させて、規定メッキ面以外を密閉
すると同時に電流印加部とすることにより、選択メソキ
ーを可能にできると共に、メッキ部の電流密度を均一化
でき、高精度なメッキ膜を能率よく形成することができ
る。また本発明では、試料ホルダ一部を、試料のメッキ
パターン部を露出するように切り欠いた導電性で軟弾性
材を試料の外周部に密着させ、メッキパターンに電流を
流すと同時に試料のメッキパターン部以外をメッキ液か
ら密閉するように構成しており、さ−らに、導電性の軟
弾性材が、試料のメッキパターン面に対し垂直方向に導
電性を有し、面内方向には絶縁性を有する導電性ゴムか
ら成るようにしている。
The present invention has been made to eliminate such drawbacks, and includes a plating tank made of a non-magnetic and heat-resistant material, and a flexible heater arranged in a U-shape inside the plating tank to surround the plating solution from the outside. The sample was constructed such that the heater section formed and arranged in the plating solution, the anode section, and the sample were surrounded by a non-conductive material so that the plating pattern was exposed in the plating solution.1. The present invention provides an apparatus for manufacturing a thin-film magnetic head that performs electroplating, comprising a part of a holder and a magnetic field applying section for imparting orientation to a plating material outside a plating bath. According to this configuration, by closely adhering the conductive rubber to the outer circumference of the sample, sealing off the surface other than the specified plated surface and simultaneously using it as a current application section, selection meso-keying is made possible and the current density of the plated section is made uniform. It is possible to efficiently form a highly accurate plating film. In addition, in the present invention, a part of the sample holder is cut out to expose the plating pattern part of the sample, and a conductive, soft elastic material is tightly attached to the outer circumference of the sample, and a current is applied to the plating pattern at the same time as the sample is plated. The part other than the pattern part is sealed from the plating solution, and the conductive soft elastic material has conductivity in the direction perpendicular to the plating pattern surface of the sample and in the in-plane direction. It is made of conductive rubber with insulation properties.

以下、本発明の一実施例を第5図〜第17図に    
□基づいて詳細に説明する。第5図〜#I8図は本発明
の一実施例である製造装置を示すものであり、第6図は
同装置のメッキ作業状態の平面図、第6図は第5図にお
けるX−X断面図、第7図は第5図におけるY−Y断面
図、第8図は第5図におけるZ矢視図(側面図)である
。この装置は、基台(2)と、その上に設けられたメッ
キ槽(2)と、とのメッキ槽(2)内に設けられたヒー
タ部に)と、メッキ液♂ 攪拌部(財)と、陽極部(2)と、試料ホルダ一部−と
、メッキ液温コントロール部(ロ)と、磁場印加部に)
と、メッキ液蒸発防止用蓋@■とにより構成されている
。さらに各部を詳細に説明すると、メッキ槽■は、耐メ
ツキ液性で非磁性体および耐熱性のガラス等の材料から
成っており、試料ホルダ一部(2)を固定するためのU
字状の切欠部(ロ)と、陽極部(2)を固定、するため
のU字状の切欠部(2)と、ヒータ部曽のリード部曽を
メッキ槽曽外部に引出すための切欠部−を有している。
An embodiment of the present invention is shown in FIGS. 5 to 17 below.
□Explain in detail based on. Figures 5 to #I8 show a manufacturing apparatus that is an embodiment of the present invention, and Figure 6 is a plan view of the apparatus in a plating operation state, and Figure 6 is a cross section taken along line X-X in Figure 5. 7 is a YY sectional view in FIG. 5, and FIG. 8 is a Z-direction view (side view) in FIG. 5. This device consists of a base (2), a plating tank (2) provided on the base (2), a heater part provided in the plating tank (2)), and a plating solution ♂ stirring part. , anode part (2), part of the sample holder, plating liquid temperature control part (b), and magnetic field application part)
and a plating solution evaporation prevention lid@■. To explain each part in more detail, the plating bath (■) is made of materials such as plating liquid-resistant, non-magnetic material and heat-resistant glass.
A U-shaped notch (2) for fixing the anode part (2), and a notch for drawing out the lead part of the heater part to the outside of the plating bath. - has.

前記ヒータ部(至)は、高抵抗のヒータ線とリード導体
線とをテフロン等の耐メッキ液材料でコーティングして
平板状に構成したフレキシブルなヒータ■より成り、こ
のヒーターがメッキ液を均一に加熱するためこのメッキ
液を外周より囲うようにコの字状化形成し、その形状を
保持するため、前記ヒータ(至)の両側端に)−の一部
をガイド板(至)頓に複数形成したコの字状の切欠部(
至)に挿入し、さらに間隔規制枠−で前記ガイド板(至
)(2)の間隔を規制することにより、メッキ槽■内に
固定している。またガイド板(至)(ロ)には、メッキ
液全体が均一に攪拌され且つ均一に温度がコントロール
されるように、適当な複数の切欠部彎が設けであるとと
もに、メッキ槽四内に挿入、取外しが容易なように工夫
されている。前記メッキ液攪拌部榊は次の構成より成っ
ている。すなわち、ファン−が連結棒−によりモーター
に連結されており、モータに)はメッキ液蒸発防止用蓋
(2)に固定されている。ファン輪および連結棒−は非
磁性体で且つ耐メツキ液性材料から成っている。もちろ
ん、SuS材のように非磁性体材料で、メッキ液に触れ
る部分をテフロン等の耐メツキ液材でコーティングして
も可である。前記メッキ液温コントロール部(財)は、
温度検出センサー四がテフロン等の耐メツキ液性の材料
でコーティングされており、前記メッキ液蒸発防止用蓋
四にシリコンゴム等から成るブツシュ−で固定され、そ
の端部は温度調整器に接続されている。また前記メッキ
液蒸発防止用蓋曽には、温度計−がシリコンゴム等の材
料から成るブツシュ句を介して取付けである。前記磁場
印加部に)は、非磁性体材料から成る取付板−に、試料
(1)の強磁性体メッキ膜に配向性を持たせるため、前
記メッキ膜の磁化容易軸方向に磁界が印加されるように
、試料(1)の大きさより大きな形状のマグネットti
e@を、メッキ槽磐外部で試料ホルダー(至)の両サイ
ドに配置しである。また前記取付板−1こは、メッキ槽
(2)を定位置に案内するための案内板−が固定され、
基台(ロ)に固定されている。
The heater section (to) consists of a flexible heater made into a flat plate with a high resistance heater wire and a lead conductor wire coated with a plating solution-resistant material such as Teflon, and this heater spreads the plating solution uniformly. In order to heat this plating solution, it is formed into a U-shape so as to surround it from the outer periphery, and in order to maintain that shape, a plurality of guide plates are installed at both ends of the heater. The U-shaped cutout (
The guide plate (to) (2) is inserted into the plating tank (2), and the spacing between the guide plates (to) (2) is regulated by the spacing regulating frame (-), thereby fixing the guide plate (to) (2) in the plating tank (2). In addition, the guide plates (to) and (b) are provided with a plurality of appropriate cutout curves so that the entire plating solution is stirred uniformly and the temperature is controlled uniformly, and the guide plates are designed to be inserted into the plating tank. , designed to be easy to remove. The plating solution stirring section Sakaki has the following configuration. That is, the fan is connected to the motor by a connecting rod, and the motor is fixed to the plating solution evaporation prevention lid (2). The fan wheel and connecting rod are made of a non-magnetic and plating liquid-resistant material. Of course, it is also possible to use a non-magnetic material such as SuS material and coat the portion that comes into contact with the plating liquid with a plating-resistant material such as Teflon. The plating liquid temperature control department (foundation) is
The temperature detection sensor 4 is coated with a plating liquid-resistant material such as Teflon, and is fixed to the plating solution evaporation prevention lid 4 with a bushing made of silicone rubber or the like, and the end thereof is connected to a temperature regulator. ing. Further, a thermometer is attached to the lid for preventing evaporation of the plating solution through a bushing made of a material such as silicone rubber. In the magnetic field applying section), a magnetic field is applied to the mounting plate made of a non-magnetic material in the direction of the axis of easy magnetization of the plating film in order to give orientation to the ferromagnetic plating film of the sample (1). The magnet ti is larger than the size of the sample (1) so that
e@ are placed on both sides of the sample holder (to) outside the plating tank. Further, a guide plate for guiding the plating tank (2) to a fixed position is fixed to the mounting plate 1,
It is fixed to the base (b).

陽極部(ホ)はNi材から成り、試料(1)のメッキ面
より大きな面積を有した板−が位置規制板(102)に
固定され、電流導入用リード−と接続されており、また
位置規制板(102)には、陽極部(2)をメッキ槽(
2)内の所定位置に取付け、取外しが容易なように、メ
ッキ槽(2)のU字切欠部に)に嵌合する段付軸−が一
体化されている。前記試料中ルダ一部曽は、第9図〜第
18図に示すように、試料ホルダーベース−の一平面−
の中央部に試料(1)をセットするための凹溝−が試料
(1)の厚みより深く設けてあり、その内部には試料(
1)の厚みのバラツキを吸収するための板ばね旬が挿入
されている。また、前記一平面−の凹溝−の外部には、
コンタクトピンqが嵌合する六−が複数個設けである。
The anode part (E) is made of Ni material, and a plate with a larger area than the plated surface of the sample (1) is fixed to the position regulating plate (102) and connected to the current introduction lead. The regulation plate (102) has the anode part (2) attached to the plating bath (
2) A stepped shaft that fits into the U-shaped notch of the plating tank (2) is integrated so that it can be easily installed and removed at a predetermined position in the plating tank (2). As shown in FIGS. 9 to 18, a portion of the sample holder base is located on one plane of the sample holder base.
A concave groove for setting the sample (1) is provided in the center of the sample (1), which is deeper than the thickness of the sample (1).
1) A leaf spring is inserted to absorb the variation in thickness. Moreover, on the outside of the one-plane concave groove,
A plurality of six pins into which the contact pins q fit are provided.

凹flljmと穴−を外周より囲むような断面コの字状
の溝−と、一平面−の反対側の平面−には、リード線−
を固定するための溝啼と、コンタクトビン−とリード線
−とを接続後にこれらの導体部を耐メツキ液材−で容易
にコーティングするための溝−とが設けられている。前
記複数の穴−に、第11図に示すような、コンタクト先
端部−がガイドビン−内をばね(至)により自在に摺動
し且つ導電性体で非磁性体からなる複数のコンタクトピ
ン關が挿入される。
A groove with a U-shaped cross section that surrounds the concave fljm and the hole from the outer periphery, and a plane opposite to one plane are equipped with a lead wire.
and a groove for easily coating the conductor portion with a plating-resistant liquid material after the contact bottle and lead wire are connected. In the plurality of holes, a plurality of contact pins made of a conductive and non-magnetic material, the tip of which is slid freely within the guide pin by a spring, as shown in FIG. 11, are inserted. is inserted.

挿入されたコンタクトピン−の後端部は前記溝−内に突
出し、そして複数のコンタクトピン−の後端部とリード
線−とが接続され、また両溝@−は耐メツキ液材−でモ
ールドされている。また前記溝一部には、シリコンゴム
等の耐メツキ液材から成り弾力性を有した0リング(2
)がセットされていると共に、メッキ槽曽の所定位置に
試料ホルダ一部(2)をセットするための、メッキ槽に
)のU字切欠部(2)に嵌合する段付軸(至)が試料ホ
ルダーペースーーに一体化されている。また一平面−と
溝−の平面−とは段差が設けてあり、そして試料ホルダ
ーカバー−を位置決めするための凸部(支)が設けであ
る。
The rear ends of the inserted contact pins protrude into the grooves, and the rear ends of the plurality of contact pins and lead wires are connected, and both grooves are molded with a plating-resistant liquid material. has been done. In addition, a part of the groove is provided with an elastic O-ring (2
) is set, and a stepped shaft (to) that fits into the U-shaped notch (2) in the plating tank () for setting the sample holder part (2) in a predetermined position in the plating tank. is integrated into the sample holder page. Further, there is a step between one plane and the plane of the groove, and a protrusion (support) for positioning the sample holder cover is provided.

もちろん試料ホルダーベース−は、非導電性で非磁性体
で且つ耐メッキ液材料から成っている。試料ホルダーカ
バー−は、複数個の強磁性体パターン(6)全体が完全
に露出し且つレジスト(5)の外周の一部を残し露出す
る形状の窓ヴ4と、前記試料ホルダーベース−の凸部−
に嵌合し且つ前記複数のコンタクトピン−を完全に覆う
ことのできる凹部−とを有し、さらに内側寸法が前記窓
v4の外形寸法と同形状で且つ外形寸法が前記凹部(至
)の寸法より少々小さな形状で厚さの薄い導電性ゴム(
至)がこの試料ホルダーカバー(2)に接合され一体化
されている。
Of course, the sample holder base is made of a non-conductive, non-magnetic and plating solution resistant material. The sample holder cover has a window 4 having a shape in which the entire plurality of ferromagnetic patterns (6) are completely exposed, leaving a part of the outer periphery of the resist (5) exposed, and a convex portion of the sample holder base. Department
and a recess that can fit into the plurality of contact pins and completely cover the plurality of contact pins; Conductive rubber with a slightly smaller shape and thinner thickness (
) is joined and integrated with this sample holder cover (2).

なお試料ホルダーカバー(至)としては第14図、第1
5図に示すように、垂直方向のみに導電性を有する構造
の導電性ゴム(至)を用い、この導電性ゴム(至)下の
試料ホルダーカバー−に、前記導電性ゴムfflの外形
寸法と同一形状の溝部四を設け、この溝蔀翰に導体箱−
を設けておくとさらに良好な結果が得られる。
The sample holder cover (toward) is shown in Figure 14 and Figure 1.
As shown in Fig. 5, a conductive rubber having a structure that has conductivity only in the vertical direction is used, and the sample holder cover under the conductive rubber is provided with external dimensions and dimensions of the conductive rubber ffl. A groove section 4 of the same shape is provided, and a conductor box is installed in this groove section.
Even better results can be obtained if .

次に本発明装置を使用して作業する手順について詳細に
説明する。第17図に示すように、導体基板(2)上に
絶縁体膜(3)が0.1μm〜数μm程度スパッタまた
は蒸着等により形成され、その上部に強磁性体から成る
予備膜(4)を005μm〜0.2μm程度ス/fツタ
または蒸着等により成形した後、レジスト(5)を塗布
し、強磁性体パタEン(6)全体を外周から轡回するよ
うに電極パターン部旬を形成し、た試料(1)が予じめ
準備されている。まず、第6図、第7図に示すように、
メッキ槽(2)内にメッキ液Q時を一定量注入し、その
後、陽極部(ホ)をメッキ槽(2)内にセットし、メッ
キ液蒸発防止用蓋@曽をメッキ槽(2)上にセットし、
ヒータ部(2)の電源および攪拌モータに)の電源を入
れ、メッキ液温を適当な温度に制御する。メッキ液温が
最適温度に制御された後、前記試料(1)を第9図に示
すように、その強磁性体パターン(6)を表にして凹溝
−内に挿入する。その後、第16図に示すように、試料
ホルダーベース−の凸部団と試料ホルダーカバー(73
1の凹部−とを合わせた状態で、これら試料ホルダーベ
ース−と試料ホルダーカバー−とをビス(105)等に
より押圧して、0リング(2)と導電性ゴム(7曖と板
ばね旬とに変形を与え、試料(1)のレジスト(5)の
表面と電極パターン部旬の表面と導電性ゴム(至)の表
面間、および試料ホルダーベース−の溝−内平面部一と
試料ホルダーカバー(2)の表面−との間を、0リング
(2)により、試料(1)の強磁性体パターン(6)以
外をメッキ液と密閉するように試料ホルダ一部(至)に
この試料(1)をセットする。その後、メッキ液蒸発防
止用蓋曽を除去し、メッキ槽(支)のU字切欠部(2)
に試料ホルダ一部曽の段付軸(2)を嵌込んで、試料(
1)全体がメッキ液(至)に沈み、磁場印加用マグネッ
ト−′1   @の中央部に位置するようにセ・トし、
そ、して前記メッキ液蒸発防止用蓋曽を再度セットする
。その後、陽極部(ハ)と試料ホルダ一部(ホ)に電流
を印加することにより、電流は、リード線輪、陽極板−
およびメッキ液01を介して、試料(1)の強磁性体パ
ターン(6ンより予備膜(4)、そして試料(])の外
周に設けられた電極パターン部細、導電性ゴム17Lそ
して複数のコンタクトピン−からリード線−を1で電源
部へと流れる。この場合は、メッキ液(2)から導電性
ゴム四へ直接電流が流れ、前記導電性ゴム四の端面にメ
ッキが成されるが、前記導電性ゴム(至)の厚みを薄く
し、厚みを均一化することにより、導電性ゴム四端面の
面積を求めることができ、そのため電流密度の管理が可
能に成り、強磁性体の一メッキ膜厚をコントロールでき
る。また第14図、第16図に示すような構成の場合の
電流の渡れは、陽極板−、メッキ液αす、試料(1)の
強磁性体パターン(6)より予備膜(4)の外周に設け
られた電極パターン(7)を介し、前記電極パターン部
−上の導電性ゴ   □ムυ沙の重置方向のみにコンタ
クトする金属柱を通り、導体箱−に流れ、複数個のコン
タクトピン四上の導電性ゴムV@の重置方向にコンタク
トする金属柱から前記コンタクトピン匈へと流れる。前
記導電性ゴム−が全方向に導電性を有しているのに比べ
、垂直方向性導電ゴム(至)は、隣りとは絶縁された金
属柱が一定間隔ごとに並べであるため、前記絶縁体(5
)と接触する導電性ゴムff1部には電流が流れること
がないので、前記導電性ゴム(至)の端面(108)は
メッキがされない。このようにすると、強磁性体パター
ンのみの完全な選択メッキを可能にすることができる。
Next, the procedure for working using the apparatus of the present invention will be explained in detail. As shown in FIG. 17, an insulating film (3) of about 0.1 μm to several μm is formed by sputtering or vapor deposition on a conductive substrate (2), and a preliminary film (4) made of a ferromagnetic material is formed on top of the insulating film (3). After forming the ferromagnetic material pattern E (6) to a thickness of about 0.005 μm to 0.2 μm by sintering or vapor deposition, apply a resist (5) and shape the electrode pattern part by turning the entire ferromagnetic material pattern E (6) from the outer periphery. A sample (1) was prepared in advance. First, as shown in Figures 6 and 7,
Inject a certain amount of plating solution Q into the plating tank (2), then set the anode part (e) in the plating tank (2), and place the plating solution evaporation prevention lid on top of the plating tank (2). Set it to
Turn on the power to the heater section (2) and the stirring motor, and control the temperature of the plating solution to an appropriate temperature. After the plating solution temperature is controlled to the optimum temperature, the sample (1) is inserted into the groove with its ferromagnetic pattern (6) facing up, as shown in FIG. After that, as shown in Fig. 16, the convex group of the sample holder base and the sample holder cover (73
With the concave parts 1 and 1 pressed together, press the sample holder base and sample holder cover with screws (105), etc., and then attach the O-ring (2) and the conductive rubber (7) with the plate springs. between the surface of the resist (5) of the sample (1), the surface of the electrode pattern part, and the surface of the conductive rubber (1), and between the groove of the sample holder base, the inner flat surface part 1, and the sample holder cover. A part of the sample holder (up to) is connected to the sample ( 1).After that, remove the plating solution evaporation prevention lid and insert the U-shaped notch (2) of the plating tank (support).
Insert the stepped shaft (2) of the sample holder into the sample holder (
1) Set it so that the whole part is submerged in the plating solution and positioned in the center of the magnet for applying a magnetic field.
Then, the plating solution evaporation prevention lid is set again. After that, by applying a current to the anode part (c) and part of the sample holder (e), the current is applied to the lead wire ring, the anode plate -
Then, through the plating solution 01, the ferromagnetic pattern of the sample (1) is transferred to the preliminary film (4) from the sample (6), the electrode pattern details provided on the outer periphery of the sample (]), the conductive rubber 17L, and the A current flows from the contact pin through the lead wire 1 to the power supply section.In this case, current flows directly from the plating solution (2) to the conductive rubber 4, and the end face of the conductive rubber 4 is plated. By reducing the thickness of the conductive rubber and making it uniform, it is possible to determine the area of the four end faces of the conductive rubber, which makes it possible to control the current density, and to make the thickness of the conductive rubber uniform. The plating film thickness can be controlled.Also, in the case of the configuration shown in Figures 14 and 16, the current flow is as follows: Through the electrode pattern (7) provided on the outer periphery of the preliminary film (4), the conductive rubber on the electrode pattern part passes through the metal pillar that contacts only in the direction of overlapping of the metal bar, and into the conductor box. The electrically conductive rubber V@ on the plurality of contact pins 4 flows from the contacting metal column to the contact pin 4 in the stacking direction.The conductive rubber V has conductivity in all directions. In contrast, vertically oriented conductive rubber (5) has metal columns insulated from adjacent ones arranged at regular intervals, so the insulator (5)
) Since no current flows through the portion of the conductive rubber ff1 that comes into contact with the conductive rubber, the end surface (108) of the conductive rubber (to) is not plated. In this way, complete selective plating of only the ferromagnetic pattern can be achieved.

電流導入後、一定時間メッキを行ない、再び蓋■を開け
、試料ホルダー(ホ)を外して水洗いした後に試料(1
)を取り出し、レジスト(5)を除去し、予備膜(4)
をスパッタエツチング等により除去して、第4図に示す
ような強磁性体(転)を形成する。メッキ作業終了後は
、メッキ槽(2)よりメッキ液蒸発防止用蓋四を外し、
メッキ槽(2)を基台(2)から外しメッキ液(至)を
廃棄し、洗浄する。
After introducing the current, plating is performed for a certain period of time, then open the lid again, remove the sample holder (E), wash it with water, and then remove the sample (1).
), remove the resist (5), and remove the preliminary film (4).
is removed by sputter etching or the like to form a ferromagnetic material as shown in FIG. After completing the plating work, remove the plating solution evaporation prevention lid 4 from the plating tank (2),
Remove the plating bath (2) from the base (2), discard the plating solution, and clean it.

以上述べた本発明によると1 、a、試料全体をメッキ液中に入れて、試料の外周部よ
り電流を印加でき、メッキ部の電流密度を均一化でき、
したがってメッキ膜厚のバラツキが少なく、規定膜厚に
正確にコントロールできるため、ヘッド特性の向上と安
定化が計れる。
According to the present invention described above, 1. a. The entire sample can be placed in a plating solution and a current can be applied from the outer periphery of the sample, so that the current density in the plating part can be made uniform;
Therefore, there is little variation in the plating film thickness and it can be precisely controlled to a specified film thickness, thereby improving and stabilizing the head characteristics.

b、従来のように、メッキ前のレジスト塗布作業なしで
も強磁性体パターンのみの選択メッキが可能で、作業能
率が大幅に向上する。
b. Selective plating of only ferromagnetic patterns is possible without the need for resist coating before plating as in the past, greatly improving work efficiency.

C,ヒータ部をメッキ液中に入れ、メッキ液外部より囲
うようにコの字状にすることにより、メッキ液の温度上
昇が急激に成るとともに温度コントロールが容易に成る
C. By placing the heater part in the plating solution and forming it in a U-shape so as to surround it from the outside of the plating solution, the temperature of the plating solution increases rapidly and the temperature can be easily controlled.

d、  @場印加部をメッキ槽外部に設けることにより
、試料形状l変更の際試料ボルダ−の設。
d. By providing the field application part outside the plating tank, it is possible to set up the sample boulder when changing the sample shape.

計変更が容易に成ると同時に低コスト化が計れる。This makes it easy to change the system and at the same time reduces costs.

などの効果を期待できる。このように本発明によれば、
容易に精度よく導電体の薄膜メッキが可能になり、薄膜
磁気ヘッドの特性を安定して歩留よに製造することがで
きる。
You can expect the following effects. Thus, according to the present invention,
It becomes possible to easily and precisely plate a conductive thin film, and it is possible to manufacture a thin film magnetic head with stable characteristics and a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜磁気ヘッド製造装置を使用する場合
の試料概要図、第2図、第8図は従来の薄膜磁気ヘッド
製造装置を示すもので、第2図は縦断正面図、第8図は
平面図、第4図はメッキ作業完了後の概要図、第5図〜
第8図は本発明の一実施例である薄膜磁気ヘッド製造装
置を示すもので、第6図はメッキ作業状態の平面図、第
6図はfs6図におけるX−x断面図、第7図は同Y−
Y断面図、第8図は同2矢視図、第9図〜第15図は同
装置の試料ホルダ一部の詳細図であり、第9図は縦断側
面図、fIi10図は正面図、第11図はコンタクトピ
ンの断面図、112図は試料ホルダーカバーの縦断側面
図、第18図は同正面図、第14図は試料ホルダーカバ
ーの変形例を示す縦断側面図、第15図は同正面図、第
16図は試料ホルダ一部に試料をセットした状態図、第
17図は本装置を使用する場合の試料概要図である。 (1)・・・試料、(至)・・・メッキ液、■・−・メ
ッキ槽、@・・・ヒータ部、H・・・メッキ液攪拌部、
@・・・陽極部1w・・・試料ホルダ一部、@・・・メ
ッキ液温コントロール部、@・・・磁場印加部、曽・・
・ヒータ、11−・・・マグネット、@・・試料ホルダ
ーベース、(7ト・・導電性ゴム。 (至)・・・導電性ゴム 代理人 森本義弘 第1図 第2図 第3図 第7図 24 45 第1図 第2図     第1ρ図 第1/図 第、2図       第73 。 3 第15図      第14図 73 第μ図 3 第77図
Fig. 1 is a schematic diagram of a sample when using a conventional thin film magnetic head manufacturing apparatus, Figs. 2 and 8 show conventional thin film magnetic head manufacturing apparatuses, and Fig. The figure is a plan view, Figure 4 is a schematic diagram after plating work is completed, and Figures 5~
Fig. 8 shows a thin film magnetic head manufacturing apparatus which is an embodiment of the present invention, Fig. 6 is a plan view of the plating work state, Fig. 6 is a sectional view taken along the line X-x in the fs6 diagram, and Fig. 7 is a Same Y-
A Y cross-sectional view, FIG. 8 is a view taken from the same arrow 2, FIGS. 9 to 15 are detailed views of a part of the sample holder of the same apparatus, FIG. 9 is a vertical side view, FIG. Fig. 11 is a cross-sectional view of the contact pin, Fig. 112 is a vertical side view of the sample holder cover, Fig. 18 is a front view thereof, Fig. 14 is a longitudinal side view showing a modification of the sample holder cover, and Fig. 15 is a front view of the same. 16 is a state diagram showing a sample set in a part of the sample holder, and FIG. 17 is a schematic diagram of a sample when using this apparatus. (1)...Sample, (to)...Plating solution, ■--Plating tank, @...Heater part, H...Plating solution stirring part,
@...Anode part 1w...Part of the sample holder, @...Plating liquid temperature control part, @...Magnetic field application part, Zeng...
・Heater, 11-...Magnet, @...Sample holder base, (7)...Conductive rubber. (to)...Conductive rubber representative Yoshihiro MorimotoFigure 1Figure 2Figure 3Figure 7 Fig. 24 45 Fig. 1 Fig. 2 Fig. 1 ρ Fig. 1/Fig. 2, Fig. 2 Fig. 73. 3 Fig. 15 Fig. 14 Fig. 73 Fig. μ Fig. 3 Fig. 77

Claims (1)

【特許請求の範囲】 L 非磁性体で耐熱材から成るメッキ槽と、このメッキ
槽内部に、メッキ液を外周より囲うようにフレキシブル
なヒータをコの字状に形成して配設したヒータ部と、陽
極部と、試料が非導電体材で囲われメッキパターンがメ
ッキ液中に露出し試料全体をメッキ液中に挿入するよう
に構成した試料ホルダ一部と、メッキ槽外部にメッキ材
に配向性を与えるための磁場印加部とからなり、電気メ
ッキを行なうようにしたことを特長とする薄膜磁気ヘッ
ドの製造装置。 1 試料ホルダ一部を、試料のメッキパターン部を露出
するように切り欠いた導電性で軟弾性材を試料の外周部
に書着させ、メッキパターンに電流を流すと同時に試料
のメッキパターン部以外をメッキ液から密閉するように
構成したことを特徴とする特許請求の範囲第1項に記載
の薄膜磁気ヘッドの製造装置。 8、 導電性の軟弾性材が、試料のメッキパターン面に
対し垂直方向に導電性を有し、面内方向には絶縁性を有
する導電性ゴムから成ることを特徴とする特許請求の範
囲第2項に記載の薄膜磁気ヘッドの製造装置。
[Scope of Claims] L A plating tank made of a non-magnetic and heat-resistant material, and a heater section in which a flexible heater is formed in a U-shape to surround the plating solution from the outside. , an anode section, a part of the sample holder configured so that the sample is surrounded by a non-conductive material and the plating pattern is exposed in the plating solution so that the entire sample is inserted into the plating solution, and a part of the sample holder that is configured so that the sample is surrounded by a non-conductive material and the entire sample is inserted into the plating solution; 1. An apparatus for manufacturing a thin film magnetic head, comprising a magnetic field applying section for imparting orientation, and performing electroplating. 1 Part of the sample holder is cut out to expose the plating pattern part of the sample, and a conductive soft elastic material is attached to the outer periphery of the sample, and at the same time when a current is applied to the plating pattern, the part other than the plating pattern part of the sample is 2. The thin-film magnetic head manufacturing apparatus according to claim 1, wherein the thin-film magnetic head manufacturing apparatus is configured to be sealed from a plating solution. 8. Claim No. 8, characterized in that the conductive soft elastic material is made of conductive rubber that has conductivity in a direction perpendicular to the plating pattern surface of the sample and has insulation in the in-plane direction. 2. The thin film magnetic head manufacturing apparatus according to item 2.
JP18970781A 1981-11-25 1981-11-25 Manufacturing device of thin film magnetic head Pending JPS5891516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18970781A JPS5891516A (en) 1981-11-25 1981-11-25 Manufacturing device of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18970781A JPS5891516A (en) 1981-11-25 1981-11-25 Manufacturing device of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS5891516A true JPS5891516A (en) 1983-05-31

Family

ID=16245843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18970781A Pending JPS5891516A (en) 1981-11-25 1981-11-25 Manufacturing device of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS5891516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175416B2 (en) 2012-01-30 2015-11-03 Ebara Corporation Substrate holder and plating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175416B2 (en) 2012-01-30 2015-11-03 Ebara Corporation Substrate holder and plating apparatus

Similar Documents

Publication Publication Date Title
CA1184251A (en) Probe for medical application
EP0052701B1 (en) A method and apparatus for electroplating a metallic film
JPH0729414B2 (en) Valve element and manufacturing method thereof
WO1998040539A1 (en) Electroplating apparatus and process for reducing oxidation of oxidizable plating anions and cations
JPH0625899A (en) Electroplating device
KR20180057461A (en) Producing method of mask integrated frame
US6391168B1 (en) Plating apparatus utilizing an auxiliary electrode
JPS58182823A (en) Plating apparatus for semiconductor wafer
JPS5891516A (en) Manufacturing device of thin film magnetic head
US4302316A (en) Non-contacting technique for electroplating X-ray lithography
JPH0754189A (en) Electroplating device
KR101832988B1 (en) Mother plate and producing method of the same, and producing method of the same
JP2000096292A (en) Method for plating wafer
JP3639105B2 (en) Wafer plating method
US3994786A (en) Electroplating device and method
US4042467A (en) Electrolytically treating a selected cylindrical surface of an article
JPS61190091A (en) Method and device for magnetic alloy plating
JP4920969B2 (en) Electroplating equipment
CN115449746B (en) Coating device with fixture tool for realizing batch coating
JPH0443990B2 (en)
JPH0329876B2 (en)
JP3916340B2 (en) Thin film forming apparatus and method of manufacturing contact jig thereof
KR100293238B1 (en) rack for use in substrate plating device
JPS5745974A (en) Pressure contact type semiconductor device
JP3275502B2 (en) Method for manufacturing small objects by plating