JP3639105B2 - Wafer plating method - Google Patents

Wafer plating method Download PDF

Info

Publication number
JP3639105B2
JP3639105B2 JP02639598A JP2639598A JP3639105B2 JP 3639105 B2 JP3639105 B2 JP 3639105B2 JP 02639598 A JP02639598 A JP 02639598A JP 2639598 A JP2639598 A JP 2639598A JP 3639105 B2 JP3639105 B2 JP 3639105B2
Authority
JP
Japan
Prior art keywords
wafer
plating
anode electrode
outer peripheral
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02639598A
Other languages
Japanese (ja)
Other versions
JPH11209889A (en
Inventor
潤一郎 吉岡
信利 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP02639598A priority Critical patent/JP3639105B2/en
Publication of JPH11209889A publication Critical patent/JPH11209889A/en
Application granted granted Critical
Publication of JP3639105B2 publication Critical patent/JP3639105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はウエハ表面にメッキを均一に形成することができるウエハのメッキ方法に関するものである。
【0002】
【従来の技術】
従来、ウエハ表面に電解メッキを施すウエハのメッキ装置は、図4に示すように、電解メッキ液120中に、ウエハ100と、ウエハ100表面に平行に対向するように設置される平板状のアノード電極110とを浸漬し、ウエハ100とアノード電極110間に通電することでウエハ100表面にメッキを行なうように構成されている。
【0003】
【発明が解決しようとする課題】
しかしながらこのメッキ装置においてはその構造上、ウエハ100にメッキを行なうために電界を印加した場合、ウエハ100の外周部周辺の電位勾配と、中心部周辺の電位勾配に相違が生じ、このためウエハ100の各部におけるメッキの膜厚が不均一になってしまう恐れがあった。
【0004】
これを避けてウエハ100表面に均一にメッキを施すためには、ウエハ100表面近傍の各部の電位ができるだけ均一になるように調整する必要があるが、このため従来はこの電場調整法として、アノード電極の大きさを調整したり、アノード電極110とウエハ100の間に誘電体の遮蔽板を入れるなどの方法を用いていた。
【0005】
しかしながらこれらの方法では調整できる電場の範囲が狭く、ウエハ100表面において自由に電場を調整することができなかった。特にウエハ100の径が大きくなればなるほどその中心部と外周部の電位の差が大きくなるので、ウエハ100表面全体の広い範囲にわたって電位分布を均一にしてメッキを均一に形成することは困難になる。
【0006】
本発明は上述の点に鑑みてなされたものでありその目的は、ウエハ面上の広い範囲にわたって各部の電場を調整でき、これによってウエハ表面に均一な膜厚のメッキを形成することができるウエハのメッキ方法を提供することにある。
【0007】
【課題を解決するための手段】
上記問題点を解決するため本発明は、電解メッキ液中に、ウエハを浸漬すると共にウエハから所定距離離間してウエハと平行にアノード電極を浸漬して設置し、該電解メッキ液中でウエハとアノード電極間に通電する電流の電流値を一定に維持しながらアノード電極をウエハに最も近づけた位置から最も離れた位置まで徐々にウエハから遠ざけていく間にウエハ表面へのメッキを完了させることとした。
また本発明は、アノード電極の形状をウエハの形状と略相似形に形成した。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は本発明に用いるメッキ装置を示す全体概略図である。同図に示すようにこのメッキ装置は、メッキ槽10の電解メッキ液20中に、ウエハ100とアノード電極30とを両者の対向面が平行になるように所定距離離間して浸漬して構成されている。以下各構成部品について説明する。
【0009】
メッキ槽10はその外周にオーバーフロー槽13を設け、メッキ槽10とオーバーフロー槽13間をポンプ15,恒温ユニット17,フィルター19を取り付けた配管21で接続して構成されている。
【0010】
ウエハ100は略円板状であって、その外周をウエハ保持部材101で保持することでその一方の表面を電解メッキ液20中に露出せしめるように構成されている。
【0011】
一方アノード電極30はその外形形状が前記ウエハ100の外形形状と相似形となるように、即ちウエハ100と略同一寸法形状の円板状(この実施形態ではアノード電極30の外形寸法の方が少し小さい)に形成されている。
【0012】
そしてこのアノード電極30は、所定の駆動手段40によって、電解メッキ液20中で、ウエハ100の面に対して垂直方向に移動できるように構成されている。その際、ウエハ100の中心軸とアノード電極30の中心軸は一致している。
【0013】
次にこのメッキ装置の動作を説明する。まずアノード電極30をウエハ100に最も近づけた位置(点線で示す)にセットしておき、ポンプ15を駆動することで恒温ユニット17とフィルター19を通った電解メッキ液20をメッキ槽10内にその下部から供給して、オーバーフロー槽13にオーバーフローし循環する。
【0014】
そしてウエハ100とアノード電極30間に通電を行なってウエハ100表面にメッキを始める。
【0015】
ここで図2はメッキ当初においてアノード電極30がウエハ100に接近しているときのウエハ100とアノード電極30周辺の電場の状態を示す等電位線図である。同図に示すようにアノード電極30がウエハ100に接近している際はウエハ100の外周部よりも中心部の方が電位勾配が高くなる。従ってこの状態ではウエハ100の中心部の方が外周部よりもメッキがより厚く形成されていく。
【0016】
そしてアノード電極30を駆動手段40によって徐々にウエハ100から引き離しながらメッキを継続して行い、アノード電極30がウエハ100から最も離れた位置(図1の実線の位置)に到達した際にそのメッキが完了するようにする。
【0017】
ここで図3はアノード電極30がウエハ100から離れた所定位置にあるときのウエハ100とアノード電極30周辺の電場の状態を示す等電位線図である。同図に示すようにアノード電極30がウエハ100から離れるとウエハ100の中心部に比べて外周部の方が徐々に電位勾配が高くなっていく。アノード電極30をさらに図3の位置から図1の実線の位置までウエハ100から離していけば、さらにウエハ100の中心部に比べて外周部の方が電位勾配が高くなっていく。従ってアノード電極30がウエハ100から離れるに従ってウエハ100の外周部の方が中心部よりもメッキがより厚く形成されていくようになる。
【0018】
このように最初ウエハ100の中心部のメッキをより厚く形成し、徐々に外周部のメッキの方をより厚く形成するようにアノード電極30を移動するので、全体としてウエハ100全面に形成されるメッキの膜厚は均一化される。
【0019】
なおこの実施形態においては、アノード電極30をウエハ100から引き離すに従って、つまりメッキ時間の経過と共に、その電圧を下げていくように制御している。何故ならウエハ100にメッキを形成していくと、メッキ膜厚が厚くなることによってメッキ形成当初よりも徐々に通電時の抵抗値が減少していく。このため電圧値を一定にしておくと徐々に流れる電流値が上昇していく。
【0020】
一方メッキ膜厚は、流れる電流値と時間の積によって容易に求めることができるので、電流値は一定にしておきたい(そうすると時間の管理だけでメッキ膜厚を制御できるから)。さらに電流値が変化することで電流密度が変化すると、形成されるメッキ自体の特性(膜の表面状態や密度等)が変化する。そこでこの実施形態においては、電流値を一定にするために上述のように電圧値を変化するように制御しているのである。
【0021】
上記実施形態においてアノード電極30をウエハ100に接近した位置から離れるように移動したのは以下の理由による。
【0022】
即ち通常ウエハ100はウエハ保持部材101で保持される際にウエハ保持部材101に設けた図示しない通電ピンがウエハ100の外周に接触されることによって通電される。このため通電ピンに近いウエハ100の外周部分の方がウエハ100の中心部分よりも電気抵抗が小さく、このためもし両部分の電位勾配が同一だったとしても外周部の方により厚くメッキが形成されていく傾向にある。このためメッキ当初はまずアノード電極30をウエハ100に接近させておくことで前述のようにウエハ100中心部の方のメッキ膜厚を外周部のメッキ膜厚よりも厚く形成せしめ、これによって中心部の電気抵抗を外周部の電気抵抗よりも小さくするようにして通電ピンまでの抵抗値を均一化し、より効果的にウエハ100全面のメッキ膜厚の均一化を図るためである。
【0023】
【発明の効果】
以上詳細に説明したように本発明によれば以下のような優れた効果を有する。▲1▼電解メッキ液中でウエハとアノード電極の離間距離を変更しながらウエハとアノード電極間に通電することによってウエハ表面にメッキを行なうように構成したので、メッキ中にウエハ面上の広い範囲にわたって各部の電場を調整することができ、ウエハ表面に均一な膜厚のメッキを形成することができる。
【0024】
▲2▼アノード電極の形状をウエハの形状と略相似形に構成したので、電場の状態がウエハとアノード電極の中心部同士を結ぶ線に対して略対称となり、より均一なメッキ膜を得ることができる。
【0025】
▲3▼ウエハにメッキする際の電流値を一定にすると同時に、アノード電極を徐々にウエハから遠ざけながらメッキを行うこととしたので、さらに容易且つ効果的にウエハ全面のメッキ膜厚の均一化が図れる。
【図面の簡単な説明】
【図1】本発明に用いるメッキ装置を示す全体概略図である。
【図2】アノード電極30がウエハ100に接近したときのウエハ100とアノード電極30周辺の電場の状態を示す等電位線図である。
【図3】アノード電極30がウエハ100から離れた所定位置にあるときのウエハ100とアノード電極30周辺の電場の状態を示す等電位線図である。
【図4】従来のメッキ装置を示す全体概略図である。
【符号の説明】
10 メッキ槽
20 電解メッキ液
30 アノード電極
40 駆動手段
100 ウエハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer plating method capable of uniformly forming plating on a wafer surface.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as shown in FIG. 4, a wafer plating apparatus for performing electrolytic plating on a wafer surface includes a wafer 100 and a flat plate-like anode that is installed so as to face the wafer 100 surface in parallel. The surface of the wafer 100 is plated by immersing the electrode 110 and energizing between the wafer 100 and the anode electrode 110.
[0003]
[Problems to be solved by the invention]
However, in this plating apparatus, when an electric field is applied to perform plating on the wafer 100, there is a difference between the potential gradient around the outer peripheral portion of the wafer 100 and the potential gradient around the central portion. There was a possibility that the film thickness of the plating in each part would become non-uniform.
[0004]
In order to avoid this and to uniformly plate the surface of the wafer 100, it is necessary to adjust the potential of each part near the surface of the wafer 100 so as to be as uniform as possible. Methods such as adjusting the size of the electrode or inserting a dielectric shielding plate between the anode electrode 110 and the wafer 100 have been used.
[0005]
However, the range of the electric field that can be adjusted by these methods is narrow, and the electric field cannot be freely adjusted on the surface of the wafer 100. In particular, as the diameter of the wafer 100 increases, the difference in potential between the central portion and the outer peripheral portion increases, so that it is difficult to uniformly form a plating with a uniform potential distribution over a wide range of the entire surface of the wafer 100. .
[0006]
The present invention has been made in view of the above-described points, and an object of the present invention is to adjust the electric field of each part over a wide range on the wafer surface, thereby forming a wafer having a uniform film thickness on the wafer surface. It is to provide a plating method.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention immerses a wafer in an electrolytic plating solution and disposes an anode electrode in parallel with the wafer at a predetermined distance from the wafer. The plating on the wafer surface is completed while the anode electrode is gradually moved away from the wafer from the position closest to the wafer to the position farthest away from the wafer while maintaining the current value of the current flowing between the anode electrodes constant ; did.
In the present invention, the anode electrode has a shape substantially similar to that of the wafer.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall schematic view showing a plating apparatus used in the present invention. As shown in the figure, this plating apparatus is configured by immersing a wafer 100 and an anode electrode 30 in an electrolytic plating solution 20 of a plating tank 10 at a predetermined distance from each other so that their opposing surfaces are parallel to each other. ing. Each component will be described below.
[0009]
The plating tank 10 is provided with an overflow tank 13 on its outer periphery, and the plating tank 10 and the overflow tank 13 are connected by a pipe 21 to which a pump 15, a constant temperature unit 17 and a filter 19 are attached.
[0010]
The wafer 100 is substantially disk-shaped, and is configured such that one surface thereof is exposed in the electrolytic plating solution 20 by holding the outer periphery thereof with a wafer holding member 101.
[0011]
On the other hand, the anode electrode 30 has an outer shape similar to the outer shape of the wafer 100, that is, a disk shape having substantially the same size as the wafer 100 (in this embodiment, the outer dimension of the anode electrode 30 is slightly smaller). Small).
[0012]
The anode electrode 30 is configured to be movable in a direction perpendicular to the surface of the wafer 100 in the electrolytic plating solution 20 by a predetermined driving means 40. At this time, the central axis of the wafer 100 and the central axis of the anode electrode 30 coincide with each other.
[0013]
Next, the operation of this plating apparatus will be described. First, the anode electrode 30 is set at a position closest to the wafer 100 (indicated by a dotted line), and the electroplating solution 20 that has passed through the constant temperature unit 17 and the filter 19 is driven into the plating tank 10 by driving the pump 15. Supplied from the bottom, overflows into the overflow tank 13 and circulates.
[0014]
Then, energization is performed between the wafer 100 and the anode electrode 30 to start plating on the surface of the wafer 100.
[0015]
FIG. 2 is an equipotential diagram showing the state of the electric field around the wafer 100 and the anode electrode 30 when the anode electrode 30 is approaching the wafer 100 at the beginning of plating. As shown in the figure, when the anode electrode 30 is approaching the wafer 100, the potential gradient is higher in the central portion than in the outer peripheral portion of the wafer 100. Therefore, in this state, the central portion of the wafer 100 is formed thicker than the outer peripheral portion.
[0016]
Then, the plating is continued while the anode electrode 30 is gradually separated from the wafer 100 by the driving means 40. When the anode electrode 30 reaches the position farthest from the wafer 100 (the position indicated by the solid line in FIG. 1), the plating is performed. Make it complete.
[0017]
FIG. 3 is an equipotential diagram showing the state of the electric field around the wafer 100 and the anode electrode 30 when the anode electrode 30 is at a predetermined position away from the wafer 100. As shown in the figure, when the anode electrode 30 is separated from the wafer 100, the potential gradient gradually increases at the outer peripheral portion as compared with the central portion of the wafer 100. If the anode electrode 30 is further moved away from the wafer 100 from the position shown in FIG. 3 to the position shown by the solid line in FIG. 1, the potential gradient is higher at the outer peripheral portion than at the center portion of the wafer 100. Therefore, as the anode electrode 30 moves away from the wafer 100, the outer peripheral portion of the wafer 100 is formed with a thicker plating than the central portion.
[0018]
In this manner, the plating at the center of the wafer 100 is first formed thicker and the anode electrode 30 is moved so that the outer peripheral plating is gradually thickened. The film thickness is made uniform.
[0019]
In this embodiment, the voltage is controlled to decrease as the anode electrode 30 is separated from the wafer 100, that is, as the plating time elapses. This is because when the plating is formed on the wafer 100, the resistance value at the time of energization gradually decreases from the beginning of the plating because the plating film thickness increases. For this reason, when the voltage value is kept constant, the value of the flowing current gradually increases.
[0020]
On the other hand, since the plating film thickness can be easily obtained by the product of the flowing current value and time, the current value should be kept constant (because the plating film thickness can be controlled only by managing the time). Further, when the current density is changed by changing the current value, the characteristics of the formed plating itself (film surface state, density, etc.) change. Therefore, in this embodiment, the voltage value is controlled to change as described above in order to keep the current value constant.
[0021]
The reason why the anode electrode 30 is moved away from the position approaching the wafer 100 in the above embodiment is as follows.
[0022]
That is, normally, when the wafer 100 is held by the wafer holding member 101, the wafer 100 is energized by bringing an energizing pin (not shown) provided on the wafer holding member 101 into contact with the outer periphery of the wafer 100. For this reason, the outer peripheral portion of the wafer 100 close to the energizing pins has a smaller electric resistance than the central portion of the wafer 100, and therefore, even if the potential gradient of both portions is the same, the outer peripheral portion is thicker. There is a tendency to go. Therefore, at the beginning of plating, the anode electrode 30 is first brought close to the wafer 100, so that the plating film thickness in the central part of the wafer 100 is made thicker than the plating film thickness in the outer peripheral part as described above. This is because the resistance value up to the energizing pins is made uniform by making the electrical resistance of the outer periphery smaller than the electrical resistance of the outer peripheral portion, and the plating film thickness on the entire surface of the wafer 100 is more effectively made uniform.
[0023]
【The invention's effect】
As described in detail above, the present invention has the following excellent effects. (1) Since the surface of the wafer is plated by energizing between the wafer and the anode electrode while changing the distance between the wafer and the anode electrode in the electrolytic plating solution, a wide range on the wafer surface during plating. Thus, the electric field of each part can be adjusted, and plating with a uniform film thickness can be formed on the wafer surface.
[0024]
(2) Since the shape of the anode electrode is substantially similar to the shape of the wafer, the state of the electric field is substantially symmetric with respect to the line connecting the central portions of the wafer and the anode electrode, and a more uniform plating film is obtained. Can do.
[0025]
(3) Since the current value when plating on the wafer is made constant and the anode electrode is gradually moved away from the wafer, the plating film thickness can be more easily and effectively made uniform over the entire wafer surface. I can plan.
[Brief description of the drawings]
FIG. 1 is an overall schematic view showing a plating apparatus used in the present invention.
FIG. 2 is an equipotential diagram showing a state of an electric field around the wafer 100 and the anode electrode 30 when the anode electrode 30 approaches the wafer 100. FIG.
3 is an equipotential diagram showing the state of the electric field around the wafer 100 and the anode electrode 30 when the anode electrode 30 is at a predetermined position away from the wafer 100. FIG.
FIG. 4 is an overall schematic view showing a conventional plating apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Plating tank 20 Electrolytic plating solution 30 Anode electrode 40 Driving means 100 Wafer

Claims (2)

電解メッキ液中に、ウエハを浸漬すると共にウエハから所定距離離間してウエハと平行にアノード電極を浸漬して設置し、該電解メッキ液中でウエハとアノード電極間に通電する電流の電流値を一定に維持しながらアノード電極をウエハに最も近づけた位置から最も離れた位置まで徐々にウエハから遠ざけていく間にウエハ表面へのメッキを完了させることを特徴とするウエハのメッキ方法。Immerse the wafer in the electrolytic plating solution and place the anode electrode in parallel with the wafer at a predetermined distance from the wafer, and set the current value of the current that flows between the wafer and the anode electrode in the electrolytic plating solution. A method for plating a wafer, characterized in that plating on the wafer surface is completed while the anode electrode is gradually moved away from the wafer from a position closest to the wafer to a position farthest away from the wafer while maintaining constant . アノード電極の形状はウエハの形状と略相似形であることを特徴とする請求項1記載のウエハのメッキ方法。  2. The wafer plating method according to claim 1, wherein the shape of the anode electrode is substantially similar to the shape of the wafer.
JP02639598A 1998-01-23 1998-01-23 Wafer plating method Expired - Lifetime JP3639105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02639598A JP3639105B2 (en) 1998-01-23 1998-01-23 Wafer plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02639598A JP3639105B2 (en) 1998-01-23 1998-01-23 Wafer plating method

Publications (2)

Publication Number Publication Date
JPH11209889A JPH11209889A (en) 1999-08-03
JP3639105B2 true JP3639105B2 (en) 2005-04-20

Family

ID=12192369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02639598A Expired - Lifetime JP3639105B2 (en) 1998-01-23 1998-01-23 Wafer plating method

Country Status (1)

Country Link
JP (1) JP3639105B2 (en)

Also Published As

Publication number Publication date
JPH11209889A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP4463416B2 (en) Method for forming semiconductor device
US8048283B2 (en) Method and apparatus for plating semiconductor wafers
JPS62207895A (en) Electroplating cell
US5521790A (en) Electrostatic chuck having relatively thick and thin areas and means for uniformly cooling said thick and thin areas during chuck anodization
US20040027715A1 (en) Method for producing multiple magnetic layers of materials with known thickness and composition using a one-step electrodeposition process
TW201022479A (en) Electroforming method
JP2001234396A (en) Conductive bias member for metallic layer
US3437578A (en) Robber control for electroplating
JP2000290798A (en) Plating device
JPH11246999A (en) Plating method for wafer and apparatus therefor
KR101879080B1 (en) Apparatus for preparing fe-ni alloy foil
JP3637214B2 (en) Wafer plating method
JP3639105B2 (en) Wafer plating method
JP2007308783A (en) Apparatus and method for electroplating
US6802950B2 (en) Apparatus and method for controlling plating uniformity
JPS59177388A (en) Method and apparatus for electrodeposition of homogenous thick metal layer to substrate surface
JPH0754189A (en) Electroplating device
US2766194A (en) Method of plating
JP2000087295A (en) Electroplating method, electroplating device and production of semiconductor device
JP3275502B2 (en) Method for manufacturing small objects by plating
JPH03183136A (en) Manufacture of semiconductor device
JPH02101189A (en) Method and device for precise electroplating
JPH03202499A (en) Controlling method for thickness of plated film
JPS61190091A (en) Method and device for magnetic alloy plating
JPS60187700A (en) Power source system for plating

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term