JPH03199961A - Signal processing method for ultrasonic flaw detecting apparatus - Google Patents

Signal processing method for ultrasonic flaw detecting apparatus

Info

Publication number
JPH03199961A
JPH03199961A JP1344454A JP34445489A JPH03199961A JP H03199961 A JPH03199961 A JP H03199961A JP 1344454 A JP1344454 A JP 1344454A JP 34445489 A JP34445489 A JP 34445489A JP H03199961 A JPH03199961 A JP H03199961A
Authority
JP
Japan
Prior art keywords
level
flaw detection
flaw detecting
peak values
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1344454A
Other languages
Japanese (ja)
Inventor
Yasunori Kido
城戸 安典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1344454A priority Critical patent/JPH03199961A/en
Publication of JPH03199961A publication Critical patent/JPH03199961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the defect detecting capability by using the value obtained by adding a specified value to the average value of the peak values of flaw detecting signals at every emission as the judging level for acceptance or rejection. CONSTITUTION:A probe 6 emits flaw detecting signals (transmitted wave 13) of, e.g. 5 MHz, at transmitting intervals of 1-5 msec. Then, surface echoes 14 and bottom surface echoes 15 are removed from these signals in a material to be inspecteds, and only the flaw detecting signals 16 are picked up for, e.g. 50 msec. The peak values at every emission are held. The peak values of the flaw detecting signals of about 50-100 times are outputted for 50 msec. However, whether the peak values are noises or defective signals is unknown. Then, the average signal of the peak values for N pieces of the materials to be mea sured 5 is obtained. A specified level value is added to the average value, and the result is made to be the level for judging acceptance or rejection. The level is compared with the detected signal from the ultrasonic flaw detecting apparatus, and the defect is judged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波探傷装置における信号処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a signal processing method in an ultrasonic flaw detection device.

(従来の技術) 例えば丸棒鋼の内部欠陥検査には一般に超音波探傷法が
採用されている。この超音波探傷法では、第3図に示す
ように、超音波探傷装置1から得られた探傷信号は合否
判定回路2によってそのレベルを選別され、その探傷信
号が不適格レベル以上であれば信号遅延回路3によって
当該探傷信号を遅延させ、マーキング装置4で被検査材
5の欠陥部にマーキングする。
(Prior Art) For example, an ultrasonic flaw detection method is generally employed for internal defect inspection of round steel bars. In this ultrasonic flaw detection method, as shown in FIG. 3, the level of the flaw detection signal obtained from the ultrasonic flaw detection device 1 is selected by the pass/fail judgment circuit 2, and if the flaw detection signal is equal to or higher than the disqualification level, the flaw detection signal is signaled. The delay circuit 3 delays the flaw detection signal, and the marking device 4 marks the defective portion of the material 5 to be inspected.

なお、第3図中、6は探触子、7は媒質としての水、8
はインターフェイス基板、9はコンピュータ、10はプ
ロッピーディスク、11はCRT。
In Fig. 3, 6 is a probe, 7 is water as a medium, and 8 is a probe.
9 is an interface board, 9 is a computer, 10 is a proppy disk, and 11 is a CRT.

12はプリンターを示す。12 indicates a printer.

ここで、従来の合否判定回路2について更に詳細に説明
する。
Here, the conventional pass/fail determination circuit 2 will be explained in more detail.

電圧に変換された探傷信号は、予め設定された判定電圧
レベル以上であれば不合格として次段1の回路に信号を
送り、被検査材の欠陥部にマーキングする。一般に欠陥
面積と欠陥エコー高さ(欠陥エコー高さは電圧に比例す
る)は直線関係にあることから、検出したい欠陥の大き
さ(面積)によって合否判定レベルは決定される。一方
、超音波探傷時の探傷信号は、欠陥エコーの他に例えば
被検査材の表面粗さ、寸法変化、曲がり、表面スケール
や搬送時の振動、その他電気的な外乱によるノイズ成分
が含まれているから、実際に合否選別レベルを決めるた
めには、これらのノイズレベルを考慮する必要がある。
If the flaw detection signal converted into voltage is equal to or higher than a predetermined determination voltage level, a signal is sent to the next stage 1 circuit as a failure, and a defective part of the inspected material is marked. Since there is generally a linear relationship between defect area and defect echo height (defect echo height is proportional to voltage), the pass/fail determination level is determined by the size (area) of the defect to be detected. On the other hand, the flaw detection signal during ultrasonic flaw detection includes, in addition to defect echoes, noise components caused by, for example, the surface roughness of the inspected material, dimensional changes, bends, surface scale, vibrations during transportation, and other electrical disturbances. Therefore, in order to actually determine the pass/fail screening level, it is necessary to consider these noise levels.

以上の理由により、超音波探傷装置における検出能の限
界は探傷信号のレベルによって決まり、またこの探傷信
号のレベルは被検査材のロフト(材質、表面粗さ、寸法
変化、曲り、表面スケール)によって変化するため、通
常、合否判定レベルは、第2図に実線で示すように、探
傷信号のレベルの最高値付近に設定している。
For the above reasons, the detection capability limit of an ultrasonic flaw detection device is determined by the level of the flaw detection signal, and the level of this flaw detection signal also depends on the loft (material quality, surface roughness, dimensional change, bending, surface scale) of the inspected material. Therefore, the pass/fail determination level is usually set near the highest level of the flaw detection signal, as shown by the solid line in FIG.

(発明が解決しようとする課題) 上記したような合否判定レベルの設定においては、全体
的に探傷信号のレベルが低い場合には、S/N的に余裕
がある被検査材の検出能も一義的に決まるため、微小底
の検出漏れ率が高くなるという問題がある。
(Problem to be solved by the invention) In setting the pass/fail judgment level as described above, if the overall level of the flaw detection signal is low, the ability to detect the inspected material with a margin in terms of S/N is also important. Since it is determined by

本発明は、かかる問題点を解決し、欠陥検出能の向上が
図れる超音波探傷装置の信号処理方法を提供することを
目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a signal processing method for an ultrasonic flaw detection apparatus that can solve these problems and improve defect detection performance.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る超音波探傷装
置の信号処理方法は、超音波探傷をせんとする被検査材
の探傷信号を常時取り込んでこれら探傷信号のうちの発
射毎のピーク値を平均化し、この平均値に一定のレベル
値を加算したものを合否判定レベルとすることとしてい
るのである。
(Means for Solving the Problems) In order to achieve the above object, a signal processing method of an ultrasonic flaw detection apparatus according to the present invention constantly captures flaw detection signals of a material to be inspected by ultrasonic flaw detection. The peak values of the signals for each emission are averaged, and a certain level value is added to this average value to determine the pass/fail determination level.

(作  用) 本発明方法は、超音波探傷をせんとする被検査材の探傷
信号を常時取り込み、これを平均化したものを合否判定
レベルの基礎として使用するため、微小欠陥に対する検
出精度が大幅に向上する。
(Function) The method of the present invention constantly captures the flaw detection signals of the material to be inspected for ultrasonic flaw detection and uses the averaged signal as the basis for the pass/fail judgment level, so the detection accuracy for minute defects is greatly improved. improve.

(実 施 例) 以下本発明方法を、第1図に示す一実施例に基づいて説
明する。
(Example) The method of the present invention will be explained below based on an example shown in FIG.

第1図に示すように、探触子6は回転しながら例えば5
MHzの探傷信号を発射する(発射波13)。
As shown in FIG. 1, while rotating the probe 6, for example,
Emit a MHz flaw detection signal (emission wave 13).

この時の発射間隔は1〜2 KHz  (1〜0.5m
5ec)である。しかして、被検査材5は進行している
ため、第1図に示すような走査となる。
The firing interval at this time is 1 to 2 KHz (1 to 0.5 m
5ec). Since the inspected material 5 is progressing, the scanning is as shown in FIG. 1.

この信号の中から被検査材5中の信号、すなわち、表面
エコー14と底面エコー15を除いた探傷信号16のみ
を例えば50m5ec間取り出し、発射毎のピーク値を
ホールドする。なお、発射間隔は1〜0.5m5ecで
あるから、5011sec間では50〜100回の探傷
信号のピーク値を出力する。また発射毎のピーク値はノ
イズであるか、欠陥信号であるかは不明である。
From this signal, only the signal in the inspected material 5, that is, the flaw detection signal 16 excluding the surface echo 14 and bottom surface echo 15, is extracted for, for example, 50 m5ec, and the peak value for each emission is held. Note that since the firing interval is 1 to 0.5 m5 ec, peak values of flaw detection signals are output 50 to 100 times during 5011 sec. Furthermore, it is unclear whether the peak value for each firing is noise or a defective signal.

前記平均化した信号を被検査材5のN本について更に平
均化訂し、これに一定のレベル値すを加算したものを合
否判定レベルとする。
The averaged signal is further averaged for N pieces of the inspected material 5, and a certain level value is added thereto to determine the pass/fail determination level.

かかる如くすることにより探傷信号レベルの大小に見合
った合否判定レベルが決定できる。
By doing so, it is possible to determine the pass/fail determination level commensurate with the magnitude of the flaw detection signal level.

そして、この合否判定レベルと超音波探傷装置1からの
検出信号Sij を比較して欠陥の判定を行うのである
Then, this pass/fail determination level is compared with the detection signal Sij from the ultrasonic flaw detector 1 to determine a defect.

以上の判定ロジックを下記に示す。The above judgment logic is shown below.

Sij>aX肝十b ・・・ 疵欠陥ありSij ≦a
X肝+b ・・・ 疵欠陥なし但し、a:比例定数 しかして上記判定ロジックによって疵欠陥ありとされた
場合は、信号遅延回路3に信号を出力し、被検査材5の
欠陥部にマーキングを施すのである。
Sij>aX liver tenb ... with flaw Sij ≦a
X+b... No flaws However, a: Proportional constant However, if the above judgment logic determines that there is a flaw, a signal is output to the signal delay circuit 3 and a mark is placed on the defective part of the inspected material 5. It is to give.

なお、本発明方法を実施する際における最初の合否判定
レベルの決定は、テスト材を数本通過させてこれを平均
することによって求める。
The initial pass/fail judgment level when carrying out the method of the present invention is determined by passing several test materials and averaging them.

(発明の効果) 以上説明したように本発明方法は、探傷信号のレベルの
実績に応じて合否判定レベルを決定するものである為、
第2図に破線で示すように、例えば被検査材のロフトが
変化し、探傷信号のレベルが全体に低下した場合等にお
いては、従来方法のように判定レベルを固定とした場合
に検出でき込いような欠陥も検出できることになり、欠
陥検出能が向上する。
(Effects of the Invention) As explained above, the method of the present invention determines the pass/fail judgment level according to the track record of the level of the flaw detection signal.
As shown by the broken line in Figure 2, for example, when the loft of the inspected material changes and the level of the flaw detection signal decreases overall, detection cannot be achieved when the judgment level is fixed as in the conventional method. This means that even such defects can be detected, improving defect detection performance.

なお、本実施例では超音波探傷の場合について説明した
が、他の非破壊検査、例えば渦流探傷、漏洩磁束探傷に
おいても同様に適用できることは勿論である。
In this embodiment, the case of ultrasonic flaw detection has been described, but it goes without saying that the present invention can be similarly applied to other non-destructive tests such as eddy current flaw detection and leakage magnetic flux flaw detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の説明図、第2図は本発明方法の効
果を従来方法と比較して示す図面、第3図は超音波探傷
の信号処理ブロック図である。 1は超音波探傷装置、2は合否判定回路、5被検査材、
16は探傷信号。 は l#) )N 嶺P 1
FIG. 1 is an explanatory diagram of the method of the present invention, FIG. 2 is a drawing showing the effects of the method of the present invention in comparison with a conventional method, and FIG. 3 is a signal processing block diagram of ultrasonic flaw detection. 1 is an ultrasonic flaw detection device, 2 is a pass/fail judgment circuit, 5 is a material to be inspected,
16 is a flaw detection signal. is l#) )N ridge P 1

Claims (1)

【特許請求の範囲】[Claims] (1)超音波探傷をせんとする被検査材の探傷信号を常
時取り込んでこれら探傷信号のうちの発射毎のピーク値
を平均化し、この平均値に一定のレベル値を加算したも
のを合否判定レベルとすることを特徴とする超音波探傷
装置の信号処理方法。
(1) The flaw detection signals of the material to be inspected are constantly captured, the peak values of these flaw detection signals for each emission are averaged, and a pass/fail judgment is made by adding a certain level value to this average value. A signal processing method for an ultrasonic flaw detection device, characterized in that a signal processing method is used for an ultrasonic flaw detection device.
JP1344454A 1989-12-27 1989-12-27 Signal processing method for ultrasonic flaw detecting apparatus Pending JPH03199961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1344454A JPH03199961A (en) 1989-12-27 1989-12-27 Signal processing method for ultrasonic flaw detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1344454A JPH03199961A (en) 1989-12-27 1989-12-27 Signal processing method for ultrasonic flaw detecting apparatus

Publications (1)

Publication Number Publication Date
JPH03199961A true JPH03199961A (en) 1991-08-30

Family

ID=18369394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1344454A Pending JPH03199961A (en) 1989-12-27 1989-12-27 Signal processing method for ultrasonic flaw detecting apparatus

Country Status (1)

Country Link
JP (1) JPH03199961A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343827B2 (en) * 2005-11-08 2008-03-18 M-I L.L.C. System and process for break detection in porous elements for screening or filtering
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7343827B2 (en) * 2005-11-08 2008-03-18 M-I L.L.C. System and process for break detection in porous elements for screening or filtering
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
US8250923B2 (en) 2008-03-19 2012-08-28 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection method and ultrasonic inspection apparatus

Similar Documents

Publication Publication Date Title
JPH03199961A (en) Signal processing method for ultrasonic flaw detecting apparatus
US4253337A (en) Ultrasonic nondestructive testing method
JP3831285B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
Kobayashi et al. Signal processing method for scanning-acoustic-tomography defect detection based on correlation between ultrasound waveforms
JPS61138160A (en) Ultrasonic flaw detector
JPS6232359A (en) Signal processing method for improving s/n in ultrasonic flaw detection
JPS6229023B2 (en)
JP2761928B2 (en) Non-destructive inspection method and device
JP2004012369A (en) Ultrasonic flaw detection equipment and ultrasonic flaw detection method
SU1272206A1 (en) Method of performing non-destructive quality control of surface layer of parts
Jax Flaw detection and leak testing in components during internal pressure loading with the help of acoustic emission analysis
JPH06138105A (en) Ultrasonic flaw detector
KR910002657B1 (en) Method of tube search by ultra sonic
JPH05172790A (en) Inspection method and device for nozzle inner surface flaw
SU1486918A1 (en) Method of monitoring quality of multilayer sheet articles
JPH054009U (en) Ultrasonic flaw detector
JPH075155A (en) Ultrasonic method for deciding type of flaw automatically
JPS62207957A (en) Ultrasonic flaw detecting method
JPS60256051A (en) Non-destructive inspection apparatus
JPH075154A (en) Method for automatically deciding pass/fail of concrete product by knocking
ZALESSKII et al. System for the digital recording of ultrasonic flaw-detection results in automatic inspection
Schiller et al. Improvement of the reliability of fatigue crack detection on holes of typical aircraft structures by using multi-frequency EC-technique
JPH07128310A (en) Ultrasonic flaw detection method
JPS6048700B2 (en) Surface wave method ultrasonic flaw detection equipment