JP4456921B2 - Evaporator for emitter formation - Google Patents

Evaporator for emitter formation Download PDF

Info

Publication number
JP4456921B2
JP4456921B2 JP2004126414A JP2004126414A JP4456921B2 JP 4456921 B2 JP4456921 B2 JP 4456921B2 JP 2004126414 A JP2004126414 A JP 2004126414A JP 2004126414 A JP2004126414 A JP 2004126414A JP 4456921 B2 JP4456921 B2 JP 4456921B2
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
emitter
incident angle
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004126414A
Other languages
Japanese (ja)
Other versions
JP2005307282A (en
Inventor
瞬 三上
慶 小川
倉内  利春
松崎  封徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004126414A priority Critical patent/JP4456921B2/en
Publication of JP2005307282A publication Critical patent/JP2005307282A/en
Application granted granted Critical
Publication of JP4456921B2 publication Critical patent/JP4456921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

本発明は、フィールドエミッションディスプレイに代表される電界放出型デバイスが内蔵するエミッタアレイを形成するための蒸着装置に関する。   The present invention relates to a vapor deposition apparatus for forming an emitter array built in a field emission device represented by a field emission display.

エミッタアレイを形成するための一般的な蒸着装置の装置構成を図1に示す。図1は、真空蒸着室の内部を示す概略図であり、蒸発源たる金属ルツボ1と基板2とがシャッター3を介して対向配置される。基板2の背面には、加熱ヒータ4が設置されており、Mo金属などの蒸着材料5を収容したルツボ1に対して、図外の電子銃から電子線(EB)照射が行われると、蒸着材料5がルツボ1の開口部分1aから上方に蒸発する。そして、シャッター3を開放したときに、ヒータ4により150〜300℃に加熱された基板2上に堆積する。なお、成膜時の到達圧力は一般的に1×10-4Pa以下とされる。また、図1中、6は膜厚モニタを示し、ルツボ1の開口部分1aから上方空間に均等に拡散して蒸散する蒸着材料の蒸発速度をモニタリングできるように配置されている。この膜厚モニタ6により基板2上の蒸着材料の膜厚成長を間接的にモニタし、この測定値に応じてシャッター3の開閉を行うのが一般的である。 An apparatus configuration of a general vapor deposition apparatus for forming the emitter array is shown in FIG. FIG. 1 is a schematic view showing the inside of a vacuum vapor deposition chamber, in which a metal crucible 1 as an evaporation source and a substrate 2 are arranged to face each other via a shutter 3. A heater 4 is installed on the back surface of the substrate 2. When the electron beam (EB) is irradiated from a non-illustrated electron gun to the crucible 1 containing a vapor deposition material 5 such as Mo metal, vapor deposition is performed. The material 5 evaporates upward from the opening 1 a of the crucible 1. Then, when the shutter 3 is opened, it is deposited on the substrate 2 heated to 150 to 300 ° C. by the heater 4. The ultimate pressure during film formation is generally 1 × 10 −4 Pa or less. In FIG. 1, reference numeral 6 denotes a film thickness monitor, which is arranged so as to monitor the evaporation rate of the vapor deposition material that diffuses and evaporates uniformly from the opening 1a of the crucible 1 to the upper space. In general, the film thickness monitor 6 indirectly monitors the film thickness growth of the vapor deposition material on the substrate 2 and opens and closes the shutter 3 in accordance with the measured value.

このような蒸着装置を用いて形成されるエミッタアレイは、図2のような工程を経て形成される。即ち、図1の基板2の表面を詳述すると、図2(a)に示すようにカソード電極21とゲート電極22とが絶縁層23を介して積層形成されており、中央のゲート電極22の非連続部24でカソード電極21が底部として露出したホール部が形成される。   An emitter array formed using such a vapor deposition apparatus is formed through a process as shown in FIG. That is, the surface of the substrate 2 in FIG. 1 will be described in detail. As shown in FIG. 2A, the cathode electrode 21 and the gate electrode 22 are laminated via the insulating layer 23, and the central gate electrode 22 In the non-continuous portion 24, a hole portion where the cathode electrode 21 is exposed as a bottom portion is formed.

図2(b)に示すように、蒸散状態で下方から到着する蒸着材料の堆積により、ホール底部に円錐形のエミッタコーン25が形成され、コーン25が基板上の多数箇所に形成されてエミッタアレイが得られる。なお、図2(b)に示すように、非連続部24にのみ選択的あるいは集中的に蒸着材料を誘導することはできない。そこで、実際には、ルツボ1(図1参照)に面するゲート電極22上にも蒸着材料Mo26が堆積し、この結果、非連続部24が閉塞された後に、この蒸着材料Mo26を除去することにより、図3(c)に示すようにエミッタコーン25を得る。したがって、非連続部24が閉塞されるまでの間に、所望形状のエミッタコーン25を精度良く形成することが要求される。 As shown in FIG. 2B, conical emitter cones 25 are formed at the bottom of the hole by the deposition of the vapor deposition material arriving from below in a transpiration state, and the cones 25 are formed at a number of locations on the substrate. Is obtained. In addition, as shown in FIG. 2B, the vapor deposition material cannot be selectively or intensively guided only to the non-continuous portion 24. Therefore, in practice, the vapor deposition material Mo26 is deposited also on the gate electrode 22 facing the crucible 1 (see FIG. 1). As a result, after the discontinuous portion 24 is closed, the vapor deposition material Mo26 is removed. Thus, the emitter cone 25 is obtained as shown in FIG. Therefore, it is required to accurately form the emitter cone 25 having a desired shape before the non-continuous portion 24 is closed.

具体的には、等方性を保った正確な円錐形で形成されることはもちろんのこと、エミッタコーン25の円錐形の斜面部分25aが、ゲート電極22や絶縁層23に接触することなく、これらと間隙を保った状態でカソード電極21上に直立する構造が求められる。また、コーン25の先端部分25bが、ゲート電極22の延長線上に位置することも重要である。このためには、蒸散状態で下方から到着する蒸着材料が基板2、特にカソード電極21を底部とするホール部に対して入射方向が略垂直となるのが理想的であり、このようにして得られる所望形状のエミッタコーンを用いることにより、エミッタの電子放射特性が良好となり、この結果、電界発光型デバイスの正確な制御が容易になる。 More specifically, the cone-shaped slope portion 25a of the emitter cone 25 is not only in contact with the gate electrode 22 or the insulating layer 23, as well as being formed in a precise cone shape that is isotropic. A structure that stands upright on the cathode electrode 21 with a gap between them is required. It is also important that the tip 25b of the cone 25 is located on the extension line of the gate electrode 22. For this purpose, it is ideal that the vapor deposition material arriving from below in the transpiration state is substantially perpendicular to the incident direction with respect to the hole portion whose bottom is the substrate 2, particularly the cathode electrode 21. By using an emitter cone having a desired shape, the electron emission characteristics of the emitter are improved, and as a result, accurate control of the electroluminescent device is facilitated.

ところで、近年のディスプレイの大画面化は、電界放出型デバイスにおいても例外なく進展しており、これに対応して大型基板を用いることが多い。上記エミッタアレイの形成工程もこれに対応する必要が生じる。例えば、上記したように略垂直の入射方向を得るものとして、図1において蒸着源たるルツボ1と基板2との間隔を拡大した長距離行程型の成膜方法がある。   By the way, the increase in the screen size of displays in recent years has progressed without exception in field emission devices, and a large substrate is often used corresponding to this. The process for forming the emitter array needs to correspond to this. For example, as described above, as a method for obtaining a substantially vertical incident direction, there is a long-distance process type film forming method in which the distance between the crucible 1 as a vapor deposition source and the substrate 2 in FIG.

しかしながら、長距離行程型による方法は、近年の基板大型化の進展に充分対応し切れていない。例えば、一般的な400mm四方の大型基板を用いる場合でも、基板に対する蒸着材料の入射角を10°以下に制限するためには、ルツボ1と基板2との間隔を1600mm以上とする必要がある。また、さらに大型の1000mm四方の基板を用いる場合は、その必要間隔は4000mm以上に拡大するため、装置の大型化が避けられない。また、この間隔が拡大すると、基板に対する蒸着材料の蒸着速度が低下することになる。1μm高のエミッタコーンを形成するために要する時間は、400mm四方の大型基板の場合に10分程度であったのに対して、1000mm四方基板では60分超が必要となり、工程効率の点で不利は否めない。   However, the method using the long-distance process type cannot sufficiently cope with the recent progress in the enlargement of the substrate. For example, even when a general 400 mm square large substrate is used, in order to limit the incident angle of the vapor deposition material to the substrate to 10 ° or less, the distance between the crucible 1 and the substrate 2 needs to be 1600 mm or more. Further, when a larger 1000 mm square substrate is used, the necessary distance is increased to 4000 mm or more, and thus the size of the apparatus cannot be avoided. Moreover, when this space | interval expands, the vapor deposition rate of the vapor deposition material with respect to a board | substrate will fall. The time required to form an emitter cone 1 μm high was about 10 minutes for a large 400 mm square substrate, but more than 60 minutes for a 1000 mm square substrate, which is disadvantageous in terms of process efficiency. I cannot deny.

このため、従来は、基板と蒸発源とを比較的短い距離に保つために、下方からの蒸着材料粒子が基板に対して付着堆積する際の入射角を規制するように遮蔽板などの入射角規制部材を設けている(例えば特許文献1参照)。
特開平10−176262号公報(第3頁、図1−2)
For this reason, conventionally, in order to keep the substrate and the evaporation source at a relatively short distance, the incident angle such as a shielding plate is regulated so as to regulate the incident angle when the vapor deposition material particles from below are deposited on the substrate. A regulating member is provided (see, for example, Patent Document 1).
JP-A-10-176262 (page 3, Fig. 1-2)

ところが、特許文献1によるものは、基板上の不特定部分に対して膜密度を均等に確保するものであるため、そのまま電界放出型デバイスに適用するには問題が残る。特に、複数のエミッタアレイごとに一つの蒸発源を共用する場合、蒸発源の中心位置から離れるにしたがって、エミッタアレイの等方性が得られにくくなる。このため、各エミッタアレイで品質にばらつきが生じ、精度良く高精細画面を得ることが難しくなる。   However, the method according to Patent Document 1 ensures a uniform film density with respect to an unspecified portion on the substrate, and therefore there remains a problem in applying it to a field emission device as it is. In particular, when one evaporation source is shared for each of a plurality of emitter arrays, it becomes difficult to obtain the isotropicity of the emitter array as the distance from the center position of the evaporation source increases. For this reason, quality varies in each emitter array, and it becomes difficult to obtain a high-definition screen with high accuracy.

本発明は、上記問題点に鑑み、大型基板に対応して基板全体で均等な品質のエミッタを形成し得る蒸着装置を提供することを課題としている。   In view of the above problems, an object of the present invention is to provide a vapor deposition apparatus capable of forming emitters of uniform quality over the entire substrate corresponding to a large substrate.

上記課題を解決するため、本発明のエミッタ形成用蒸着装置は、矩形状の基板を、その長手方向に搬送手段によって搬送しながら前記基板上に円錐形状のエミッタコーンを堆積させてエミッタを形成する蒸着装置であって、前記基板と対向して蒸着源を前記基板の対角線の方向に複数配置し、前記基板に付着する蒸着材料粒子の入射角を規制する入射角規制手段を各蒸発源に対して設けたものとした。 In order to solve the above-described problems, an emitter forming vapor deposition apparatus according to the present invention forms an emitter by depositing a cone-shaped emitter cone on a rectangular substrate while conveying the substrate in the longitudinal direction by a conveying means. A vapor deposition apparatus, wherein a plurality of vapor deposition sources are arranged in a diagonal direction of the substrate so as to face the substrate, and an incident angle regulating means for regulating an incident angle of vapor deposition material particles adhering to the substrate is provided for each evaporation source. It was set up .

これによれば、非常に多数のエミッタを搭載するのが通常のフィールドエミッションディスプレイの製造工程において、電界放出部分に相当するエミッタコーンの形成に際して、その材料供給源たる蒸発源からの蒸着材料粒子の入射角規制手段を設けているため、材料粒子の蒸散行程は、特定の入射角に規制されて揃えられる。これにより、基板−蒸着源距離の拡幅を要することなく、比較的短い成膜時間で成膜を行うことができる。しかも、このような入射角規制手段は、各エミッタコーンに対応する蒸発源ごとに設けられるため、形成されるエミッタコーンはディスプレイ構成に必要な多数点のそれぞれで設計通りの形状を備えたものとして得られる。   According to this, in the process of manufacturing a normal field emission display in which a large number of emitters are mounted, when forming the emitter cone corresponding to the field emission portion, the deposition material particles from the evaporation source as the material supply source are formed. Since the incident angle restricting means is provided, the transpiration process of the material particles is regulated and arranged at a specific incident angle. Thus, film formation can be performed in a relatively short film formation time without requiring widening of the substrate-vapor deposition source distance. Moreover, since such an incident angle restricting means is provided for each evaporation source corresponding to each emitter cone, the formed emitter cone is assumed to have a shape as designed at each of a number of points necessary for the display configuration. can get.

この結果、最終製品のフィールドエミッションディスプレイは、画面全体に高性能のエミッタが均一に分布して配置され、精度の良い高精細画面を備えたものとなる。   As a result, the field emission display of the final product has a high-definition screen with high precision, in which high-performance emitters are uniformly distributed over the entire screen.

なお、配置する蒸発源は、エミッタコーンと1対1で対応するものでも良いし、特定の多数点のエミッタコーンを一単位として、このエミッタコーンの集合単位と蒸発源とを1対1関係で対応させても良い。重要なのは、特定のエミッタコーン集団に対して特定範囲に規制された入射角で蒸着材料が到達することである。   The evaporation source to be arranged may correspond to the emitter cone on a one-to-one basis, or a specific multipoint emitter cone as a unit, and the unit of the emitter cone and the evaporation source have a one-to-one relationship. You may make it correspond. What is important is that the deposition material arrives at an angle of incidence controlled to a specific range for a specific population of emitter cones.

さらに、これら蒸発源が対向して配置される基板部分は、エミッタコーンを形成すべき基板上の複数箇所の少なくとも一部であり、この一部の基板部分への成膜が終了するごとに前記基板を水平搬送することにより、新たに前記蒸発源と対向配置する基板部分を次の成膜対象とした通過型成膜が可能となる。これにより、多数点におけるエミッタコーンの形成を効率的に行うことができる。   Further, the substrate portion on which these evaporation sources are arranged to face each other is at least a part of a plurality of locations on the substrate where the emitter cone is to be formed, and the film formation on the partial substrate portion is completed each time the film formation is completed. By horizontally transporting the substrate, it is possible to perform the pass-type film formation in which the substrate portion newly disposed opposite to the evaporation source is the next film formation target. Thereby, it is possible to efficiently form emitter cones at many points.

あるいは、これら蒸発源が対向して配置される基板部分は、基板上の複数箇所の少なくとも一部であり、この一部の基板部分への成膜を行いながら基板を水平搬送して、新たに前記基板と対向配置する基板部分を次の成膜対象として連続して成膜を行うことにより、通過型の連続成膜が可能となり、エミッタコーン形成の効率化がさらに進展する Alternatively, the substrate portion on which these evaporation sources are opposed to each other is at least a part of a plurality of locations on the substrate. By continuously forming the substrate portion opposed to the substrate as the next film formation target, it is possible to perform the continuous film formation of the passing type, and further improve the efficiency of the emitter cone formation .

これらの場合、入射角規制手段として、蒸発源及びエミッタコーンを形成すべき基板部分を隔てる空間の少なくとも一部と、蒸発源の開口部分とを囲繞する遮蔽部材を用いると良い。このような遮蔽部材を採用することにより、上方に開口される蒸発源の開口部分から基板部分に至る蒸散行程の多くの部分が遮蔽部材により包囲される。   In these cases, as the incident angle restricting means, a shielding member that surrounds at least a part of the space separating the substrate portion where the evaporation source and the emitter cone should be formed and the opening portion of the evaporation source may be used. By adopting such a shielding member, many portions of the transpiration process from the opening portion of the evaporation source opened upward to the substrate portion are surrounded by the shielding member.

これにより、基板部分に到着する材料粒子は、遮蔽部分の上端を上回る行程経路を経たものとなり、この結果、基板部分に対する入射角が選別されたものとなる。そして、入射角が選別された状態で基板に対する付着が行われることとなり、所望形状のエミッタコーン形成が容易となる。   As a result, the material particles arriving at the substrate portion go through a process path exceeding the upper end of the shielding portion, and as a result, the incident angle with respect to the substrate portion is selected. Then, attachment to the substrate is performed in a state where the incident angle is selected, and it becomes easy to form an emitter cone having a desired shape.

そして、上記した入射角規制手段は、基板に対する蒸着材料の入射角を15°以下に規制することにより、フィールドエミッションディスプレイ形成に1m四方サイズの大型基板を用いる場合でも、良好な電子放射特性を備えた最終製品を得ることができる。   The above incident angle regulating means regulates the incident angle of the vapor deposition material with respect to the substrate to 15 ° or less, thereby providing good electron emission characteristics even when a 1 m square large substrate is used for forming the field emission display. You can get the final product.

本発明は、エミッタコーンを形成すべき基板部分ごとに、蒸着材料粒子の入射角を規制する入射角規制手段を設けた蒸発源を、各基板部分に対向するように配置するため、蒸着材料粒子が垂直に近い角度で基板に付着し、このようにして基板上の多数点に形成されるエミッタコーンは、それぞれ設計通りの形状を備えたものとして得られる。しかも、大型基板に対する成膜でありながら、比較的短時間での成膜工程を設定することができる。この結果、最終製品のフィールドエミッションディスプレイは、画面全体に高性能のエミッタを搭載し、精度の良い高精細画面を備えたものとなる。   In the present invention, since the evaporation source provided with the incident angle regulating means for regulating the incident angle of the vapor deposition material particles is arranged to face each substrate portion for each substrate portion on which the emitter cone is to be formed, the vapor deposition material particles Are attached to the substrate at an angle close to vertical, and thus the emitter cones formed at multiple points on the substrate are obtained as having shapes as designed respectively. In addition, it is possible to set a film forming process in a relatively short time while forming a film on a large substrate. As a result, the final field emission display has a high-precision screen with a high-performance emitter mounted on the entire screen.

また、これらエミッタ形成のための蒸着工程に際して、通過型成膜、通過型連続成膜などの方式のいずれもが選択可能であり、製造工程上の要請に対して柔軟に対応できる。 Further, when the deposition process for these emitter formation, pass deposition, any of methods such as pass continuous film is selectable, can flexibly respond to demands of the manufacturing process.

図3は第1の参考態様の蒸着装置における基板32と蒸着源たるルツボ31a、31b、31cとの配置を示す概略図である。配置部材を内蔵する蒸着室を、1×10-4Paを下回る程度の到達圧力とした後に、加熱ヒータ(図示せず)により250℃に加熱された基板32に対して、Mo金属などの蒸着材料35a、35b、35cを収容したルツボ31a、31b、31cに対して、図外の電子銃から12kWの電子線照射がそれぞれ行われると、蒸着材料35a、35b、35cがルツボ31a、31b、31cの開口部分から上方に蒸発して、基板32上で円錐形エミッタコーンを形成する。上記したように、数μmサイズのエミッタコーンを所望形状に形成するには、蒸着材料35a、35b、35cが基板32に付着する際の入射角θ1を可能な限り小さくして下方からの蒸着材料が基板32に対して略垂直に付着するのが理想的である。 FIG. 3 is a schematic view showing the arrangement of the substrate 32 and the crucibles 31a, 31b, 31c as the vapor deposition source in the vapor deposition apparatus of the first reference embodiment . After setting the deposition chamber containing the arrangement member to an ultimate pressure of less than 1 × 10 −4 Pa, deposition of Mo metal or the like is performed on the substrate 32 heated to 250 ° C. by a heater (not shown). When the crucibles 31a, 31b, and 31c containing the materials 35a, 35b, and 35c are irradiated with an electron beam of 12 kW from an unillustrated electron gun, the vapor deposition materials 35a, 35b, and 35c are converted into the crucibles 31a, 31b, and 31c, respectively. Evaporate upward from the opening of the substrate to form a conical emitter cone on the substrate 32. As described above, in order to form an emitter cone having a size of several μm in a desired shape, the incident angle θ1 when the vapor deposition materials 35a, 35b, and 35c adhere to the substrate 32 is made as small as possible, and the vapor deposition material from below is formed. Ideally, the film adheres substantially perpendicularly to the substrate 32.

そこで、本態様においては、ルツボ31a、31b、31cのそれぞれに、各開口部分を含むルツボ側面部分と、これら各ルツボ及び基板32の対向空間33a、33b、33cとを同時に包囲し、上下に開通した箱状筺体34a、34b、34cを設けた。そして、15°以上の入射角で基板32方向に向かう蒸着材料を遮断し、15°以下の入射角で基板32に向かう蒸着材料が筺体34a、34b、34cの上端を超えて基板32に到達できるようにした。これにより、基板部分32a、32b、32cの三領域で形成されるエミッタコーンは、所望の形状及びサイズの円錐形(図2参照)で得られる。 Therefore, in this embodiment, each of the crucibles 31a, 31b, and 31c simultaneously surrounds the crucible side surface portion including the opening portions and the opposing spaces 33a, 33b, and 33c of the crucible and the substrate 32, and opens up and down. Box-shaped housings 34a, 34b, and 34c were provided. And the vapor deposition material which goes to the board | substrate 32 direction with an incident angle of 15 degrees or more is interrupted | blocked, and the vapor deposition material which goes to the board | substrate 32 with an incident angle of 15 degrees or less can reach the board | substrate 32 exceeding the upper end of the housings 34a, 34b, 34c. I did it. Thereby, the emitter cone formed by the three regions of the substrate portions 32a, 32b, and 32c is obtained in a conical shape (see FIG. 2) having a desired shape and size.

そして、図3(a)において、紙面上方を基板32の搬送方向とし、位置固定したルツボ31a、31b、31cに対して、成膜対象となる基板部分32a、32b、32cを50mm/分の搬送速度で相対移動する。これにより、搬送される基板32の移動に伴って、新たな成膜対象となる基板部分が、ルツボ31a、31b、31cのそれぞれに対向するように紙面下方からを送り出され、次の成膜対象たる三領域でエミッタコーン形成工程が続行される。   In FIG. 3A, the upper direction of the paper is the transport direction of the substrate 32, and the substrate portions 32a, 32b, and 32c to be deposited are transported by 50 mm / min to the crucibles 31a, 31b, and 31c that are fixed in position. Move relative to speed. Thereby, as the substrate 32 to be transported moves, the substrate portion to be newly formed is sent from the lower side of the paper so as to face each of the crucibles 31a, 31b, 31c, and the next film formation target The emitter cone forming process is continued in three regions.

なお、上記のように、基板32の搬送を持続して行うことにより、連続的な通過成膜方式となるが、これのみに限定されることなく、例えば基板部分32a、32b、32cの相対移動を断続的に行うことにより、間欠的な通過成膜方式とすることもできる。   As described above, by continuously carrying the substrate 32, a continuous passing film formation method is realized. However, the present invention is not limited to this, and for example, relative movement of the substrate portions 32a, 32b, and 32c. By intermittently performing the above, it is possible to adopt an intermittent pass film formation method.

いずれの方式の場合も、通過成膜を順次行うことにより、基板32上の全体に亘ってエミッタコーンが多数点として形成される。これらのエミッタコーンは、所望の形状及びサイズの円錐形(図2参照)で得られるため、最終製品のフィールドエミッションディスプレイは、大画面化や高精細化への対応が可能となる。 In either method, the emitter cones are formed as many points over the entire substrate 32 by sequentially performing the pass film formation. Since these emitter cones are obtained in a conical shape having a desired shape and size (see FIG. 2), the final field emission display can cope with a large screen and high definition.

図4は、本発明の第1態様の蒸着装置における基板42と蒸着源たるルツボ41a、41b、41cとの配置を示す概略図である。第1態様のものと異なるのは、各ルツボの配置を基板42端縁に沿った直線配置とするのではなく、基板42の対角線に沿った直線配置とした点である。箱状筺体34a、34b、34cは、蒸着材料の進行を遮断するものであるため、その内側に蒸着材料が付着することが避けられず、定期的なメンテナンス作業が必要となる。第1の参考態様においては、特に中央に配置された筺体34bに対するメンテナンス作業に手間を要することが予想されるが、第2態様のように配置することにより、その軽減が可能となる利点がある。 FIG. 4 is a schematic view showing the arrangement of the substrate 42 and the crucibles 41a, 41b, 41c as the vapor deposition sources in the vapor deposition apparatus according to the first aspect of the present invention. The difference from the first embodiment is that the crucibles are not arranged linearly along the edge of the substrate 42 but are arranged linearly along the diagonal of the substrate 42. Since the box-shaped housings 34a, 34b, and 34c block the progress of the vapor deposition material, it is inevitable that the vapor deposition material adheres to the inside thereof, and periodic maintenance work is required. In the first reference aspect , it is expected that maintenance work is required particularly for the housing 34b arranged in the center. However, the arrangement as in the second aspect has an advantage that it can be reduced. .

図5は、第2の参考態様の蒸着装置における基板52と蒸着源たるルツボ51a、51b、51c、51dとの配置を示す概略図である。各ルツボの配置を正方陣様式にすることにより、基板52全体が成膜対象たる基板部分52a、52b、52c、52dにより占有される。そして、15°以下の入射角で基板52に向かう蒸着材料が筺体54a、54b、54c、54dの上端を超えて基板52に到達できるようにした。これにより、形成されるエミッタコーンは、基板全体で所望の形状及びサイズの円錐形(図2参照)で得られる。なお、本態様の場合は、第1の参考態様及び第1の態様の両態様と異なり、通過成膜方式でなく、基板52を静止させて行う固定成膜方式とする。圧力条件などは第1態様と同様にし、約7分間の成膜時間で約1μm高のエミッタコーンを得ることができ、成膜時間の大幅削減が達成された。 FIG. 5 is a schematic view showing the arrangement of the substrate 52 and the crucibles 51a, 51b, 51c, 51d as the vapor deposition source in the vapor deposition apparatus of the second reference mode . By arranging each crucible in a square pattern, the entire substrate 52 is occupied by the substrate portions 52a, 52b, 52c, and 52d that are film formation targets. And the vapor deposition material which goes to the board | substrate 52 with the incident angle of 15 degrees or less was made to reach the board | substrate 52 exceeding the upper end of the housings 54a, 54b, 54c, and 54d. Thereby, the formed emitter cone is obtained in a conical shape (see FIG. 2) having a desired shape and size over the entire substrate. In the case of this embodiment, unlike the first reference embodiment and the first embodiment , a fixed film formation method in which the substrate 52 is stationary is used instead of the passage film formation method. The pressure conditions and the like were the same as in the first embodiment, and an emitter cone having a height of about 1 μm could be obtained in a film formation time of about 7 minutes, and the film formation time was greatly reduced.

図3乃至図5に示す蒸着装置を使用する際に、これに搭載する筺体の長さを変更することにより、蒸着材料の入射角を変更し、それぞれの場合に得られるエミッタコーンの形状や電界放出型デバイスのエミッション電流を測定したところ、図6に示す結果が得られた(設計値を1としたときの相対値表示)。   When the vapor deposition apparatus shown in FIGS. 3 to 5 is used, the incident angle of the vapor deposition material is changed by changing the length of the casing mounted on the vapor deposition apparatus, and the shape and electric field of the emitter cone obtained in each case are changed. When the emission current of the emission type device was measured, the result shown in FIG. 6 was obtained (relative value display when the design value is 1).

図6より、入射角が15°を超えた場合に、エミッタコーンの高さやエミッション電流が設計値を下回り性能劣化に直結することが分った。   From FIG. 6, it was found that when the incident angle exceeds 15 °, the height of the emitter cone and the emission current are lower than the design values, which directly leads to performance degradation.

本発明は、フィールドエミッションディスプレイを代表とする電界放出型デバイスへの活用が可能である。   The present invention can be applied to a field emission device represented by a field emission display.

エミッタ形成用蒸着装置の一般例を示す概略図Schematic showing a general example of a deposition apparatus for emitter formation (a)〜(c)エミッタコーン形成工程を示す工程図(A)-(c) Process drawing which shows an emitter cone formation process (a)蒸着装置の第1の参考態様の配置関係を示す平面図 (b)(a)の側面断面図(A) Top view which shows the arrangement | positioning relationship of the 1st reference aspect of a vapor deposition apparatus . (B) Side surface sectional drawing of (a). (a)本発明の蒸着装置の第1態様の配置関係を示す平面図 (b)(a)の側面断面図(A) The top view which shows the arrangement | positioning relationship of the 1st aspect of the vapor deposition apparatus of this invention (b) Side surface sectional drawing of (a) (a)蒸着装置の第2の参考態様の配置関係を示す平面図 (b)(a)の側面断面図(A) Top view which shows arrangement | positioning relationship of 2nd reference aspect of vapor deposition apparatus . (B) Side surface sectional drawing of (a). 蒸着材料の入射角に対応する性能比(設計値対比)を示すグラフ図Graph showing the performance ratio (compared to the design value) corresponding to the incident angle of the vapor deposition material

1 31a 31b 31c ルツボ(蒸着源)
2 32 42 52 基板
21 カソード電極(基板)
25 エミッタコーン
32a 32b 32c 成膜対象基板部分
34a 34b 34c 箱状筺体(遮蔽部材、入射角規制手段)
41a 41b 41c ルツボ(蒸着源)
42a 42b 42c 成膜対象基板部分
44a 44b 44c 箱状筺体(遮蔽部材、入射角規制手段)
51a 51b 51c 51d ルツボ(蒸着源)
52a 52b 52c 52d 成膜対象基板部分
54a 54b 54c 54d 箱状筺体(遮蔽部材、入射角規制手段)
θ1 入射角
1 31a 31b 31c Crucible (deposition source)
2 32 42 52 Substrate 21 Cathode electrode (Substrate)
25 Emitter cones 32a 32b 32c Deposition target substrate portions 34a 34b 34c Box-shaped enclosure (shielding member, incident angle regulating means)
41a 41b 41c Crucible (deposition source)
42a 42b 42c Deposition target substrate portions 44a 44b 44c Box-shaped housing (shielding member, incident angle regulating means)
51a 51b 51c 51d Crucible (deposition source)
52a 52b 52c 52d Deposition target substrate portions 54a 54b 54c 54d Box-shaped housing (shielding member, incident angle regulating means)
θ1 Incident angle

Claims (2)

矩形状の基板を、その長手方向に搬送手段によって搬送しながら前記基板上に円錐形状のエミッタコーンを堆積させてエミッタを形成する蒸着装置であって、前記基板と対向して蒸着源を前記基板の対角線の方向に複数配置し、前記基板に付着する蒸着材料粒子の入射角を規制する入射角規制手段を各蒸発源に対して設けたことを特徴とするエミッタ形成用蒸着装置。  A vapor deposition apparatus for forming an emitter by depositing a cone-shaped emitter cone on a substrate while conveying a rectangular substrate by a conveying means in a longitudinal direction thereof, wherein a vapor deposition source is opposed to the substrate. An emitter forming vapor deposition apparatus comprising a plurality of incident angle regulating means arranged in the direction of the diagonal line for regulating the incident angle of vapor deposition material particles adhering to the substrate for each evaporation source. 前記基板に付着する蒸着材料粒子の入射角を15°以下に規制する入射角規制手段を前記蒸発源に対して設け、前記基板に対して連続的又は間欠的に成膜を行うことを特徴とする請求項1に記載のエミッタ形成用蒸着装置。  An incident angle restricting means for restricting an incident angle of vapor deposition material particles adhering to the substrate to 15 ° or less is provided for the evaporation source, and film formation is performed continuously or intermittently on the substrate. The emitter forming vapor deposition apparatus according to claim 1.
JP2004126414A 2004-04-22 2004-04-22 Evaporator for emitter formation Expired - Lifetime JP4456921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126414A JP4456921B2 (en) 2004-04-22 2004-04-22 Evaporator for emitter formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126414A JP4456921B2 (en) 2004-04-22 2004-04-22 Evaporator for emitter formation

Publications (2)

Publication Number Publication Date
JP2005307282A JP2005307282A (en) 2005-11-04
JP4456921B2 true JP4456921B2 (en) 2010-04-28

Family

ID=35436378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126414A Expired - Lifetime JP4456921B2 (en) 2004-04-22 2004-04-22 Evaporator for emitter formation

Country Status (1)

Country Link
JP (1) JP4456921B2 (en)

Also Published As

Publication number Publication date
JP2005307282A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
KR102377183B1 (en) High-precision shadow mask deposition system and method therefor
JP5064810B2 (en) Vapor deposition apparatus and vapor deposition method
US9238276B2 (en) Method of manufacturing mask assembly for thin film deposition
CN107532276A (en) Evaporation coating device and evaporation coating method
KR20060060994A (en) Deposition source and deposition apparatus therewith
KR102378671B1 (en) Shadow mask deposition system and method therefor
TW201807221A (en) Shadow-mask-deposition system and method therefor
KR100853544B1 (en) Mask frame assembly for thin film deposition of flat panel display and depositing equipment of the same
KR20120115583A (en) Deposition apparatus and deposition method
KR101885245B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
JP4456921B2 (en) Evaporator for emitter formation
KR20150113742A (en) Evaporation source and deposition apparatus including the same
KR102378672B1 (en) High-precision shadow mask deposition system and method therefor
KR20030075461A (en) Linear type evaporator for manufacturing elements of organic semiconductor device
KR100637180B1 (en) Method of deposition and deposition apparatus for that method
KR101084194B1 (en) Apparatus for thin film deposition having deposition blades
JP2020090721A (en) Electrostatic chuck, electrostatic chuck system, film deposition apparatus, attraction method, film deposition method, and method of manufacturing electronic device
US20160072065A1 (en) Deposition apparatus and method of depositing thin-film of organic light-emitting display device by using the deposition apparatus
JP7026143B2 (en) Thin film deposition equipment
KR20070082699A (en) Array method of linear type crucible with multi nozzles for large-size oled deposition
CN109642313B (en) High-precision shadow mask deposition system and method
KR20240070405A (en) OLED metal mask and manufacturing method of the same
KR20140035154A (en) Deposition apparatus
KR101068213B1 (en) Assembly type block cell and it's allocating method
KR20180066428A (en) Crucible for evaporation source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4456921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250