JPH03199370A - Pulsed-beam vapor deposition device - Google Patents

Pulsed-beam vapor deposition device

Info

Publication number
JPH03199370A
JPH03199370A JP33674089A JP33674089A JPH03199370A JP H03199370 A JPH03199370 A JP H03199370A JP 33674089 A JP33674089 A JP 33674089A JP 33674089 A JP33674089 A JP 33674089A JP H03199370 A JPH03199370 A JP H03199370A
Authority
JP
Japan
Prior art keywords
chopper
slit
particles
vapor
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33674089A
Other languages
Japanese (ja)
Inventor
Takayuki Shingyouchi
新行内 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINZOKUKEI ZAIRYO KENKYU KAIHATSU CENTER
Original Assignee
KINZOKUKEI ZAIRYO KENKYU KAIHATSU CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINZOKUKEI ZAIRYO KENKYU KAIHATSU CENTER filed Critical KINZOKUKEI ZAIRYO KENKYU KAIHATSU CENTER
Priority to JP33674089A priority Critical patent/JPH03199370A/en
Publication of JPH03199370A publication Critical patent/JPH03199370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the velocity of vapor-deposition particles and to form a thin film excellent in crystallinity by rotating by a chopper having a slit between the vapor-deposition material and a substrate and generating a pulse energy based on a specified relation. CONSTITUTION:The angle between a position setting slit 3b provided to a discoid chopper 3 and the end of a vapor-deposition slit 3a or the time for the vapor-deposition particles to pass through the angle when the chopper 3 is rotated is obtained. A target 2, the slit 3a and a substrate 5 are aligned. The time for the particles to commence passing the slit 3a is obtained from the turning rate of the chopper 3 and the distance between the target 2 and the chopper 3, and thereby the time to be generated a pulsed laser beam is obtained. From this result, the pulsed laser beam is emitted a specified time after a photodetector 4b receives a signal. Vapor deposition is carried out under these conditions, and a thin film is formed by the vapor-deposition particles with the translational velocity limited.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、各種材料の薄膜形成に用いられるパルスビー
ム蒸着装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a pulse beam evaporation apparatus used for forming thin films of various materials.

〈従来の技術〉 従来、金属や化合物の薄膜形成方法としては、真空蒸着
法やスパッタリング法等の物理蒸着法(PVD法)と化
学蒸着法(CVD法)が多く用いられている。特に、低
温で薄膜を形成する技術として、スパッタリングを中心
としたPVD技術が多用されている。
<Prior Art> Conventionally, physical vapor deposition methods (PVD methods) such as vacuum evaporation methods and sputtering methods, and chemical vapor deposition methods (CVD methods) are often used as methods for forming thin films of metals or compounds. In particular, PVD technology, mainly sputtering, is frequently used as a technology for forming thin films at low temperatures.

近年、誘電体薄膜、光学薄膜や超電導薄膜などの開発が
さかんに行われているが、これら薄膜の特性はバルクの
特性に比較して、かなり劣っている。その原因としては
、結晶性が悪く、組成制御が難しいことなどがあげられ
る。特性向上や実用化に向けて特に単結晶に近いより結
晶性の優れた薄膜が望まれている。
In recent years, dielectric thin films, optical thin films, and superconducting thin films have been actively developed, but the properties of these thin films are considerably inferior to those of the bulk. The causes include poor crystallinity and difficulty in composition control. In order to improve properties and put it into practical use, thin films with superior crystallinity, which is closer to that of a single crystal, are particularly desired.

〈発明が解決しようとする問題点〉 する方法が一般的であるが、基板材料と薄膜材料の反応
が問題になることが多い。
<Problems to be Solved by the Invention> Although this method is common, the reaction between the substrate material and the thin film material often becomes a problem.

そこで、低温で薄膜を形成する方法として、スパッタリ
ング法を中心としたPVD法が蒸着粒子の運動エネルギ
ーが高く、膜質が優れていることから多用されている。
Therefore, as a method for forming thin films at low temperatures, PVD methods, mainly sputtering methods, are often used because the kinetic energy of vapor-deposited particles is high and the film quality is excellent.

しかし、蒸着粒子の速度には分布があり、低速の粒子で
の膜形成では結晶性が悪く、一方、高速の粒子は、形成
された結晶を乱したり欠陥を発生させるなど問題がある
However, there is a distribution in the speed of the evaporated particles, and film formation using slow-moving particles results in poor crystallinity, while high-speed particles cause problems such as disturbing the formed crystals and generating defects.

〈問題点の解決に係わる着眼点、知見〉この発明は、低
速粒子はマイグレーションが少なく、また、反応性に劣
るなどのため結晶性が悪く、一方、高速粒子は、基板に
衝突することで形成した結晶を乱すことから、これら低
速粒子及び高速粒子を除き、蒸着粒子の速度を制御する
ことにより、結晶性の良い薄膜の形成を可能としようと
するものである。
<Points of focus and knowledge related to solving problems> This invention proposes that low-velocity particles have poor crystallinity due to less migration and poor reactivity, while high-velocity particles are formed by colliding with a substrate. By removing these low-velocity particles and high-velocity particles and controlling the velocity of the deposited particles, it is possible to form a thin film with good crystallinity.

〈問題を解決するための手段〉 この発明は、蒸着用原料と基板との間にスリットをもっ
たチョッパーと、チョッパーを回転させる装置と、スリ
ット、基板、蒸着用粒子の発生部が一直線に並ぶ位置に
くる時刻の所定時間前に蒸着粒子発生用のパルス状エネ
ルギーを発生させる装置、及び蒸着用原料を含んでいる
<Means for Solving the Problem> This invention provides a chopper having a slit between the raw material for deposition and a substrate, a device for rotating the chopper, and a part in which the slit, the substrate, and the generation of particles for deposition are aligned in a straight line. It includes a device that generates pulsed energy for generating deposition particles at a predetermined time before arriving at the position, and a source material for deposition.

く作用〉 スリット、基板、蒸着粒子の発生部が一直線上に並ぶ時
刻の所定時間前に、パルス状のエネルギーを蒸着用原料
に与え、蒸着粒子を発生させる。
Action> At a predetermined time before the slit, substrate, and vapor deposition particle generation portion are aligned in a straight line, pulsed energy is applied to the vapor deposition raw material to generate vapor deposition particles.

所定時間内にスリットへ到達した粒子、即ち、所定の速
度範囲内にある粒子のみがスリットを通って基板へ到達
し、薄膜を形成する。また、チョッパーの回転速度、蒸
着用原料とチョッパーとの距離、及び、基板、スリット
、蒸着用材料の粒子発生部が一直線になる時刻とパルス
発生時刻の間隔のうち少なくとも一つの要因を変えるこ
とで、粒子の速度を制御できる。また、それらの要因に
加えスリット幅を変えることで粒子の速度分布の範囲を
制御し、低速粒子と高速粒子を除いた蒸着ができる。
Only particles that reach the slit within a predetermined time, that is, particles within a predetermined speed range, pass through the slit and reach the substrate, forming a thin film. In addition, by changing at least one factor among the rotational speed of the chopper, the distance between the deposition material and the chopper, and the interval between the time when the substrate, the slit, and the particle generation part of the deposition material are aligned in a straight line and the pulse generation time. , the speed of the particles can be controlled. Furthermore, by changing the slit width in addition to these factors, the range of particle velocity distribution can be controlled, and deposition can be performed excluding low-speed particles and high-speed particles.

〈実施例〉 第1図はこの発明に係わる装置の一実施例を示す原理図
である。
<Embodiment> FIG. 1 is a principle diagram showing an embodiment of a device according to the present invention.

1は蒸着粒子を発生させるパルスビーム源、例Nd−Y
AGパルスレーザ−12は1のパルスレーザ−があたり
蒸着粒子を発生させる原料、例えばA1、Fe等の金属
やA1203 、Fe304等の化合物をターゲットに
加工したもので、安定して発生させるために回転を行う
ことが望ましい。
1 is a pulsed beam source that generates deposition particles, e.g. Nd-Y
The AG pulse laser 12 targets raw materials that generate vapor deposited particles when the pulse laser 1 hits them, such as metals such as A1 and Fe, and compounds such as A1203 and Fe304. It is desirable to do so.

3は円盤状のチョッパーで、3aは蒸着粒子が通過する
蒸着用スリット、3bはレーザーのパルスを発生させる
基準時刻を決めるための位置設定用スリット、4a、4
bは位置設定用スリットが通過したことを検出するため
の各々、発光素子(発光ダイオード:LED、レーザー
ダイオード:LD)と受光素子(フォトダイオード:P
D)である。これらチョッパー上のスリットは1組に限
らス、チョッパーのバランスを取る場合やパルスビーム
源を含んだ蒸着粒子発生源を複数個設ける場合などスリ
ットを複数組設けてもよい。5は膜を形成する基板で、
まくあつ等特性の均一性を増すためには回転させてもよ
い。6は膜形成を行うためノ真空チャンバー、7はレー
ザーを真空チャンバーへ導入するための窓、8はチャン
バーを排気する真空ポンプ、9は雰囲気または反応ガス
の導入口である。
3 is a disk-shaped chopper, 3a is a slit for vapor deposition through which the vapor deposition particles pass, 3b is a position setting slit for determining the reference time for generating laser pulses, 4a, 4
b is a light emitting element (light emitting diode: LED, laser diode: LD) and a light receiving element (photodiode: P) for detecting that the position setting slit has passed.
D). The number of slits on these choppers is limited to one set, but multiple sets of slits may be provided, such as when balancing the chopper or when providing a plurality of evaporation particle generation sources including pulsed beam sources. 5 is a substrate on which a film is formed;
In order to increase the uniformity of properties such as heating, it may be rotated. 6 is a vacuum chamber for forming a film, 7 is a window for introducing a laser into the vacuum chamber, 8 is a vacuum pump for evacuating the chamber, and 9 is an inlet for atmosphere or reaction gas.

つぎに上記実施例の装置の操作について説明すまず、位
置設定用スリット3bと、それに近い蒸着用スリット3
aの端の間の角度、または、チョッパーを回転させた時
、その角度を通過する時間(tl)を測定または計算で
求め(第2図)、つぎに、基板5及びターゲット2をチ
ャンバー6内にセットし、パルスレーザ−のあたるター
ゲット上の点と蒸着用スリット、基板が一直線に並ぶよ
うに調整し、真空チャンバー6を真空ポンプで引く。つ
ぎに、スリット幅と蒸着粒子の速度の幅からチョッパー
の回転速度を決める。ただし、ターゲットとチョッパー
間隔が可変の場合はこれを変えてもよい。以上のように
、チョッパーの回転数とターゲットとチョッパーの間隔
が決まると、パルスレーザ−の発生後、蒸着スリットを
高速蒸着粒子が通過し始める時間(t2)が求まり、先
に測定した時間とから、第2図の受光素子が信号を受は
取った後に、パルスレーザ−を発生させる時間(tl 
 t2)が求まる。この結果から、受光素子が信号を受
は取った後、所定の時間(11−t2)後、パルスレー
ザ−が発信するように設定する。以上述べた条件で蒸着
することにより、運動速度が限られた蒸着粒子により薄
膜形成ができる。さらに、この装置に酸素ガスや酸素イ
オンを連続または間欠的に供給する装置を組み込んで酸
化膜の形成を行うことも可能である。
Next, we will explain the operation of the apparatus of the above embodiment. First, we will explain the position setting slit 3b and the vapor deposition slit 3 near it.
The angle between the ends of a, or the time (tl) it takes to pass through that angle when the chopper is rotated, is determined by measurement or calculation (Figure 2), and then the substrate 5 and target 2 are placed in the chamber 6. and adjust the point on the target to be hit by the pulsed laser so that the evaporation slit and substrate are aligned in a straight line, and the vacuum chamber 6 is pulled with a vacuum pump. Next, the rotation speed of the chopper is determined from the width of the slit and the speed of the deposited particles. However, if the distance between the target and the chopper is variable, this may be changed. As described above, once the rotational speed of the chopper and the distance between the target and the chopper are determined, the time (t2) at which the high-speed deposition particles begin to pass through the deposition slit after the generation of the pulsed laser can be determined, and from the previously measured time , the time (tl) for generating the pulsed laser after the light receiving element in FIG.
t2) is found. Based on this result, the pulse laser is set to emit after a predetermined time (11-t2) after the light receiving element receives the signal. By performing vapor deposition under the conditions described above, a thin film can be formed using vapor-deposited particles whose movement speed is limited. Furthermore, it is also possible to form an oxide film by incorporating into this apparatus a device that continuously or intermittently supplies oxygen gas or oxygen ions.

〈発明の効果〉 この発明に係わるパルスビーム蒸着装置は、運動速度を
そろえた蒸着粒子を発生させることが可能であり、これ
ら速度を最適化することで、従来の表面処理装置ではで
きなかった、結晶性等の優れた高機能性の成膜ができる
等顕著な効果を有する。
<Effects of the Invention> The pulse beam evaporation apparatus according to the present invention is capable of generating evaporation particles with uniform motion speeds, and by optimizing these speeds, it is possible to achieve It has remarkable effects such as being able to form highly functional films with excellent crystallinity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる装置の一実施例を示す原理図
、第2図、は受光素子で受は取る信号、パルスレーザ−
を発生させる信号、蒸着粒子がチョッパーを通過する時
間等の関係を示す図である。 1:パルスレーザ−,2:蒸着用原料、3:チョッパー
、3a:蒸着用スリット、3b:位置設定用スリット、
4a:発光素子、4b:受光素子、5:基板、6:真空
チャンバー、7:窓、8:真空排気口、9:ガス導入口
、10:発光素子から出た光がチョッパーを通過し受光
素子で受は取る信号、11:パルスレーザ−を発生させ
る信号、12:蒸着粒子がチョッパーを通過する時間、
13: it、14: t2.15:蒸着用ビームがチ
ョッパーを通過している時間、16:低速粒子がカット
されている時間
Fig. 1 is a principle diagram showing an embodiment of the device according to the present invention, and Fig. 2 shows a signal received and received by a light receiving element, and a pulsed laser beam.
FIG. 3 is a diagram showing the relationship between the signal for generating the , the time taken for the vapor deposited particles to pass through the chopper, and the like. 1: Pulse laser, 2: Raw material for vapor deposition, 3: Chopper, 3a: Slit for vapor deposition, 3b: Slit for position setting,
4a: Light emitting element, 4b: Light receiving element, 5: Substrate, 6: Vacuum chamber, 7: Window, 8: Vacuum exhaust port, 9: Gas inlet, 10: Light emitted from the light emitting element passes through the chopper and passes through the light receiving element. 11: A signal that generates a pulsed laser. 12: Time for the deposition particles to pass through the chopper.
13: it, 14: t2.15: Time during which the deposition beam passes through the chopper, 16: Time during which low-velocity particles are cut.

Claims (2)

【特許請求の範囲】[Claims] (1)蒸着する粒子が通過するためのスリットのついた
チョッパーと、チョッパーを回転させるための装置と、
スリットの位置と所定の関係に基づいてパルス状に原料
粒子を発生させる装置を含むことを特徴とするパルスビ
ーム蒸着装置。
(1) A chopper with a slit through which the particles to be deposited pass, and a device for rotating the chopper;
A pulse beam evaporation apparatus comprising a device that generates raw material particles in a pulsed manner based on the position of a slit and a predetermined relationship.
(2)上記パルス状に原料粒子を発生させる装置として
、パルス状イオンビーム、電子ビーム、レーザービーム
を用いることを特徴とするパルスビーム蒸着装置。
(2) A pulsed beam evaporation apparatus characterized in that a pulsed ion beam, electron beam, or laser beam is used as the apparatus for generating raw material particles in a pulsed manner.
JP33674089A 1989-12-27 1989-12-27 Pulsed-beam vapor deposition device Pending JPH03199370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33674089A JPH03199370A (en) 1989-12-27 1989-12-27 Pulsed-beam vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33674089A JPH03199370A (en) 1989-12-27 1989-12-27 Pulsed-beam vapor deposition device

Publications (1)

Publication Number Publication Date
JPH03199370A true JPH03199370A (en) 1991-08-30

Family

ID=18302286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33674089A Pending JPH03199370A (en) 1989-12-27 1989-12-27 Pulsed-beam vapor deposition device

Country Status (1)

Country Link
JP (1) JPH03199370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140633A (en) * 1997-11-06 1999-05-25 Nippon Telegr & Teleph Corp <Ntt> Thin film deposition device and deposition method
JP2011193288A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Pattern forming method, pattern forming apparatus, piezoelectric vibrator, method of manufacturing piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled clock
EP3919650A1 (en) * 2020-06-04 2021-12-08 Solmates B.V. Device for pulsed laser deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140633A (en) * 1997-11-06 1999-05-25 Nippon Telegr & Teleph Corp <Ntt> Thin film deposition device and deposition method
JP2011193288A (en) * 2010-03-15 2011-09-29 Seiko Instruments Inc Pattern forming method, pattern forming apparatus, piezoelectric vibrator, method of manufacturing piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled clock
EP3919650A1 (en) * 2020-06-04 2021-12-08 Solmates B.V. Device for pulsed laser deposition

Similar Documents

Publication Publication Date Title
US4142958A (en) Method for fabricating multi-layer optical films
USRE32849E (en) Method for fabricating multi-layer optical films
Venkatesan et al. Observation of two distinct components during pulsed laser deposition of high T c superconducting films
JPH03173770A (en) Method and apparatus for forming multiple thin film with ion beam sputter
US6338775B1 (en) Apparatus and method for uniformly depositing thin films over substrates
Okada et al. Investigations of behavior of particles generated from laser‐ablated YBa2Cu3O7− x target using laser‐induced fluorescence
JPH03199370A (en) Pulsed-beam vapor deposition device
Ishiguro et al. MgO (200) highly oriented films on Si (100) synthesized by ambient-controlled pulsed KrF excimer laser deposition method
Sung et al. The morphology and mechanical properties of Al2O3, ZrO2 and SiC laser-assisted physically vapour deposited films
Yao et al. Manipulation of ion energies in pulsed laser deposition to improve film growth
JPH1030168A (en) Method for coating formation
JP2650609B2 (en) Evaporation apparatus and evaporation method
JPH03174306A (en) Production of oxide superconductor
JPH02149661A (en) Method and device for forming thin film
JPH055895B2 (en)
JP2588971B2 (en) Laser deposition method and apparatus
JPH1030169A (en) Coating forming device
JPS6473075A (en) Film forming device by ion beam sputtering
Kuba et al. Selection of kinetic energy of laser ablated particles
JPH01247570A (en) Formation of film of multicomponent substance by beam sputtering
JPH08306978A (en) Method and device for manufacturing oxide thin film
JPH01255669A (en) Formation of multicomponent material film by beam sputtering
JP3187043B2 (en) Method for producing oxide superconductor by physical vapor deposition
JP2890686B2 (en) Laser sputtering equipment
JP2756309B2 (en) Laser PVD equipment