JPH03202425A - Manufacture of nonoriented silicon steel sheet - Google Patents

Manufacture of nonoriented silicon steel sheet

Info

Publication number
JPH03202425A
JPH03202425A JP34128489A JP34128489A JPH03202425A JP H03202425 A JPH03202425 A JP H03202425A JP 34128489 A JP34128489 A JP 34128489A JP 34128489 A JP34128489 A JP 34128489A JP H03202425 A JPH03202425 A JP H03202425A
Authority
JP
Japan
Prior art keywords
annealing
silicon steel
stage
hot rolled
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34128489A
Other languages
Japanese (ja)
Inventor
Motoyuki Miyahara
宮原 征行
Yoshiharu Namita
波田 芳治
Yoichiro Okano
岡野 洋一郎
Ichiro Tsukatani
一郎 塚谷
Tomohiro Kase
加瀬 友博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34128489A priority Critical patent/JPH03202425A/en
Publication of JPH03202425A publication Critical patent/JPH03202425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture the nonoriented silicon steel sheet having low core loss and high magnetic flux density in a low magnetic field by subjecting a silicon steel slab to hot rolling, annealing the hot rolled sheet according to necessary, thereafter subjecting it to single cold rolling into a final sheet thickness and furthermore executing two stage finish annealing under specified conditions. CONSTITUTION:A slab of a silicon steel contg., by weight, <=0.01% C, <=3.5% Si, 0.1 to 1.0% Mn, <=0.1% P, <=0.01% S and 0.1 to 1.0% Al is hot rolled into a hot rolled sheet, is thereafter descaled and is annealed according to necessary. Next, the hot rolled sheet is subjected to single cold rolling to work into a final objective sheet thickness and is subjected to two stage finish annealing. Namely, the former annealing is executed in the temp. range of 500 to 700 deg.C for 30sec to 5min, and then, the latter one is executed in the temp. range higher than the annealing temp. of the former one, i.e., from 700 deg.C to the Ac1 transformation point. The nonoriented silicon steel sheet suitable as a core material for small size motors and small size transformers can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、小型モーター、小型電源用トランス等の鉄心
材料として適し、低鉄損で、且つ低磁場における磁束密
度特性の優れた無方向性電磁鋼板の製造方法に関するも
のである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is suitable as an iron core material for small motors, small power transformers, etc., and has low iron loss and non-directionality with excellent magnetic flux density characteristics in low magnetic fields. The present invention relates to a method for manufacturing electromagnetic steel sheets.

(従来の技術) 近年、各種電気機器の分野において、省エネルギーの観
点から機器の効率を高める競争が一段と激しくなってき
ている。例えば、小型モーター小型電源用トランス等の
効率を高めるためには、低鉄損で且つ飽和磁束密度の高
い電磁鋼板を用いて、負荷運転時の鉄損、銅損を低減す
るのは非常に有効である。更に、最近は、小型トランス
における無負荷電流を減少させる等の目的から、低磁場
の磁束密度特性を向上させる要求が強まっている。
(Prior Art) In recent years, in the field of various electrical devices, competition to improve the efficiency of devices from the viewpoint of energy conservation has become even more intense. For example, in order to increase the efficiency of transformers for small motors and small power supplies, it is very effective to use electrical steel sheets with low iron loss and high saturation magnetic flux density to reduce iron loss and copper loss during load operation. It is. Furthermore, recently, there has been an increasing demand for improving the magnetic flux density characteristics in low magnetic fields for purposes such as reducing no-load current in small transformers.

また、昨今のOA化、FA化の進歩は著しく、小型制御
用モーターの需要は増々高まっており、これらOA、F
A機器では応答性が問題とされるため、鉄心材料として
使用される電磁鋼板には、磁化曲線の立ち上りが鋭いこ
と、すなわち、低磁場領域での磁束密度が高いことが要
求される。
In addition, the recent progress in OA and FA has been remarkable, and the demand for small control motors is increasing.
Since responsiveness is a problem in equipment A, the electromagnetic steel sheet used as the core material is required to have a sharp rise in the magnetization curve, that is, to have a high magnetic flux density in the low magnetic field region.

従来、低磁場特性の優れた無方向性電磁鋼板の製造方法
としては、特開昭61−264131号に記載されてい
るように、2回冷延、2回焼鈍法において、2次冷間圧
延を実施する際に、圧下率1−15%で、且つ圧延速度
500tm/win以上の条件で圧延を行う方法が提案
されている。
Conventionally, as a manufacturing method for non-oriented electrical steel sheets with excellent low magnetic field properties, as described in JP-A No. 61-264131, two-time cold rolling, two-time annealing method, secondary cold rolling, etc. When performing this, a method has been proposed in which rolling is performed at a rolling reduction rate of 1-15% and a rolling speed of 500 tm/win or more.

(発明が解決しようとする課題) しかしながら、上記2回冷延2回焼鈍法では、工程が煩
雑となり、また工程数の増加によるコストアップも避け
られない。
(Problems to be Solved by the Invention) However, in the two-time cold rolling and two-time annealing method, the steps are complicated, and an increase in cost due to the increase in the number of steps is unavoidable.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、1間冷延工回焼鈍という簡略な方法
により、低鉄損で、且つ低磁場領域での磁束密度特性の
優れた電磁鋼板を製造し得る方法を提供することを目的
とするものである。
The present invention has been made in order to solve the problems of the prior art described above, and uses a simple method of 1-hour cold rolling annealing to achieve low iron loss and improve magnetic flux density characteristics in a low magnetic field region. The object of the present invention is to provide a method for manufacturing excellent electrical steel sheets.

(課題を解決するための手段) 本発明者らは、前記目的を達成するため鋭意研究を重ね
た結果、上回冷延1回焼鈍法において、仕上焼鈍を2段
加熱とし、前段の加熱温度を適当な温度とすることによ
って最終製品の集合組織の改善を図ることができ、低鉄
損で、且つ低磁場領域の磁束密度特性の優れた無方向性
電磁鋼板が製造できることを見い出し、ここに本発明を
なしたものである。
(Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventors have determined that in the upper cold rolling single annealing method, finishing annealing is heated in two stages, and the heating temperature of the first stage is We have discovered that by setting the temperature to an appropriate temperature, the texture of the final product can be improved, and a non-oriented electrical steel sheet with low iron loss and excellent magnetic flux density characteristics in the low magnetic field region can be manufactured. This invention has been made.

すなわち、本発明は、C20,01%、SiS2゜5%
、0.1%≦Mn≦1.0%、P≦0.1%、S≦0.
01%及び0.1%≦AI2≦1.0%を含有し、残部
がFe及び不可避的不純物よりなる鋼スラブを熱間圧延
後、必要に応じて熱延板焼鈍し。
That is, in the present invention, C20.01%, SiS2°5%
, 0.1%≦Mn≦1.0%, P≦0.1%, S≦0.
After hot rolling a steel slab containing 0.01% and 0.1%≦AI2≦1.0%, with the balance consisting of Fe and unavoidable impurities, the hot-rolled plate is annealed as necessary.

次いで1回の冷間圧延により最終板厚とした後に仕上焼
鈍を行うに際して、前段を500〜700℃の温度範囲
で30秒〜5分間均熱し、後段を前段均熱温度よりも高
い温度で均熱することを特徴とする鉄損が低く且つ低磁
場における磁束密度特性の優れた無方向性電磁鋼板の製
造方法を要旨とするものである。
Then, when final annealing is performed after one cold rolling to obtain the final plate thickness, the first stage is soaked at a temperature range of 500 to 700°C for 30 seconds to 5 minutes, and the second stage is soaked at a temperature higher than the soaking temperature of the first stage. The gist of the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet that is characterized by low core loss and excellent magnetic flux density characteristics in a low magnetic field.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) まず、本発明のポイントである仕上焼鈍時の2段加熱に
ついて知見を得た基礎実験の結果を説明する。
(Function) First, the results of basic experiments in which knowledge was obtained regarding two-stage heating during final annealing, which is the key point of the present invention, will be explained.

この実験では、C:O,004%、Si:2.52%、
Mn:0.25%、 P:0.014%、 S:O,O
O1%及びAff:0.30%を含有し、残部がFe及
び不可避的不純物よりなる鋼スラブを通常の方法にて板
厚2.4mmの熱延板とし、脱スケール処理後、再結晶
組織を得るために、750℃×5時間の熱延板焼鈍に供
した。続いて、冷間圧延により0 、5 amの最終板
厚となし、2段加熱による仕上焼鈍を行った。仕上焼鈍
に際しては、前段の均熱温度を500〜800℃の間で
変化させ、その時の均熱時間は90秒とした。後段の均
熱は1000’CX 60秒の条件で行った。
In this experiment, C: O, 004%, Si: 2.52%,
Mn: 0.25%, P: 0.014%, S: O, O
A steel slab containing 1% O and 0.30% Aff, with the remainder consisting of Fe and unavoidable impurities, was made into a hot-rolled sheet with a thickness of 2.4 mm using a normal method, and after descaling treatment, the recrystallized structure was removed. In order to obtain this, a hot rolled sheet was annealed at 750° C. for 5 hours. Subsequently, the final plate thickness was set to 0.5 am by cold rolling, and final annealing was performed by two-stage heating. During final annealing, the soaking temperature in the previous stage was varied between 500 and 800°C, and the soaking time at that time was 90 seconds. Soaking in the latter stage was performed at 1000'CX for 60 seconds.

上記の工程により製造した無方向性電磁鋼板について、
圧延方向及び圧延方向と直角方向からそれぞれニブタイ
ン試験片を切り出し、磁気特性を測定した。その結果を
第1図に示す。なお、横軸に″従来法″と記載されてい
る点は、1段加熱により製造された材料の磁気特性を表
わしている。
Regarding the non-oriented electrical steel sheet manufactured by the above process,
Nib tine test pieces were cut out from the rolling direction and from the direction perpendicular to the rolling direction, respectively, and their magnetic properties were measured. The results are shown in FIG. Note that the point labeled "conventional method" on the horizontal axis represents the magnetic properties of the material produced by one-stage heating.

すなわち、冷間圧延後に1000℃×60秒の焼鈍のみ
を行った材料の磁気特性を示している。図中、B2.B
、、B、はそれぞれ磁化力が200A / ta、30
0 A/+1.500 A/mの時の磁束密度の値を表
している。
That is, it shows the magnetic properties of a material that was only annealed at 1000° C. for 60 seconds after cold rolling. In the figure, B2. B
, ,B, have magnetizing forces of 200A/ta and 30, respectively.
It represents the value of magnetic flux density at 0 A/+1.500 A/m.

第1図から明らかなように、低磁場の磁束密度B2、B
3、B5は、前段加熱温度が500〜700℃の時に従
来法より高い値となり、特にB2、B、のようにより低
磁場の磁束密度にお・いて改善効果が大きい。また、鉄
損についても、2段加熱の場合は、1段加熱の場合より
も鉄損が低くなり、特に500〜700℃の間でより低
鉄損となる。
As is clear from Fig. 1, the magnetic flux densities B2 and B in the low magnetic field
3. B5 has a higher value than the conventional method when the pre-heating temperature is 500 to 700° C., and the improvement effect is particularly large at lower magnetic flux densities such as B2 and B. In addition, regarding iron loss, in the case of two-stage heating, the iron loss is lower than in the case of one-stage heating, and especially in the range of 500 to 700°C, the iron loss is lower.

この理由を調査するために、各々の材料の集合組織を調
査した。その結果を第2図に示す。
In order to investigate the reason for this, the texture of each material was investigated. The results are shown in FIG.

第2図から明らかなように、上述の如く低磁場での磁束
密度が高い前段加熱温度が500〜700℃の領域では
、磁化容易軸<100>軸を多く含む、磁化特性上有効
な(200)面の強度が強い。
As is clear from Fig. 2, in the region where the pre-heating temperature is 500 to 700°C, where the magnetic flux density is high in a low magnetic field as described above, the effective (200) ) The strength of the surface is strong.

前段加熱温度が500℃の場合は、(200)強度は、
本発明範囲外である前段加熱温度が700℃超の場合と
同程度であるが、磁化特性上不利な(222)面の強度
は、700℃超の場合より小さい。
When the preheating temperature is 500℃, the (200) strength is
The strength of the (222) plane, which is disadvantageous in terms of magnetization characteristics, is lower than when the pre-heating temperature is above 700°C, which is outside the range of the present invention, although it is comparable to that when the temperature is above 700°C.

これは、1回冷延1回焼鈍法で仕上焼鈍を2段加熱とし
、前段加熱の均熱温度を適切な範囲に規制することによ
り、磁化特性に有効な(200)再結晶粒を頻度高く発
生させることができ、続く後段加熱では、前段加熱で得
られた磁化特性上有効な集合組織を変化させることなく
粒成長されることが理由と考えられる。上記理由による
集合組織の改善効果によって低磁場での磁束密度が高く
なると考えられる。
This is achieved by performing two stages of finishing annealing in the single cold rolling and single annealing method, and by regulating the soaking temperature of the first stage heating within an appropriate range, the (200) recrystallized grains, which are effective for magnetic properties, are produced more frequently. This is thought to be due to the fact that grains can be grown in the subsequent post-heating without changing the texture, which is effective in terms of magnetization properties, obtained in the pre-heating. It is thought that the magnetic flux density in a low magnetic field increases due to the texture improvement effect for the above reasons.

また、低磁場の磁束密度が高くなると、ヒステリシス・
ループの立ち上りが鋭くなり、ヒステリシス・ループの
面積は小さくなると考えられる。
In addition, when the magnetic flux density in the low magnetic field increases, hysteresis
It is thought that the rise of the loop becomes sharper and the area of the hysteresis loop becomes smaller.

これは、ヒステリシス損が低減することを意味し、全鉄
損の低下をもたらす。
This means that hysteresis loss is reduced, resulting in a reduction in total iron loss.

以上のように、1回冷延1回焼鈍法の仕上焼鈍時に、前
段の均熱温度を適切な温度とすることにより、低鉄損で
、且つ低磁場の磁束密度特性に優れた無方向性電磁鋼板
が製造できることが判明し、本発明法を開発したもので
ある。
As described above, by setting the soaking temperature in the previous stage to an appropriate temperature during final annealing in the single cold rolling single annealing method, non-directional properties with low iron loss and excellent magnetic flux density characteristics in low magnetic fields can be achieved. It was discovered that electromagnetic steel sheets could be produced, and the method of the present invention was developed.

次に、本発明における鋼の化学成分の限定理由について
説明する。
Next, the reason for limiting the chemical composition of steel in the present invention will be explained.

C: Cは磁気特性上有害な元素であって、少ない程鉄損が低
下し、また、時効による磁気特性の劣化を防ぐために、
C量を0.01%以下に規制する。
C: C is an element that is harmful to magnetic properties, and the less it is, the lower the core loss is, and in order to prevent deterioration of magnetic properties due to aging,
The amount of C is regulated to 0.01% or less.

Si: Siは鋼の固有抵抗を高めて鉄損を低下させる元素であ
るが、3.5%を超えて添加すると、鋼が脆化し、圧延
しづらくなるので、Si量は3.5%以下とする。
Si: Si is an element that increases the specific resistance of steel and reduces iron loss, but if added in excess of 3.5%, the steel becomes brittle and difficult to roll, so the amount of Si should be 3.5% or less. shall be.

Mn: Mnは熱間脆性を抑制する元素であるが、0.1%未満
ではその効果がなく、1.0%よりも多すぎると磁気特
性の劣化を招くので好ましくない。
Mn: Mn is an element that suppresses hot embrittlement, but if it is less than 0.1%, it has no effect, and if it is more than 1.0%, it causes deterioration of magnetic properties, which is not preferable.

したがって、Mn量は0.1〜1.0%の範囲とする。Therefore, the amount of Mn is set in the range of 0.1 to 1.0%.

P: Pは、Si量が少ない場合に打抜きに良好な硬度を付与
するために添加する元素であるが、0゜1%を超えて添
加すると鋼が脆化し、冷延性を損うので、P量は0.1
%以下とする。
P: P is an element added to give good hardness to punching when the amount of Si is small, but if it is added in excess of 0.1%, the steel will become brittle and cold rollability will be impaired. The amount is 0.1
% or less.

S: Sは、多量に含有すると磁気特性上有害なMnS等の析
出物を生じるので、少ない程よく、0゜01%以下に規
制する。
S: If S is contained in a large amount, it will produce precipitates such as MnS that are harmful to magnetic properties, so the smaller the better, it is regulated to 0.01% or less.

AL: 微細なAQNの析出は、磁気特性に有害であるので、A
Qを多量に添加して粗大なAINを析出させるために、
Al量は0.1%以上を必要とする。また、理由は明ら
かではないが、前述の2段加熱の効果は、Aflが0.
1%以上含有していないと発現しないことを確認してい
る。
AL: Fine AQN precipitation is harmful to magnetic properties, so AQN
In order to precipitate coarse AIN by adding a large amount of Q,
The amount of Al needs to be 0.1% or more. Although the reason is not clear, the effect of the two-stage heating mentioned above is that Afl is 0.
It has been confirmed that the expression does not occur unless it is contained at 1% or more.

一方、1.0%を超えて添加すると、冷延性を悪化させ
るばかりでなく、コストアップにもつながる0以上の理
由から0.1%≦Al≦1.0%とする。
On the other hand, if it is added in an amount exceeding 1.0%, it not only deteriorates the cold rollability but also increases the cost for the following reason: 0.1%≦Al≦1.0%.

次に、本発明における製造工程の限定理由について説明
する。
Next, the reasons for limiting the manufacturing process in the present invention will be explained.

上期化学成分を有する鋼は、常法によりスラブとし、更
に熱間圧延により熱延鋼帯とする。熱間圧延後は、脱ス
ケール処理後、必要に応じて熱延板焼鈍を実施し、続く
冷間圧延により最終板厚とする。
The steel having the above chemical composition is made into a slab by a conventional method, and further into a hot rolled steel strip by hot rolling. After hot rolling, after descaling treatment, hot-rolled plate annealing is performed as necessary, and the final plate thickness is obtained by subsequent cold rolling.

冷間圧延後、仕上焼鈍を行うが、この仕上焼鈍は、前段
は500〜700℃の温度範囲で均熱した後、後段は前
段均熱温度よりも高温で均熱し、粒成長させる。
After cold rolling, finish annealing is performed. In this finish annealing, the first stage is soaked at a temperature in the range of 500 to 700°C, and the second stage is soaked at a higher temperature than the first stage soaking temperature to cause grain growth.

前段均熱温度は、前述したように、500℃未満又は7
00℃超では、低鉄損で、且つ低磁場での磁束密度の高
い材料は得られない。前段での均熱時間は、30秒未満
の場合は集合組織の改善効果が小さく、5分を超えて焼
鈍してもその効果は飽和するので、30秒以上、5分以
下に規制する。
As mentioned above, the pre-stage soaking temperature is less than 500°C or 7°C.
If the temperature exceeds 00° C., a material with low iron loss and high magnetic flux density in a low magnetic field cannot be obtained. The soaking time in the first stage is limited to 30 seconds or more and 5 minutes or less, since the effect of improving the texture is small if it is less than 30 seconds, and the effect is saturated even if annealing is performed for more than 5 minutes.

後段の均熱は、所定の鉄損が得られるように、結晶粒を
成長させることを目的としている。したがって、前段均
熱温度より高い温度が必要である。
The purpose of the subsequent soaking is to grow crystal grains so that a predetermined core loss can be obtained. Therefore, a temperature higher than the pre-soaking temperature is required.

更にSi量に応じて均熱温度を変化させるのが好ましい
。すなわち、Si量の少ない鋼の場合、α→γ変態が起
ると、混粒組織となり、磁気特性上悪影響を及ぼすので
、後段均熱温度は700℃〜Ac1変態点の温度範囲が
適切である。一方、Si量の多いα単相鋼においては、
充分結晶粒を大きくするために800℃以上の後段均熱
温度が好ましいが、1100℃を超えると2次再結晶が
起こり、集合組織が変化すると共に、表面に酸化皮膜が
生威し、磁気特性が劣化するので、後段均熱温度は80
0℃以上1100℃以下が適切である。
Furthermore, it is preferable to change the soaking temperature depending on the amount of Si. That is, in the case of steel with a small amount of Si, when α → γ transformation occurs, it becomes a mixed grain structure, which has a negative effect on magnetic properties, so the temperature range of 700°C to Ac1 transformation point is appropriate for the subsequent soaking temperature. . On the other hand, in α single-phase steel with a large amount of Si,
In order to sufficiently enlarge the crystal grains, a subsequent soaking temperature of 800°C or higher is preferable, but if the temperature exceeds 1100°C, secondary recrystallization will occur, the texture will change, an oxide film will grow on the surface, and the magnetic properties will deteriorate. is deteriorated, so the subsequent soaking temperature is 80℃.
A temperature of 0°C or more and 1100°C or less is appropriate.

この時の均熱時間は10秒以上、3分以下で、結晶粒は
充分成長する。
The soaking time at this time is 10 seconds or more and 3 minutes or less, and the crystal grains grow sufficiently.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

寒施通り一 第1表に示す2種類の化学成分を有する鋼スラブを通常
の方法にて板厚2 、4 amの熱延板とし、脱スケー
ル処理後、75 o’cX 5時間の熱延板焼鈍を施し
、0.50■の製品厚みまで冷間圧延した。続く仕上焼
鈍を第1表に併記した条件で行って最終製品を得た。
A steel slab having the two types of chemical components shown in Table 1 was made into a hot-rolled plate with a thickness of 2.4 am using the usual method, and after descaling treatment, it was hot-rolled at 75 o'c for 5 hours. The plate was annealed and cold rolled to a product thickness of 0.50 mm. Subsequent final annealing was performed under the conditions listed in Table 1 to obtain a final product.

各々の材料から、圧延方向及び圧延方向と直角方向にエ
プスタイン試験片を切り出し、磁気特性を測定した。そ
の結果も併せて第1表に示す。
Epstein specimens were cut out from each material in the rolling direction and in a direction perpendicular to the rolling direction, and the magnetic properties were measured. The results are also shown in Table 1.

第1表において、8111は本発明鋼であり、&2〜&
5は比較鋼である。比較鋼のNa2は前段均熱のない例
、恥3は前段均熱温度が低い例、&4は前段均熱温度が
高い例、恥5はAQ量が低い例である。
In Table 1, 8111 is the steel of the present invention, &2~&
5 is comparative steel. Comparative steel Na2 is an example without pre-soaking temperature, 3 is an example where the pre-soaking temperature is low, &4 is an example where the pre-soaking temperature is high, and 5 is an example with a low AQ amount.

第1表から明らかなように、本発明鋼においてのみ、低
鉄損で、且つ低磁場領域で高い磁束密度が得られている
As is clear from Table 1, only the steel of the present invention has low iron loss and high magnetic flux density in the low magnetic field region.

失嵐裏主 第2表に示すSi量を3水準に変えた化学成分を有する
鋼スラブを通常の方法にて板厚2.0〜2.4mmの熱
延板とし、脱スケール処理後、A鋼とB鋼については熱
延板焼鈍を実施せず、C鋼については950℃×3分間
の熱延板焼鈍を実施した後、0.50mmの製品厚みま
で冷間圧延した。
A steel slab having chemical compositions with three levels of Si shown in Table 2 was made into a hot-rolled plate with a thickness of 2.0 to 2.4 mm by the usual method, and after descaling treatment, A For steel and B steel, hot rolled sheet annealing was not performed, and for C steel, hot rolled sheet annealing was performed at 950° C. for 3 minutes and then cold rolled to a product thickness of 0.50 mm.

続く仕上焼鈍を第3表に示す条件で行い、最終製品を得
た。
Subsequent final annealing was performed under the conditions shown in Table 3 to obtain a final product.

各々の材料から圧延方向及び圧延方向と直角方向にエプ
スタイン試験片を切り出し、磁気特性を測定した。その
結果を併せて第3表に示す。
Epstein specimens were cut out from each material in the rolling direction and in a direction perpendicular to the rolling direction, and the magnetic properties were measured. The results are also shown in Table 3.

第3表において、Mal、 l!15、恥9は本発明鋼
であり、比較鋼のNα2、Na 6、&10は前段均熱
のない例、Na3、Nα7、N(111は前段均熱温度
が低い例、Nα4、Nα8、Nα12は前段均熱温度が
高い例である。
In Table 3, Mal, l! 15, Shame 9 is the invention steel, comparative steels Nα2, Na6, &10 are examples without pre-soaking temperature, Na3, Na7, N (111 are examples with low pre-soaking temperature, Nα4, Nα8, Nα12 are This is an example where the pre-stage soaking temperature is high.

第3表から明らかなように、本発明鋼においてのみ、低
鉄損で、且つ低磁場領域で高い磁束密度が得られている
As is clear from Table 3, only the steel of the present invention has low core loss and high magnetic flux density in the low magnetic field region.

【以下余白] (発明の効果) 以上詳述したように、本発明によれば、1回冷延1回焼
鈍法において、仕上焼鈍を2段焼鈍とし、前段均熱温度
に適切な温度範囲に規制することにより、低鉄損で、且
つ低磁場領域で磁束密度特性の優れた無方向性電磁鋼板
が製造できる。
[Blank below] (Effects of the invention) As detailed above, according to the present invention, in the one-time cold rolling one-time annealing method, the finishing annealing is performed as a two-stage annealing, and the soaking temperature in the first stage is adjusted to an appropriate temperature range. By regulating this, it is possible to manufacture non-oriented electrical steel sheets with low iron loss and excellent magnetic flux density characteristics in the low magnetic field region.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は前段均熱温度と鉄損(W、、/、。)、低磁場
領域における磁束密度B、、B、、B、との関係を示す
図、 第2図は前段均熱温度と(110)、(200)、(2
22)各面の極密度比との関係を示す図である。
The first diagram shows the relationship between the pre-stage soaking temperature, iron loss (W, /,.), and the magnetic flux density B, , B,, B, in the low magnetic field region. Figure 2 shows the relation between the pre-stage soaking temperature and (110), (200), (2
22) It is a diagram showing the relationship with the polar density ratio of each surface.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、C≦0.01%、Si≦3.
5%、0.1%≦Mn≦1.0%、P≦0.1%、S≦
0.01%及び0.1%≦Al≦1.0%を含有し、残
部がFe及び不可避的不純物よりなる鋼スラブを熱間圧
延後、必要に応じて熱延板焼鈍し、次いで1回の冷間圧
延により最終板厚とした後に仕上焼鈍を行うに際して、
前段を500〜700℃の温度範囲で30秒〜5分間均
熱し、後段を前段均熱温度よりも高い温度で均熱するこ
とを特徴とする鉄損が低く且つ低磁場における磁束密度
特性の優れた無方向性電磁鋼板の製造方法。
In weight% (the same applies hereinafter), C≦0.01%, Si≦3.
5%, 0.1%≦Mn≦1.0%, P≦0.1%, S≦
After hot rolling a steel slab containing 0.01% and 0.1%≦Al≦1.0%, with the remainder consisting of Fe and unavoidable impurities, the hot rolled plate is annealed as necessary, and then once. When performing final annealing after cold rolling to final plate thickness,
The first stage is soaked in a temperature range of 500 to 700°C for 30 seconds to 5 minutes, and the second stage is soaked at a higher temperature than the first stage.It has low iron loss and excellent magnetic flux density characteristics in a low magnetic field. A method for producing a non-oriented electrical steel sheet.
JP34128489A 1989-12-29 1989-12-29 Manufacture of nonoriented silicon steel sheet Pending JPH03202425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34128489A JPH03202425A (en) 1989-12-29 1989-12-29 Manufacture of nonoriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34128489A JPH03202425A (en) 1989-12-29 1989-12-29 Manufacture of nonoriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH03202425A true JPH03202425A (en) 1991-09-04

Family

ID=18344864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34128489A Pending JPH03202425A (en) 1989-12-29 1989-12-29 Manufacture of nonoriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH03202425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same

Similar Documents

Publication Publication Date Title
KR20140044928A (en) Process for producing grain-oriented electromagnetic steel sheet with excellent core loss characteristics
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
JPH0310019A (en) Production of nonoriented silicon steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH0121851B2 (en)
JP3386742B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
KR100479991B1 (en) A method for producing non-oriented silicon steel with low core loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH03202425A (en) Manufacture of nonoriented silicon steel sheet
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR910003880B1 (en) Making process for electrical sheet
KR920004950B1 (en) Making process for the electric steel plate
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP2560090B2 (en) Non-oriented electrical steel sheet manufacturing method
KR940007496B1 (en) Method of manufacturing non-oriented electromagnetic steel plates with excellent magnetic characteristic
JPH03120316A (en) Production of nonoriented silicon steel sheet
JP3169427B2 (en) Method for producing bidirectional silicon steel sheet with excellent magnetic properties
KR100466176B1 (en) Method for Manufacturing non-oriented electrical steel sheet having low core loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics