JPH03198355A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03198355A
JPH03198355A JP33969889A JP33969889A JPH03198355A JP H03198355 A JPH03198355 A JP H03198355A JP 33969889 A JP33969889 A JP 33969889A JP 33969889 A JP33969889 A JP 33969889A JP H03198355 A JPH03198355 A JP H03198355A
Authority
JP
Japan
Prior art keywords
substrate
lead
semiconductor element
lead frame
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33969889A
Other languages
Japanese (ja)
Other versions
JP2789750B2 (en
Inventor
Hidenobu Yamaguchi
英伸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1339698A priority Critical patent/JP2789750B2/en
Publication of JPH03198355A publication Critical patent/JPH03198355A/en
Application granted granted Critical
Publication of JP2789750B2 publication Critical patent/JP2789750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To reduce the distortion of a signal wave in an inner wiring part, and prevent the decrease of assembling yield, by bonding a substrate member having a multilayer wiring pattern wherein semiconductor elements are subjected to fixing, mounting, and bonding, to a lead frame. CONSTITUTION:A semiconductor element 1c is fixed by using wax material on an island part 1g of a substrate (a) provided with a desired multilayer wiring pattern. The element 1c and the substrate are subjected to lead-bonding by wire connection or the TAB system. Further the element is connected with outer terminals 1c of the lead frame by using outer leads (g). After resin sealing, the outer terminals are cut off and shaped. Hence a large part of an inner wiring can be matched with the characteristic impedance of the element, so that the distortion of signal waveform is restricted within a small value. In addition, the inner lead part which is microminiaturized and lengthened as the result of multipin structure can be shortened, and the decrease of assembling yield caused by the deformation of the inner lead can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に電気特性が高速化した
半導体装置や、多ピン化により外径寸法が大きくさらに
インナーリード部が微細化した半導体装置に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to semiconductor devices, and in particular to semiconductor devices with faster electrical characteristics, and semiconductors with larger outer diameters due to increased pin count and smaller inner leads. It is related to the device.

〔従来の技術〕[Conventional technology]

従来の樹脂封止形半導体装置の製造方法は、第2図及び
第3図のように、外部端子21.アイランド部2j、イ
ンナーリード部2kを有するリードフレーム2n上のア
イランド部2jに半導体素子3cをロー材3bにより固
定載置され、次に25〜30μφのAuまたはAu2の
極細線(ワイヤー)で半導体素子上のAi7電極とリー
ドフレーム上のインナーリードとを一本づつ順次接続す
る。
In the conventional method of manufacturing a resin-sealed semiconductor device, as shown in FIGS. 2 and 3, external terminals 21. A semiconductor element 3c is fixedly mounted on an island part 2j on a lead frame 2n having an island part 2j and an inner lead part 2k with a brazing material 3b, and then the semiconductor element is fixed with a 25 to 30 μΦ Au or Au2 ultrafine wire. Connect the upper Ai7 electrodes and the inner leads on the lead frame one by one.

さらに、取扱いやすく、又機械的保護の為、外部端子2
1を残し第3図のように樹脂3に封止を行う、最後に接
続されていた外部端子21を切り離し、所望の形状に外
部端子の整形を行うことにより実施していた。
Furthermore, for ease of handling and mechanical protection, external terminal 2
This was accomplished by sealing all but 1 in the resin 3 as shown in FIG. 3, cutting off the last connected external terminal 21, and shaping the external terminal into the desired shape.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置では、半導体素子上の電極端
子が増大するに従い、外部端子の数もこれに従って一定
間隔で増大するため半導体装置の外径寸法も増大する。
In the conventional semiconductor device described above, as the number of electrode terminals on the semiconductor element increases, the number of external terminals also increases at regular intervals, and therefore the outer diameter of the semiconductor device also increases.

G/A等では機能数の増大とともに、電極端子数も現状
約500端子程度にまで著じるしく増大しており、前述
した如く半導体装置の大きさは、わずかに数10−の半
導体素子を取扱うのに数10CJAと大きくなっている
。さらに、多ピン化にともないリードフレームのインナ
ーリード2kが長く微細化していく。従ってリードフレ
ーム作成及びワイヤーポンディングが困難であり歩留り
の低下をきたしてしまう。又、組立工程中のトラブルに
よりインナーリードが変形することが多く、組立歩留り
低下の原因ともなっていた。
With the increase in the number of functions in G/A, etc., the number of electrode terminals has also increased significantly, to about 500 terminals at present, and as mentioned above, the size of semiconductor devices is only a few dozen semiconductor elements. It is large, several tens of CJA, to handle. Furthermore, as the number of pins increases, the inner leads 2k of the lead frame become longer and finer. Therefore, lead frame creation and wire bonding are difficult, resulting in a decrease in yield. Furthermore, the inner leads are often deformed due to trouble during the assembly process, which also causes a decrease in assembly yield.

最近の電子機器では、前述した多ビン化のみならず高速
化も要求されており、高速ディジタルシステムのクロッ
クは100MHz以上にもなり、これに使用される半導
体素子の立ち上り時間が1nS以下となっている。この
ような半導体素子の内部配線には形状により寄生のイン
ダクタンスやキャパシタンス抵抗が存在し、特性インピ
ーダンスや伝搬遅延といった伝送線路の特性を持ち、電
気特性に大きな影響を与えている。つまり、半導体装置
内のインナーリードについて半導体素子と特性インピー
ダンスのマツチングが取られなければ、信号の反射が生
じ、外部端子での信号波形にひずみが生じる。しかしな
がら、従来の半導体装置においては構造上、半導体素子
とインピーダンスマツチングを取ることが困難であると
いう欠点を有している。
In recent electronic devices, not only the number of bins mentioned above but also higher speeds are required.The clock speed of high-speed digital systems has increased to 100MHz or more, and the rise time of the semiconductor elements used in this has become less than 1ns. There is. The internal wiring of such a semiconductor element has parasitic inductance, capacitance, and resistance depending on its shape, and has transmission line characteristics such as characteristic impedance and propagation delay, which greatly influences electrical characteristics. In other words, if the characteristic impedance of the inner lead in the semiconductor device is not matched to that of the semiconductor element, signal reflection will occur and the signal waveform at the external terminal will be distorted. However, conventional semiconductor devices have a disadvantage in that it is difficult to achieve impedance matching with semiconductor elements due to their structure.

上述した従来の半導体装置に対し、本発明は多層配線パ
ターンを有した基板部材に半導体素子を固定載置ポンデ
ィングし、その後その基板部材をリードフレームにポン
ディングするという相違点を有している。
The present invention differs from the conventional semiconductor device described above in that a semiconductor element is fixedly placed and bonded on a substrate member having a multilayer wiring pattern, and then the substrate member is bonded to a lead frame. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は半導体素子が固定されるアイラン
ド部と、前記アイランド部の周縁に位置したインナーリ
ードボンディングパッドと外周部に位置したアウターリ
ードボンディングパッドと2層以上の配線パターンとを
少なくとも有した基板部材があって、前記基板部材のア
イランド部に半導体素子が固定載置さh、半導体素子の
電極と基板のインナーリードボンディングパッド及び基
板のアウターリードボンディングパッドと外部端子とが
各々ワイヤー又はリードにより接続され、かつ外部端子
の一部を残して基板部材、半導体素子、外部端子の一部
等が樹脂封止されている構造を少なくとも有している。
The semiconductor device of the present invention has at least an island portion to which a semiconductor element is fixed, an inner lead bonding pad located on the periphery of the island portion, an outer lead bonding pad located on the outer periphery, and a wiring pattern of two or more layers. There is a substrate member, a semiconductor element is fixedly mounted on an island portion of the substrate member, and an electrode of the semiconductor element and an inner lead bonding pad of the substrate, and an outer lead bonding pad of the substrate and an external terminal are connected by wires or leads, respectively. It has at least a structure in which the substrate member, the semiconductor element, a part of the external terminal, etc. are connected with resin and are sealed with resin except for a part of the external terminal.

〔実施例〕〔Example〕

以下、本発明による半導体装置を詳細に説明する。 Hereinafter, a semiconductor device according to the present invention will be explained in detail.

第1図(断面図)は、本発明の一実施例である。FIG. 1 (cross-sectional view) shows one embodiment of the present invention.

半導体装置中央部にガラスエポキシ等を用いた多層配線
板aが位置しており、この基板a中央部の凹構造を持っ
たアイランド部には、半導体素子ICがロー材1bによ
り固定載置されている。半導体素子1cは25〜30μ
φのワイヤー18により基板のインナーリードボンディ
ングパッド部dに接続され、外部端子11はアウターリ
ード1hによりリードフレームの外部端子11と接続さ
れている。又、半導体装置は外部端子11を残し機械的
保護の為樹脂1hにより封止されている。
A multilayer wiring board a made of glass epoxy or the like is located in the center of the semiconductor device, and a semiconductor element IC is fixedly placed on an island portion having a concave structure in the center of the board a with a brazing material 1b. There is. Semiconductor element 1c has a thickness of 25 to 30μ
It is connected to the inner lead bonding pad portion d of the substrate by a wire 18 of φ, and the external terminal 11 is connected to the external terminal 11 of the lead frame by an outer lead 1h. Further, the semiconductor device is sealed with resin 1h for mechanical protection except for external terminals 11.

以上の構成において本発明の半導体装置の製造方法につ
いて記述する。先ず、半導体素子1cと所望の多層配線
パターンを設けた基板aを準備し、ロー材を用いて半導
体素子をアイランド部1jに固定載置する。次に半導体
素子と基板をワイヤ・・−により一本づつ接続する。こ
こでワイヤーの代わりにTAB方式によるリードポンデ
ィングも可能である。その後、外部端子部11となるリ
ードフレームを準備し、アウターリードgにより接続す
る。このアウターリードは基板aにあらかじめ設けたも
のを用いる。最後に、樹脂封止後外部端子を切り離し整
形を行う。
A method for manufacturing a semiconductor device according to the present invention will be described with the above configuration. First, a substrate a on which a semiconductor element 1c and a desired multilayer wiring pattern are provided is prepared, and the semiconductor element is fixedly placed on the island portion 1j using a brazing material. Next, the semiconductor elements and the substrate are connected one by one using wires. Here, lead bonding using the TAB method is also possible instead of using wires. Thereafter, a lead frame that will become the external terminal section 11 is prepared and connected using the outer lead g. These outer leads are those provided in advance on the substrate a. Finally, after resin sealing, the external terminals are separated and shaped.

本実施例で用いられる基板aは誘電体にガラスエポキシ
を用いた2〜6層の多層構造を持ち、信号配線層の上下
層もしくは片側層には接地面(GND。
The substrate a used in this example has a multilayer structure of 2 to 6 layers using glass epoxy as a dielectric, and has a ground plane (GND) on the upper and lower layers or on one side of the signal wiring layer.

パターン)が設けられストリップ線路もしくはマイクロ
ストリップ線路構造が取られている。これにより、半導
体素子とマツチングの取れた特性インピーダンス(EC
Lでは50Ω、0MO8では400Ω程度等)を持つよ
うに配線パターンを設計することが容易となる。しかし
ながら、本実施例においては、ワイヤー1e、アウター
リードg、外部端子11でのインピーダンスマツチング
は困難でありできるだけ短くするのが望ましい。
A strip line or microstrip line structure is provided. As a result, the characteristic impedance (EC
It is easy to design the wiring pattern so that the resistance is 50Ω for L, about 400Ω for 0MO8, etc.). However, in this embodiment, impedance matching between the wire 1e, the outer lead g, and the external terminal 11 is difficult, and it is desirable to make them as short as possible.

以上、説明した本発明の半導体装置においては、高速化
された素子を取り扱う場合においても内部配線の多くの
部分を素子の特性インピーダンスに合わせることが可能
である為、内部配線での信号の反射を軽減し、波形のひ
ずみを低く押えることが可能である。又、多ピン化され
た半導体装置においては、図2のようにインナーリード
2kが微細化、長大化し変形しやすくなっていた。しか
しながら本発明においては、リードフレームのリード部
を短くかつ太くすることができ組立歩留りの向上を図る
ことができる。尚、上記実施例ではアウターリードgを
基板aに設けてリードフレームの外部端子11との接続
を行なったが、リードではなく基板外周にパッドとして
アウターリードパッドを設け、ワイヤーにより外部端子
11との接続を実施しても良い。このとき基板aの載置
用としてリードフレームに基板載置固定用のアイランド
を設けておくことが必要となる。
As described above, in the semiconductor device of the present invention described above, even when handling high-speed elements, it is possible to match many parts of the internal wiring to the characteristic impedance of the element, so it is possible to prevent signal reflection in the internal wiring. It is possible to suppress waveform distortion to a low level. Furthermore, in a semiconductor device with a large number of pins, the inner lead 2k becomes finer, longer, and more easily deformed, as shown in FIG. However, in the present invention, the lead portion of the lead frame can be made shorter and thicker, and the assembly yield can be improved. In the above embodiment, the outer lead g was provided on the board a to connect to the external terminal 11 of the lead frame. You may also perform a connection. At this time, it is necessary to provide an island on the lead frame for mounting and fixing the substrate a.

以下に本発明の他の実施例について説明する。Other embodiments of the present invention will be described below.

第1図の実施例においては、ガラスエポキシ基板を使用
していた多層基板aに、本実施例ではCuポリイミド基
板を使用する。Cuポリイミド基板は通常以下のように
作成される。
In the embodiment shown in FIG. 1, a glass epoxy substrate was used as the multilayer substrate a, but in this embodiment, a Cu polyimide substrate is used. A Cu polyimide substrate is usually produced as follows.

(1)セラミック基板上に電源や接地などの粗い配線を
作っておき、その上にポリイミドの前駆体を塗って加熱
し、10〜20μm程度の絶縁層を作る。
(1) Rough wiring for power supply, grounding, etc. is made on a ceramic substrate, and then a polyimide precursor is applied and heated to form an insulating layer with a thickness of about 10 to 20 μm.

(2)前記絶縁層にフォトレジストを塗布し、露光、現
象、エツチング工程を経て、ピアホールを作る。
(2) Coat a photoresist on the insulating layer, and create a peer hole through exposure, development, and etching steps.

(3)次に蒸着スパッタリングなどで膜厚5〜10μm
、幅10〜50μmのCu配線層を作る。
(3) Next, film thickness is 5 to 10 μm by vapor deposition sputtering etc.
, a Cu wiring layer with a width of 10 to 50 μm is made.

(4)配線層の上にポリイミドの絶縁層を作る。(4) Create a polyimide insulating layer on the wiring layer.

(5)以上(2)〜(4)をくり返し、多層配線基板を
作る。
(5) Repeat steps (2) to (4) above to produce a multilayer wiring board.

このようなCuポリイミド基板は、一般にガラスエポキ
シ基板等に比べ非常に高価であるが、次のような利点を
持っている。
Although such a Cu polyimide substrate is generally much more expensive than a glass epoxy substrate or the like, it has the following advantages.

(1)誘電率が3〜3.5(ガラスエポキシ約4.7゜
セラミック約10)と低い為、信号の伝搬遅延時間を短
縮することができる。
(1) Since the dielectric constant is as low as 3 to 3.5 (approximately 4.7 degrees for glass epoxy and approximately 10 degrees for ceramics), signal propagation delay time can be shortened.

(2)厚い絶縁膜が容易に作れる為、配線容量を小さく
できる。
(2) Since a thick insulating film can be easily made, the wiring capacitance can be reduced.

(3)フォトリングラフィ技術を使う為、微細加工の制
約がない。
(3) Since photolithography technology is used, there are no restrictions on microfabrication.

従って第1図の実施例に比べ、より多ビン化。Therefore, compared to the embodiment shown in FIG. 1, the number of bins is higher.

高速化し、さらに、外部端子ピッチが狭くなった場合に
有効である。
This is effective when the speed is increased and the external terminal pitch is narrowed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、多ピン化により微細化、
長大化した半導体装置のインナーリ・−ド部を多層配線
基板により構成したものである。これにより、半導体装
置の内部配線の多くの部分を素子の特性インピーダンス
に合わせることが容易となり、内部配線部分での信号波
形のひずみを低減することができる。又、多ピン化によ
り微細化、長大化したリードフレームのインナーリード
部を短くすることができる為、インナーリード変形によ
る組立歩留り低下を未然に防止することができるという
効果がある。特に、多ピン化、高速化した半導体装置に
おいて、この効果が著しい。
As explained above, the present invention achieves miniaturization by increasing the number of pins.
The inner lead portion of an elongated semiconductor device is constructed from a multilayer wiring board. This makes it easy to match many parts of the internal wiring of the semiconductor device to the characteristic impedance of the element, and it is possible to reduce distortion of signal waveforms in the internal wiring parts. Furthermore, since the inner lead portion of the lead frame, which has become finer and longer due to the increased number of pins, can be shortened, it is possible to prevent a decrease in assembly yield due to inner lead deformation. This effect is particularly remarkable in semiconductor devices with increased pin count and increased speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明の実施例を示す断面図である。 第2図、第3図は従来の半導体装置を示し、第2図はリ
ードフレームの平面図、第3図はリードフレームに半導
体素子を実装し組立てた後の断面図である。 符号の説明 a・・・・・・多層配線基板、lb、3b・・・・・・
ロー材、lc、3c・・・・・・半導体素子、d・・・
・・・インナーリードボンディングパッド、le、3e
・・・・・・ワイヤーf・・・・・・アウターリードボ
ンディングパッド、g・・・・・・アウターリード、l
h、3h・・・・・・封入樹脂、11゜2i、3i・・
・・・・外部端子、lj、2j、3jアイランド部、2
k・・・・・・インナーリード、21・・・・・・つり
ビン、2m・・・・・・タイバー 2n・・・・・・リ
ードフレーム。
FIG. 1 is a sectional view showing an embodiment of the present invention. 2 and 3 show a conventional semiconductor device, FIG. 2 is a plan view of a lead frame, and FIG. 3 is a sectional view after a semiconductor element is mounted on the lead frame and assembled. Explanation of symbols a...Multilayer wiring board, lb, 3b...
Low material, lc, 3c...semiconductor element, d...
...Inner lead bonding pad, le, 3e
...Wire f...Outer lead bonding pad, g...Outer lead, l
h, 3h... Encapsulation resin, 11゜2i, 3i...
...External terminal, lj, 2j, 3j island part, 2
k...Inner lead, 21...Hanging bottle, 2m...Tie bar 2n...Lead frame.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子が固定されるアイランド部と、前記アイラン
ド部の周縁に位置したインナーリードボンディングパッ
ドと外周部に位置したアウターリードボンディングパッ
ドと2層以上の配線パターンとを少なくとも有した基板
部材を有し、前記基板部材のアイランド部に半導体素子
が固定載置され、半導体素子の電極と基板のインナーリ
ードボンディングパッド及び基板のアウターリードボン
ディングパッドと外部端子とが各々ワイヤー又はリード
により接続され、かつ外部端子の一部を残して基板部材
、半導体素子、外部端子の一部等が樹脂封止されている
構造を有することを特徴とする半導体装置。
A substrate member having at least an island portion to which a semiconductor element is fixed, an inner lead bonding pad located at the periphery of the island portion, an outer lead bonding pad located at the outer periphery, and two or more layers of wiring patterns, A semiconductor element is fixedly placed on the island portion of the substrate member, and the electrodes of the semiconductor element and the inner lead bonding pads of the substrate and the outer lead bonding pads of the substrate and external terminals are respectively connected by wires or leads, and 1. A semiconductor device having a structure in which a substrate member, a semiconductor element, a part of an external terminal, etc. are sealed with resin except for a part.
JP1339698A 1989-12-26 1989-12-26 Semiconductor device Expired - Lifetime JP2789750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339698A JP2789750B2 (en) 1989-12-26 1989-12-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339698A JP2789750B2 (en) 1989-12-26 1989-12-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03198355A true JPH03198355A (en) 1991-08-29
JP2789750B2 JP2789750B2 (en) 1998-08-20

Family

ID=18329954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339698A Expired - Lifetime JP2789750B2 (en) 1989-12-26 1989-12-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2789750B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292653U (en) * 1985-11-29 1987-06-13
JPH0277145A (en) * 1988-09-13 1990-03-16 Ibiden Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292653U (en) * 1985-11-29 1987-06-13
JPH0277145A (en) * 1988-09-13 1990-03-16 Ibiden Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JP2789750B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
US5889325A (en) Semiconductor device and method of manufacturing the same
US5467252A (en) Method for plating using nested plating buses and semiconductor device having the same
JP3981710B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP2601867B2 (en) Semiconductor integrated circuit mounting substrate, method of manufacturing the same, and semiconductor integrated circuit device
KR100206049B1 (en) Plastic molded ic package with leads having small flatness fluctuation
US9653421B2 (en) Semiconductor device
JPH05109802A (en) Semiconductor device
JP2904123B2 (en) Method for producing multilayer film carrier
KR970000219B1 (en) Semiconductor device and method for producing the same
JP3912445B2 (en) Semiconductor device
JP3102287B2 (en) Ceramic multilayer substrate
JPH03198355A (en) Semiconductor device
JP2678696B2 (en) Method for manufacturing semiconductor device
US20240014168A1 (en) Method of manufacturing semiconductor device with fixing feature on which bonding wire is disposed
JP3925280B2 (en) Manufacturing method of semiconductor device
JPH05211279A (en) Hybrid integrated circuit
JP2568057B2 (en) Integrated circuit device
JP2507447B2 (en) Semiconductor integrated circuit device
JPS6348129Y2 (en)
JPH0334911Y2 (en)
JPH0828392B2 (en) Semiconductor integrated circuit device
JPH04359464A (en) Semiconductor device
JPH0521690A (en) Multilayer lead frame provided with heat dissipating plate
JPH0389539A (en) Lead frame and semiconductor device using thereof and manufacture of semiconductor device
JPH05211188A (en) Semiconductor device