JPH03199059A - Thermal head - Google Patents

Thermal head

Info

Publication number
JPH03199059A
JPH03199059A JP34264789A JP34264789A JPH03199059A JP H03199059 A JPH03199059 A JP H03199059A JP 34264789 A JP34264789 A JP 34264789A JP 34264789 A JP34264789 A JP 34264789A JP H03199059 A JPH03199059 A JP H03199059A
Authority
JP
Japan
Prior art keywords
layer
wear
electrode
resistant layer
resistor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34264789A
Other languages
Japanese (ja)
Inventor
Akiyoshi Hattori
章良 服部
Nobuyuki Yoshiike
信幸 吉池
Yoshihiro Watanabe
善博 渡辺
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34264789A priority Critical patent/JPH03199059A/en
Publication of JPH03199059A publication Critical patent/JPH03199059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PURPOSE:To improve the printing efficiency and printing quality of an apparatus by forming an electrode array through arranging respective electrodes of the other electrode group among the electrodes of one electrode group on a sub strate, by providing a resistor layer so that the layer comes in contact with both side electrodes, and by providing a part varying in thermal conductivity in the width direction of a wear-resistant layer formed on the electrode and resistor layer. CONSTITUTION:TaSi resistor layer 2 is formed on a glazed alumina substrate 1, 1a by sputtering and Au electrode layer 3, 4 is formed on the resistor layer by sputtering and photolitho etching. After SiC film is further formed on the electrode layer by sputtering, linear patterns are removed by the photolitho etching so that a wear-resistant layer 5 with low thermal conductivity is formed. Lastly, a diamond-like carbon is deposited and photolithoetched so that a linear wear-resistant layer 6 is formed. Thus, heat generated in the resistor layer passes through the linear part with high thermal conductivity of the wear- resistant layer and is preferentially conveyed to ink ribbon and paper so that a thermal head excellent in printing efficiency and printing quality can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はファクシミリ、フルカラープリン久ワープロな
どの記録装置に関すん 従来の技術 熱転黒感熱印字方式プリンタなどの印字装置に用いられ
るサーマルヘッド(主 従来 次の二つの種類のものか
あも 第一のもの(友 第5図に示すように グレーズ
層(lla)を被覆したアルミナような絶縁基板(11
)の上に 蒸着、スパッタリングのような真空薄膜形成
プロセスにより得たTa−3iのような抵抗体層(12
)、Ni、 Crのような電極層(13゜14)、Si
Cのような耐磨耗層(15)をホトリソエツチング法を
もちいてパターン形成したもので、いわゆる薄膜型と呼
ばれるものであも 第二のものは第6図に示すように 
グレーズ層(21a)を被覆した絶縁性基板(21)の
上に 電極層(23,24)、抵抗体層(22)、耐摩
耗層(25)、それぞれをペーストの印刷焼成により形
成するものでいわゆる厚膜型と呼ばれるものであも 発明が解決しようとする課題 しかしなか板 上記従来技術においては発熱部の熱は等
方向に周辺部に広がり、発色部の形状はその熱の広がり
によって定まってしまう。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to recording devices such as facsimiles and full-color printing word processors. The following two types of substrates are used: The first type (component) is an insulating substrate (11
) on which a resistor layer (12
), electrode layers such as Ni, Cr (13°14), Si
The second type is a so-called thin film type, in which a wear-resistant layer (15) like C is patterned using photolithography.The second type is as shown in Figure 6.
On the insulating substrate (21) covered with the glaze layer (21a), electrode layers (23, 24), resistor layer (22), and wear-resistant layer (25) are formed by printing and baking a paste. Problems to be Solved by the Invention in the So-called Thick Film Type However, in the above-mentioned conventional technology, the heat of the heat generating part spreads to the peripheral part in the same direction, and the shape of the coloring part is determined by the spread of the heat. Put it away.

本発明は その熱の広がり方を制御して印字効率と印字
品質に優れたサーマルヘッドを提供することを目的とす
も 課題を解決するための手段 本発明(友 表面が絶縁性である基板上に一方の電極群
の間に他の電極群の各電極を配して電極列を形成し 前
記画電極と接している抵抗体層を設け、前記電極と前記
抵抗体層上に耐摩耗層を形成し 前記耐摩耗層はその幅
方向に熱伝導率の異なる部分を設けたことを特徴とする
サーマルヘッドである。
The purpose of the present invention is to provide a thermal head with excellent printing efficiency and print quality by controlling the way the heat spreads. each electrode of another electrode group is arranged between one electrode group to form an electrode array, a resistor layer is provided in contact with the picture electrode, and a wear-resistant layer is provided on the electrode and the resistor layer. The thermal head is characterized in that the wear-resistant layer has portions having different thermal conductivities in its width direction.

作用 本発明は 抵抗体層上にライン状に熱伝導率の異なる部
分を有する耐摩耗層を有するサーマルヘッドであり、抵
抗体層で発生した無が耐摩耗層のライン状の熱伝導率が
高い部分を通って優先的にインクリボン・用紙の方に伝
わり、印字効率と印字品質の優れたサーマルヘッドが得
られも実施例 (実施例1) 本発明の一実施例を第1図を用いて説明すも第1図(よ
 本発明を適用した対向型のサーマルヘッドであも 第
1図において、 1aはグレーズ凰lは基板、 2は抵
抗体層 3は共通型¥i!、4は個別電極 5と6は本
発明の耐磨耗層玄 5は6に比べて熱伝導率の低い耐摩
耗M、6はライン状玄5に比べて熱伝導率の高い耐摩耗
層であもこのとき、抵抗体層(2)は共通電極(3)と
個別電極(4)の上であっても下であってもよへ 抵抗
体層(2)で発生した熱が選択的に ライン状の熱伝導
率の比較的高い耐摩耗層(6〉の部分を通り、ヘッドの
表面に伝われる事が好ましく、耐摩耗層のライン状の部
分(6)が 耐摩耗層のそれ以外の部分(5)に比べて
熱伝導率が高ければよ賎 また 耐摩耗層の熱伝導率の
高い部分(6)のラインの幅tit、  抵抗体層(2
)の発熱部分の幅より大きいことが望ましtlな抵 本
発明は基本的に電極パターンによら武例えば 第2図に
示すように千鳥型にも適用することが可能である。第2
図において、 1aはグレズ恩 1は基板 2は抵抗体
層 3は共通電極4は個別電極 5と6は本発明の耐磨
耗層玄 5は6に比べて熱伝導率の低い耐摩耗yfL6
はライン状で、 5に比べて熱伝導率の高い耐摩耗層で
ある。また 厚膜形成法や薄膜形成法のようにサーマル
ヘッドの製造方法にもよらな賎 (実施例2) 本発明のサーマルヘッドの製造方法の一実施例について
、第3図を用いて説明すも 第3図において、 laは
グレーズ凰 1は基K 2は抵抗体# 3、4は電極 
5と6は本発明の耐磨耗層で、5は6に比べて熱伝導率
の低い耐摩耗層 6はライン状で、 5に比べて熱伝導
率の高い耐摩耗層であも 厚さ0.8mmのグレーズア
ルミナ基板1,1aの上にスパッタリングでTaSiの
抵抗体層2を形威しん その上に スパッタリングとホ
トリソエツチングによってAuの電極層3.4を形成し
tうそれかべ その上にスパッタリングでSiCの被膜
を形成後、ホトリソエツチングでライン状のパターンを
除去して、熱伝導率の低い耐摩耗層5を形威した そし
て最後に ダイアモンドライクカーボンを蒸着、ホトリ
ソエツチングして、ライン状の耐摩耗層6を形成しtら (実施例3) 本発明のサーマルヘッドの製造方法の1実施例について
、第4図を用いて説明すも 第4図において、 1aは
グレーズBtは基板 2は抵抗体層 3、4は電極 5
と6は本発明の耐磨耗層玄5は6に比べて熱伝導率の低
い耐摩耗# 6はライン状で、 5に比べて熱伝導率の
高い耐摩耗層であも 厚さ0.8mmのグレーズアルミ
ナ基板1,1aの上にAuの有機金属化合物ペーストの
印刷焼点ホトリソエツチングによって電極層3,4を形
成した それか転 その基板上にRude−ガラスフリ
ット系ペーストの印刷焼成法によりライン状の抵抗体層
2を形威しtも  その上にMgの有機金属化合物ペー
ストをスクリーン印刷してライン状の被膜を形成り、 
 800℃で加熱処理することにより、ライン状の熱伝
導率の比較的高い耐摩耗層6を形成し さらにホウケイ
酸鉛系ガラスペーストの印刷焼成により熱伝導率の低い
耐磨耗層5を形成した。
Function The present invention is a thermal head having an abrasion resistant layer having linear portions with different thermal conductivities on a resistor layer, where the voids generated in the resistor layer have high linear thermal conductivity in the abrasion resistant layer. Example (Example 1) An example of the present invention will be described using FIG. 1. The explanation is as shown in Fig. 1 (see below).In Fig. 1, 1a is the glaze layer, 1 is the substrate, 2 is the resistor layer, 3 is the common type, and 4 is the individual type. Electrodes 5 and 6 are wear-resistant layers of the present invention. 5 is a wear-resistant M with a lower thermal conductivity than 6, and 6 is a wear-resistant layer with a higher thermal conductivity than the linear layer 5. , the resistor layer (2) can be placed above or below the common electrode (3) and individual electrodes (4).The heat generated in the resistor layer (2) selectively forms a line-shaped heat. It is preferable that the conductivity is transmitted to the surface of the head through the abrasion resistant layer (6) with relatively high conductivity, and the line-shaped part (6) of the abrasion resistant layer is the other part (5) of the abrasion resistant layer. The width of the line of the high thermal conductivity part (6) of the wear-resistant layer, the resistance layer (2)
) is desirably larger than the width of the heat-generating portion.The present invention can basically be applied to a staggered pattern, for example, as shown in FIG. 2, depending on the electrode pattern. Second
In the figure, 1a is a glass layer, 1 is a substrate, 2 is a resistor layer, 3 is a common electrode, 4 is an individual electrode, 5 and 6 are a wear-resistant layer of the present invention, and 5 is a wear-resistant layer with a lower thermal conductivity than 6.
is a line-shaped wear-resistant layer with higher thermal conductivity than 5. In addition, depending on the method of manufacturing the thermal head, such as the thick film forming method or the thin film forming method (Example 2), an example of the method of manufacturing the thermal head of the present invention will be explained with reference to FIG. In Figure 3, la is the glaze, 1 is the base K, 2 is the resistor #3 and 4 are the electrodes.
5 and 6 are abrasion resistant layers of the present invention, 5 is an abrasion resistant layer with a lower thermal conductivity than 6, and 6 is a linear abrasion resistant layer with a higher thermal conductivity than 5. A TaSi resistor layer 2 is formed on a 0.8 mm glazed alumina substrate 1, 1a by sputtering, and an Au electrode layer 3, 4 is formed thereon by sputtering and photolithography. After forming a SiC film on top by sputtering, the line-shaped pattern was removed by photolithography to form a wear-resistant layer 5 with low thermal conductivity.Finally, diamond-like carbon was vapor-deposited and photolithographically etched. (Embodiment 3) An embodiment of the method for manufacturing a thermal head of the present invention will be described with reference to FIG. 4. In FIG. 4, 1a is a glaze. Bt is the substrate 2 is the resistor layer 3 and 4 are the electrodes 5
and 6 are wear-resistant layers of the present invention, and wear-resistant layer 5 has a lower thermal conductivity than layer 6. Wear-resistant layer #6 has a line shape and has a higher thermal conductivity than layer 5, but has a thickness of 0. Electrode layers 3 and 4 were formed on 8 mm glazed alumina substrates 1 and 1a by printing and baking point photolithography of an organic metal compound paste of Au. A line-shaped resistor layer 2 is formed by screen-printing Mg organometallic compound paste on top of the line-shaped resistor layer 2 to form a line-shaped film.
A linear wear-resistant layer 6 with relatively high thermal conductivity was formed by heat treatment at 800°C, and a wear-resistant layer 5 with low thermal conductivity was further formed by printing and firing a lead borosilicate glass paste. .

な叙 耐摩耗層の形成方法としてスクリーン印刷法を用
いた例を示した力交 デイツプ汰 スピンナー法 ロー
ルコート法やスプレー法のような厚膜形成法とホトリソ
エツチングを用いて、耐摩耗層を形成してもよLl (実施例4) 抵抗体層上に Mgの有機金属化合物ペーストをデイツ
プコーティングして被膜を形成LA8゜0℃で加熱処理
後、ホトリソエツチングして、ライン状の熱伝導率の比
較的高い耐摩耗層を形成獣さらにホウケイ酸鉛系ガラス
ペーストの印刷焼成により熱伝導率の低い耐磨耗層を形
成した 他は実施例2に同眺 (実施例5) 熱伝導率の低い耐摩耗層5として、5iC1SiaN4
、 Si ○2、 ZrO2、Ale○掌、Hf ○2
、 TiO2、Ta205、 Mg5iO雪、Mg25
iQ4、 ZrSiO4、CaO−Zrog、3A12
0s・2Si○2、そしてライン状の耐摩耗層6として
、C(ダイアモンド)を選ん氾 他は実施例2に同眺 
第1表に作成したサーマルヘッドの印字熱効率を示も 
な耘 印字熱効率(上 感熱記録紙へ反射濃度1.0の
記録を与えるに要した電気エネルギーを特定の大きさの
ドツト当りの値で表した (実施例6) 熱伝導率の低い耐摩耗層5として、Mg5iO雪、そし
てライン状の耐摩耗層6として、C(ダイアモンド)、
ダイアモンドライクカーボン、B N。
This article shows an example of using screen printing as a method for forming an abrasion resistant layer. Spinner method The abrasion resistant layer can be formed using a thick film forming method such as a roll coating method or a spray method and photolithography. (Example 4) Form a film by deep coating Mg organometallic compound paste on the resistor layer.After heat treatment at LA8°0C, photolithography is performed to form a line-shaped heat treatment. A wear-resistant layer with a relatively high conductivity was formed. Furthermore, a wear-resistant layer with a low thermal conductivity was formed by printing and firing a lead borosilicate glass paste. The rest was the same as Example 2 (Example 5). Heat conduction 5iC1SiaN4 as the wear-resistant layer 5 with a low
, Si ○2, ZrO2, Ale○ palm, Hf ○2
, TiO2, Ta205, Mg5iO snow, Mg25
iQ4, ZrSiO4, CaO-Zrog, 3A12
0s・2Si○2, and C (diamond) was selected as the line-shaped wear-resistant layer 6.The rest is the same as Example 2.
Table 1 shows the printing thermal efficiency of the created thermal head.
Printing thermal efficiency (Part 1) The electrical energy required to record a reflection density of 1.0 on thermal recording paper is expressed as the value per dot of a specific size (Example 6) Wear-resistant layer with low thermal conductivity 5 is Mg5iO snow, and the line-shaped wear-resistant layer 6 is C (diamond).
Diamond-like carbon, BN.

Bed、AIN、SiCを選ん氾 他は実施4?I12
に同a 第2表に作成したサーマルヘッドの印字熱効率
を示す。な叙 印字熱効率(友 感熱記録紙へ反射濃度
1.0の記録を与えるに要した電気エネルギーを特定の
大きさのドツト当りの値で表し九第1表 第2表 (比較例1) 厚さ0.8mmのグレーズアルミナ基板の上に金の有機
金属化合物ペーストの印刷焼成 ホトリソエツチングに
よって電極層を形成した それかべ その基板上に 酸
化ルテニウム粉末とホウケイ酸ガラスフリットとエチル
セルローズとターピネオールとの混合抵抗ペーストを用
1.)  印刷焼成法によりライン状の抵抗体層を形成
した 最後にホウケイ酸鉛系ガラスペーストの印刷焼成
により耐磨耗層を形成し丸 (比較例2) 薄膜形成法により作製しtラ  他は比較例1に同じ。
Bed, AIN, SiC are selected, others are implementation 4? I12
Table 2 shows the printing thermal efficiency of the prepared thermal head. Printing thermal efficiency (comparison) The electrical energy required to record a reflection density of 1.0 on thermal recording paper is expressed as the value per dot of a specific size. Table 1 Table 2 (Comparative Example 1) Thickness An electrode layer was formed by printing and baking a gold organometallic compound paste on a 0.8 mm glazed alumina substrate and photolithography.On that substrate, ruthenium oxide powder, borosilicate glass frit, ethyl cellulose, and terpineol were applied. Using a mixed resistance paste 1.) A line-shaped resistor layer was formed by printing and baking.Finally, a wear-resistant layer was formed by printing and baking a borosilicate lead glass paste (Comparative Example 2).Thin film formation method was used. The preparation was the same as in Comparative Example 1.

第3表に本発明の実施例によるサーマルヘッドの特性を
示す。な抵 印字熱効率(友 感熱記録紙へ反射濃度1
.Oの記録を与えるに要した電気エネルギーを特定の大
きさのドツト当りの値で表した 発明の効果 以上記載のように 本発明によれば 抵抗体層で発生し
た熱力交 耐摩耗層のライン状の熱伝導率が高い部分を
通って優先的にインクリボン・用紙の方に伝わり、印字
効率と印字品質の優れたサーマルヘッドが得られも 第3表
Table 3 shows the characteristics of the thermal head according to the embodiment of the present invention. Printing thermal efficiency (reflection density 1 on thermal recording paper)
.. Effect of the invention in which the electrical energy required to give a record of O is expressed as a value per dot of a specific size.As described above, according to the present invention, thermal force exchange generated in the resistor layer Line shape of the wear-resistant layer Thermal conductivity is preferentially transferred to the ink ribbon/paper through the parts with high heat conductivity, resulting in a thermal head with excellent printing efficiency and printing quality, as shown in Table 3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明を適用した対向型
と千鳥型のサーマルヘッドの構成猛 第3図および第4
図はそれぞれ本発明を適用した薄膜型と厚膜型のサーマ
ルヘッドの構成は 第5図および第6図はそれぞれ従来
の薄膜型および厚膜型のサーマルヘッドの構成図であも
Figures 1 and 2 show the configurations of opposing type and staggered type thermal heads to which the present invention is applied, respectively.
The figures show the configurations of a thin film type and thick film type thermal head to which the present invention is applied, respectively. Figures 5 and 6 show the configurations of a conventional thin film type and thick film type thermal head, respectively.

Claims (3)

【特許請求の範囲】[Claims] (1)表面が絶縁性である基板と、前記基板上に形成さ
れた複数の端部を有する共通電極と、前記共通電極の端
部相互間に配した複数の個別電極と、前記共通電極の端
部と個別電極からなる電極列に接して配した抵抗体層と
、前記電極および前記抵抗体層上に形成した耐摩耗層を
構成要素とし、前記耐摩耗層は前記抵抗体層上の前記電
極列方向に直交する方向において、熱伝導率の異なる部
分を有することを特徴とするサーマルヘッド。
(1) A substrate with an insulating surface, a common electrode formed on the substrate and having a plurality of ends, a plurality of individual electrodes arranged between the ends of the common electrode, and a common electrode formed on the substrate. The constituent elements include a resistor layer disposed in contact with an electrode array consisting of an end portion and an individual electrode, and a wear-resistant layer formed on the electrode and the resistor layer, and the wear-resistant layer is formed on the resistor layer. A thermal head characterized by having portions having different thermal conductivities in a direction perpendicular to an electrode row direction.
(2)耐摩耗層の中央部の熱伝導率は端部の熱伝導率よ
り大きいことを特徴とする請求項1記載のサーマルヘッ
ド。
(2) The thermal head according to claim 1, wherein the thermal conductivity of the center portion of the wear-resistant layer is higher than that of the end portions.
(3)耐摩耗層の構成成分として、C、Si、Al、Z
r、Hf、Ti、Mg、Ca、Sr、Taの群から選ば
れた元素を含むことを特徴とする請求項1記載のサーマ
ルヘッド。
(3) C, Si, Al, Z as constituent components of the wear-resistant layer
The thermal head according to claim 1, characterized in that it contains an element selected from the group consisting of r, Hf, Ti, Mg, Ca, Sr, and Ta.
JP34264789A 1989-12-28 1989-12-28 Thermal head Pending JPH03199059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34264789A JPH03199059A (en) 1989-12-28 1989-12-28 Thermal head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34264789A JPH03199059A (en) 1989-12-28 1989-12-28 Thermal head

Publications (1)

Publication Number Publication Date
JPH03199059A true JPH03199059A (en) 1991-08-30

Family

ID=18355398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34264789A Pending JPH03199059A (en) 1989-12-28 1989-12-28 Thermal head

Country Status (1)

Country Link
JP (1) JPH03199059A (en)

Similar Documents

Publication Publication Date Title
US4742362A (en) Thermal head
JPH03199059A (en) Thermal head
JP2626064B2 (en) Thermal head and method of manufacturing the same
JPH04288244A (en) Thermal head
JP2615633B2 (en) Manufacturing method of thermal head
JPH07205465A (en) Thermal head and manufacture thereof
JP2958496B2 (en) Method of manufacturing thick film type thermal head
JPH09100183A (en) Thick film grazed substrate and its production
JPH02243359A (en) Manufacture of thermal head
JPH01130960A (en) Thermal printing head
KR100715727B1 (en) Thermal head
JP2965339B2 (en) Manufacturing method of thermal head
JPS6351155A (en) Preparation of thermal head
JPH0238063A (en) Thermal head
JPS61280949A (en) Thermal head
JPS62158062A (en) Thermal head and production thereof
JPH0478546A (en) Thermal printing head
JPH06255156A (en) Thermal head
JPH01272466A (en) Thermal head
JPH0782921B2 (en) Method of manufacturing thermal head
JPS58132572A (en) Thermal head
JPH03227660A (en) Thermal head and its manufacture
JPH03199057A (en) Thermal print head
JPH02231155A (en) Manufacture of thermal head
JPH0639172B2 (en) Thermal head and method for producing the same