JPH11140633A - Thin film deposition device and deposition method - Google Patents

Thin film deposition device and deposition method

Info

Publication number
JPH11140633A
JPH11140633A JP9303821A JP30382197A JPH11140633A JP H11140633 A JPH11140633 A JP H11140633A JP 9303821 A JP9303821 A JP 9303821A JP 30382197 A JP30382197 A JP 30382197A JP H11140633 A JPH11140633 A JP H11140633A
Authority
JP
Japan
Prior art keywords
deposition
deposit
rotation
slit
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9303821A
Other languages
Japanese (ja)
Inventor
Masayuki Ito
雅之 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9303821A priority Critical patent/JPH11140633A/en
Publication of JPH11140633A publication Critical patent/JPH11140633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for depositing thin film high in homogeneity and precision while solving the unstable output variation of a depositing source caused by depending only on a feedback circuit and keeping the initial amplitude of output variation and to the minimum and to provide a deposition method. SOLUTION: The device is provided with a rotary body 12 arranged in the middle of a supporting tool 15 of the material to be deposited and a depositing source 16 and having a slit and a rotation controller 14 controlling the rotation of the supporting tool 15 for the material to be deposited and the rotary body 12 with optional rotary frequencies. Moreover, a deposition method in which, by controlling the rotation of the rotary body 12 and the supporting tool 15 for the material to be deposited by optional rotary frequencies, only the deposits passed through the slit 13 are deposited on the supporting tool 15 of the material to be deposited is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業界で広く用い
られている重要な光デバイスまたは電子デバイスを作製
する工程に用いられる薄膜堆積装置とその堆積方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film deposition apparatus used in a process for producing an important optical device or electronic device widely used in the industry and a method for depositing the same.

【0002】[0002]

【従来の技術】この種の薄膜堆積装置と堆積方法に関し
ては、堆積物源からの堆積物を様々な方法で被堆積物に
堆積させると同時に、これを周波数測定方式(参考文
献:フィジック Vol.155(1959) P.206)、周期測定方
式(参考文献:ジャーナル オブアプライド フィジク
ス Vol.39(1968) P.4589 & 5815)や、Z-match方式
(参考文献:ジャーナル オブ バキューム サイエン
ス アンド テクノロジー Vo.12(1975))等によって
モニターにより計測し、この読み取った堆積膜厚の値か
ら、薄膜堆積コントロール装置のフィードバック回路を
通すことによって、リアルタイムで堆積物源の出力(蒸
発速度等)を制御するという考え方で、装置、方法とも
工程的にはほぼ確立されている。
2. Description of the Related Art With respect to a thin film deposition apparatus and a deposition method of this type, a deposit from a deposit source is deposited on a deposit by various methods, and at the same time, the frequency is measured by a frequency measurement method (reference: Physic Vol. 155 (1959) P.206), period measurement method (Reference: Journal of Applied Physics Vol.39 (1968) P.4589 & 5815) and Z-match method (Reference: Journal of Vacuum Science and Technology Vo. 12 (1975)), and the output (evaporation rate, etc.) of the deposit source is controlled in real time from the read value of the deposited film thickness by passing it through the feedback circuit of the thin film deposition control device. With the idea, both the apparatus and the method are almost established in terms of process.

【0003】[0003]

【発明が解決しようとする課題】しかし、この様な従来
の薄膜堆積装置と堆積方法においては、作製の工程上、
堆積膜厚のモニター値から、コントロール装置のフィー
ドバック回路を通して、薄膜堆積源の出力変動を起こす
ので、出力は一定とならず変動し、堆積薄膜の均質性、
精度の面で充分ではなかった。また、蒸着などの堆積に
おいて、堆積開始時に堆積速度が設定値を大幅に通り越
して増大し、振動しながら設定値に集束していくとい
う、いわゆるオーバーシュート現象を示すのが通常であ
るが、特に堆積速度は高出力の方が安定となるが、高出
力ではオーバーシュートの絶対値も大きくなってしまう
ため、設定膜厚を容易に越えてしまうというように堆積
開始時の堆積速度のオーバーシュートが問題であった。
However, in such a conventional thin film deposition apparatus and deposition method, due to the manufacturing process,
From the monitored value of the deposited film thickness, the output of the thin film deposition source fluctuates through the feedback circuit of the control device.
The accuracy was not enough. In addition, in deposition such as vapor deposition, the deposition rate at the start of deposition greatly increases beyond the set value, and generally shows a so-called overshoot phenomenon of focusing on the set value while vibrating. Although the deposition rate is more stable at high output, the absolute value of the overshoot becomes large at high output, so that the overshoot of the deposition rate at the start of deposition may easily exceed the set film thickness. It was a problem.

【0004】本発明は上述の課題を解決するためになさ
れたもので、フィードバック回路のみに依存した堆積物
源の不安定な出力変動を解決し、初期の出力変動の振幅
を最小限に抑える、高均質、高精度な薄膜堆積装置と堆
積方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and solves an unstable output fluctuation of a deposit source which depends only on a feedback circuit, and minimizes the amplitude of an initial output fluctuation. It is an object of the present invention to provide a thin film deposition apparatus and a deposition method with high homogeneity and high accuracy.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明においては、被堆積物支持具と堆積物源の中
間に配置された、少なくとも1つ以上の溝状空孔を有す
る少なくとも1枚以上の回転体と、上記被堆積物支持具
および上記回転体を任意の回転周波数に回転制御する回
転制御装置とを設ける。
According to the present invention, at least one grooved hole having at least one groove-shaped hole disposed between a support for deposit and a deposit source is provided. At least one rotating body, and a rotation control device for controlling the rotation of the deposited object support and the rotating body at an arbitrary rotation frequency are provided.

【0006】また、被堆積物支持具と堆積物源の中間に
配置された、少なくとも1つ以上の溝状空孔を有する少
なくとも1枚以上の回転体、および上記被堆積物支持具
を回転させ、回転制御装置を用いて任意の回転周波数に
回転制御することにより、上記溝状空孔を通り抜けた堆
積物のみを上記被堆積物支持具上に堆積させる。
Further, at least one or more rotators having at least one or more groove-shaped holes and disposed between the deposit support and the deposit source, and rotating the deposit support. By controlling the rotation to an arbitrary rotation frequency using a rotation control device, only the deposits passing through the groove-shaped holes are deposited on the deposit support.

【0007】[0007]

【発明の実施の形態】図1は本発明に係る薄膜堆積装置
と堆積方法の実施の形態の概念図、図2は、回転体12
の平面図である。図に示すように、支持回転軸11にス
リット(溝状空孔)13を有する回転体12と被堆積物
支持具15が取り付けられ、回転体12は被堆積物支持
具15と堆積物源16の中間に配置される。14は回転
体12と被堆積物支持具15の回転周波数を制御する回
転制御装置、17はスリット13を通過した堆積物の流
れ、18は被堆積物支持具15上の堆積有効領域、18
aは堆積速度モニタである。なお、回転体12とスリッ
ト13は複数の場合もある。一例として、具体的なディ
メンジョンを与えると、L=500mm、d=280m
m、x=250mm、r=140mm、s=50mmと
すると、z=260mm、ys=26mm、φ=18.
1°、Ψ=5.7°となる。ここで、 L 堆積物源16から被堆積物支持具15までの距離 d 被堆積物支持具15の直径 x 堆積物源16から回転体12までの距離 r 回転体12の半径 s 堆積有効領域18直径 z 堆積物源16からスリット13の弧までの距離 ys スリット13の半径 φ 堆積物源16から支持回転軸11とスリット13
の弧を見込む角度 Ψ 堆積物源16からスリット13を見込む角度 今ここで、被堆積物支持具15の回転数を0.1Hz、
回転体12の回転数を1Hzとすれば、スリット13の
開口角θ=3.6°の時に堆積物源16からの不安定な
出力誤差振幅の絶対値を1/10に減らすことが可能と
なる。実際には、EB蒸着装置や、スパッタ装置、MB
E装置など、ビーム状の堆積物源16を有する装置にお
いて有効となる。
FIG. 1 is a conceptual diagram of an embodiment of a thin film deposition apparatus and a deposition method according to the present invention, and FIG.
FIG. As shown in the drawing, a rotating body 12 having a slit (a groove-shaped hole) 13 and a deposit supporting member 15 are attached to a supporting rotating shaft 11, and the rotating body 12 includes a deposit supporting member 15 and a deposit source 16. Placed in the middle of 14 is a rotation control device for controlling the rotation frequency of the rotating body 12 and the sediment support 15, 17 is the flow of the sediment passing through the slit 13, 18 is a deposition effective area on the sediment support 15, 18
a is a deposition rate monitor. In addition, the rotating body 12 and the slit 13 may be plural. As an example, given a specific dimension, L = 500 mm, d = 280 m
If m, x = 250 mm, r = 140 mm, and s = 50 mm, z = 260 mm, y s = 26 mm, φ = 18.
1 ° and Ψ = 5.7 °. Here, L is the distance from the deposit source 16 to the deposit support 15 d the diameter of the deposit support 15 x the distance from the deposit source 16 to the rotating body 12 r the radius of the rotating body 12 s the effective deposition area 18 Diameter z Distance from sediment source 16 to arc of slit 13 y s Radius of slit 13 φ Deposit source 16 supports rotating shaft 11 and slit 13
The angle at which the deposit 13 is viewed from the sediment source 16 is 0.1 Hz.
If the rotation speed of the rotating body 12 is 1 Hz, it is possible to reduce the absolute value of the unstable output error amplitude from the deposit source 16 to 1/10 when the opening angle θ of the slit 13 is 3.6 °. Become. Actually, EB vapor deposition equipment, sputtering equipment, MB
This is effective in an apparatus having a beam-shaped deposit source 16 such as an E apparatus.

【0008】このような構造により、堆積物源16から
1パルス当たりにスリット13を通過する有効堆積量は
スリットの開口角θや被堆積物支持具15と回転体12
の相対的な回転周波数により変化可能で、その効果とし
ては、高出力(蒸発速度)による堆積においても、特に
堆積開始時の堆積量は堆積物源16の大きな出力変動の
影響を軽減し、堆積速度が安定するため、突沸等による
急激な堆積を防ぐことができ、従来の技術に比べて、著
しい薄膜均質性の改善が得られる。
With such a structure, the effective deposition amount passing through the slit 13 per pulse from the deposit source 16 depends on the opening angle θ of the slit, the deposit support 15 and the rotating body 12.
The effect is that the amount of deposition, especially at the start of deposition, reduces the effect of large output fluctuations of the deposit source 16 even in deposition with high output (evaporation rate). Since the speed is stabilized, rapid deposition due to bumping or the like can be prevented, and remarkable improvement in thin film homogeneity can be obtained as compared with the prior art.

【0009】上記に加えて、このような構造により、堆
積物源16からの出力は大きいにもかかわらず、回転制
御装置14によって、1パルス当たりの堆積量を小さく
することができ、その絶対値を微小に抑制することが可
能となる。その効果としては、微小な堆積量の制御性が
改善されるために、特に膜厚が微小な場合の薄膜堆積量
の正確性、精度の向上が得られる。
In addition to the above, even though the output from the deposit source 16 is large, the amount of deposition per pulse can be reduced by the rotation control device 14 even if the output from the deposit source 16 is large. Can be suppressed minutely. As an effect, since the controllability of the minute deposition amount is improved, it is possible to improve the accuracy and precision of the thin film deposition amount particularly when the film thickness is minute.

【0010】このような構造において、回転体12と被
堆積物支持具15の回転周波数が同じであれば、例えば
堆積物源16としてEB蒸着装置を用い、回転体12、
被堆積物支持具15ともに回転周波数1Hzとして、蒸
着を行うと、堆積有効領域18の位置のみに堆積が起こ
り、被堆積物支持具15の他の部分には起こらない。従
って、堆積有効領域18の隣の位置のサンプルには蒸着
は起こらず、異なった種類の蒸着を行う場合に、複数の
サンプルを入れ換える必要がなくなる。即ち、その効果
としては、複数の被堆積物を被堆積物支持具15に備え
た、従来の技術では実現できなかった一部分のみの堆積
を行うマスク堆積が可能となる。図1で、被堆積物支持
具15と堆積物源16の配置が上下逆となる構成も同様
な効果を与える。
In such a structure, if the rotation frequency of the rotating body 12 and the deposit support 15 are the same, for example, an EB vapor deposition apparatus is used as the deposit source 16 and the rotating body 12,
When deposition is performed at a rotation frequency of 1 Hz for both the deposit support 15, deposition occurs only at the position of the effective deposition area 18, and does not occur at other portions of the deposit support 15. Therefore, no vapor deposition occurs on the sample adjacent to the effective deposition area 18, and it is not necessary to replace a plurality of samples when performing different types of vapor deposition. That is, as an effect, it is possible to perform mask deposition in which a plurality of deposits are provided on the deposit support 15 and deposition is performed only on a part that cannot be realized by the conventional technology. In FIG. 1, the same effect can be obtained by a configuration in which the arrangement of the deposit support 15 and the deposit source 16 is upside down.

【0011】また、堆積開始時には回転体12を回転さ
せて平均の堆積速度を落とし、堆積速度が安定したとこ
ろでスリット13とサンプルの位置を合わせて平均堆積
速度を高め、総堆積時間を短縮することもできる。
When the deposition is started, the rotating body 12 is rotated to lower the average deposition rate, and when the deposition rate is stabilized, the slit 13 and the sample are aligned to increase the average deposition rate, thereby shortening the total deposition time. Can also.

【0012】従来法において、単純に出力を変えてこれ
を実現しようとしても、途中で出力を増大させなければ
ならず、結局オーバーシュートが起こってしまうが、本
願発明によれば、堆積初期のオーバーシュートの影響を
低減するとともに、総堆積時間を短縮できるという効果
を生ずる。
In the conventional method, even if the output is simply changed to realize this, the output must be increased on the way and eventually an overshoot occurs. The effect of reducing the influence of the chute and shortening the total deposition time is produced.

【0013】図2の回転体12は、回転中心を同一とす
る複数の部品により構成することにより、開口角θを可
変とすることもできる。
The rotating body 12 shown in FIG. 2 can have a variable opening angle θ by being constituted by a plurality of parts having the same center of rotation.

【0014】上述のように、従来のフィードバック回路
で堆積物源の出力を変化させる手段のみでは、出力の安
定化に時間がかかると同時に大きなオーバーシュートが
生じてしまう。そのために膜厚の制御性や膜質の低下が
みられる。しかし、本発明のように、スリット13を有
する回転体12を薄膜堆積時に回転させる手段を付加さ
せると、1パルス当たりにスリット13を通過する堆積
量はスリット13の開口角θや各々の部分の回転数によ
って調整できるので、出力を下げることなく、堆積開始
時の大きな出力変動振幅を低減することができる。従っ
て安定な堆積速度を提供することが可能になり、高均
質、高精度な薄膜堆積を行うことができるようになる。
As described above, if only the means for changing the output of the deposit source is used in the conventional feedback circuit, it takes a long time to stabilize the output, and at the same time, a large overshoot occurs. Therefore, the controllability of the film thickness and the film quality are deteriorated. However, when a means for rotating the rotating body 12 having the slit 13 during deposition of a thin film is added as in the present invention, the amount of deposition passing through the slit 13 per pulse will be the opening angle θ of the slit 13 and the Since it can be adjusted by the number of rotations, a large output fluctuation amplitude at the start of deposition can be reduced without lowering the output. Therefore, it is possible to provide a stable deposition rate, and it is possible to perform highly uniform thin film deposition with high accuracy.

【0015】[0015]

【発明の効果】以上説明したように、本発明に係る薄膜
堆積装置と堆積方法においては、回転体の溝状空孔内を
通過する堆積量は開口角および回転周波数によって、特
に堆積初期に大きな出力変動振幅を生じさせることな
く、堆積物源の出力変化を極力抑えることができる。従
来技術である、フィードバック回路のみに依存した堆積
物源の不安定な出力変化を解決し、出力振幅の絶対値を
最小限に抑えることができるため、高均質、高精度な薄
膜堆積を提供することを実現することができた。
As described above, in the thin film deposition apparatus and the deposition method according to the present invention, the amount of deposition passing through the groove-like holes of the rotating body is large depending on the opening angle and the rotation frequency, particularly in the early stage of deposition. The output change of the deposit source can be suppressed as much as possible without causing the output fluctuation amplitude. It provides high uniformity and high precision thin film deposition because it can solve the unstable output change of the deposit source, which depends only on the feedback circuit, and minimize the absolute value of the output amplitude. I was able to realize that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る薄膜堆積装置と堆積方法の実施の
形態の概念図である。
FIG. 1 is a conceptual diagram of an embodiment of a thin film deposition apparatus and a deposition method according to the present invention.

【図2】回転体の平面図である。FIG. 2 is a plan view of a rotating body.

【符号の説明】[Explanation of symbols]

11 支持回転軸 12 回転体 13 スリット 14 回転制御装置 15 被堆積物支持具 16 堆積物源 17 スリットを通過した堆積物の流れ 18 堆積有効領域 18a 堆積速度モニタ L 堆積物源から被堆積物支持具までの距離 d 被堆積物支持具の直径 x 堆積物源から回転体までの距離 r 回転体半径 s 堆積有効領域直径 z 堆積物源からスリット弧までの距離 ys スリット半径 φ 堆積物源から支持回転軸とスリット弧を見込む角
度 Ψ 堆積物源からスリットを見込む角度 θ スリットの開口角
DESCRIPTION OF SYMBOLS 11 Support rotating shaft 12 Rotating body 13 Slit 14 Rotation control device 15 Deposit support 16 Deposit source 17 Flow of deposit passing through slit 18 Effective deposition area 18a Deposition speed monitor L Deposit support from deposit source Distance from the sediment support x the distance from the sediment source to the rotating body r the radius of the rotating body s the effective deposition area diameter z the distance from the sediment source to the slit arc y s the slit radius φ supported from the sediment source Angle of view of rotation axis and slit arc 角度 Angle of view of slit from sediment source θ Opening angle of slit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被堆積物支持具と堆積物源の中間に配置さ
れた、少なくとも1つ以上の溝状空孔を有する少なくと
も1枚以上の回転体と、上記被堆積物支持具および上記
回転体を任意の回転周波数に回転制御する回転制御装置
とを有することを特徴とする薄膜堆積装置。
1. An at least one or more rotating body having at least one or more groove-shaped holes, disposed between a deposit support and a deposit source, the deposit support and the rotation A thin film deposition apparatus, comprising: a rotation control device for controlling the rotation of the body to an arbitrary rotation frequency.
【請求項2】被堆積物支持具と堆積物源の中間に配置さ
れた、少なくとも1つ以上の溝状空孔を有する少なくと
も1枚以上の回転体、および上記被堆積物支持具を回転
させ、回転制御装置を用いて任意の回転周波数に回転制
御することにより、上記溝状空孔を通り抜けた堆積物の
みが上記被堆積物支持具上に堆積されることを特徴とす
る堆積方法。
2. The method according to claim 1, further comprising the step of: rotating the at least one rotating body having at least one or more groove-shaped holes disposed between the sediment support and the sediment source; and rotating the sediment support. And depositing only the deposits passing through the groove-shaped holes on the deposit support by controlling the rotation to an arbitrary rotation frequency using a rotation control device.
JP9303821A 1997-11-06 1997-11-06 Thin film deposition device and deposition method Pending JPH11140633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9303821A JPH11140633A (en) 1997-11-06 1997-11-06 Thin film deposition device and deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9303821A JPH11140633A (en) 1997-11-06 1997-11-06 Thin film deposition device and deposition method

Publications (1)

Publication Number Publication Date
JPH11140633A true JPH11140633A (en) 1999-05-25

Family

ID=17925718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9303821A Pending JPH11140633A (en) 1997-11-06 1997-11-06 Thin film deposition device and deposition method

Country Status (1)

Country Link
JP (1) JPH11140633A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114993B1 (en) * 1971-02-22 1976-05-13
JPS6115964A (en) * 1984-06-29 1986-01-24 Fujitsu Ltd Vacuum deposition device
JPH0219456A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Dry production of organic thin film and device therefor
JPH0363566U (en) * 1989-10-26 1991-06-20
JPH03199370A (en) * 1989-12-27 1991-08-30 Kinzokukei Zairyo Kenkyu Kaihatsu Center Pulsed-beam vapor deposition device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114993B1 (en) * 1971-02-22 1976-05-13
JPS6115964A (en) * 1984-06-29 1986-01-24 Fujitsu Ltd Vacuum deposition device
JPH0219456A (en) * 1988-07-08 1990-01-23 Nippon Telegr & Teleph Corp <Ntt> Dry production of organic thin film and device therefor
JPH0363566U (en) * 1989-10-26 1991-06-20
JPH03199370A (en) * 1989-12-27 1991-08-30 Kinzokukei Zairyo Kenkyu Kaihatsu Center Pulsed-beam vapor deposition device

Similar Documents

Publication Publication Date Title
US6063436A (en) Use of multiple masks to control uniformity in coating deposition
US6106687A (en) Process and diffusion baffle to modulate the cross sectional distribution of flow rate and deposition rate
US20070114122A1 (en) Sputtering method and sputtering device
JPH11119232A (en) Applicator for coating sealant
JP3760370B2 (en) In-line type sputtering system
JP2003500533A (en) Vacuum processing device and method of manufacturing workpiece
JPH11140633A (en) Thin film deposition device and deposition method
KR20120041006A (en) Method of sputtering uniform inorganic alignment film and lcd using the same
JPH11222670A (en) Film thickness monitor and film forming device using this
US20060150903A1 (en) Method and apparatus for processing substrates
KR20130136385A (en) Method for coating with an evaporation material
US6707228B2 (en) Method for adjusting frequency of electronic component
WO2021160786A1 (en) Device and method for producing layers with improved uniformity in coating systems with horizontally rotating substrate and additional plasma sources
DE102005019100A1 (en) Magnetic system for dissipation cathode, with ferromagnetic yoke plates and several groups of magnets with opposite polarity, magnets of first group forming closed,, while magnets of second group form closed, outer magnet row
KR100358760B1 (en) In-situ Physical Vapor Deposition Equipment
JPH06264229A (en) Sputtering device
JPH11200019A (en) Thin coating depositing device and thin coating depositing method
JP2002146525A (en) Sputter deposition system
JPS63469A (en) Sputtering device
JP2002060937A (en) Sputter film deposition system, and film deposition method using the sputter film deposition system
JP2550858Y2 (en) Thin film forming equipment
JPS6179770A (en) Device for vapor deposition
KR100273040B1 (en) Apparatus for selectively blocking unwanted particle beams using a pair of high speed rotating plates with narrow slits
JP4456921B2 (en) Evaporator for emitter formation
JP2727540B2 (en) Optical film thickness control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115