JPH0319258Y2 - - Google Patents

Info

Publication number
JPH0319258Y2
JPH0319258Y2 JP1981159192U JP15919281U JPH0319258Y2 JP H0319258 Y2 JPH0319258 Y2 JP H0319258Y2 JP 1981159192 U JP1981159192 U JP 1981159192U JP 15919281 U JP15919281 U JP 15919281U JP H0319258 Y2 JPH0319258 Y2 JP H0319258Y2
Authority
JP
Japan
Prior art keywords
thermal expansion
bonded
hybrid integrated
members
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981159192U
Other languages
Japanese (ja)
Other versions
JPS5866690U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15919281U priority Critical patent/JPS5866690U/en
Publication of JPS5866690U publication Critical patent/JPS5866690U/en
Application granted granted Critical
Publication of JPH0319258Y2 publication Critical patent/JPH0319258Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 本考案は動作中に発熱をするパワー半導体素子
を含む回路部品からなる回路を一体に集積したハ
イブリツト集積回路に関する。 〔従来の技術〕 半導体素子は、小信号から電力分野まで広範囲
にわたつて、個別素子から集積化、モジユール化
への傾向が拡大され、自動車用電子機器、民生用
電子機器、産業用電子機器にハイブリツト集積回
路が多く用いられるようになつた。このようなハ
イブリツト集積回路はその構成において、構造部
材である金属、導電部材である金属、絶縁物、半
導体など熱膨脹係数の異なる材料からなり、しか
もそれらの間に機械的に強固であり、導電的ある
いは導熱的な結合が要求される個所が多い。第
2、第3図はハイブリツト集積回路の一例で、第
5図は接着部の断面図である。第3図に示すアル
ミニウム容器1の底面上に鉄板からなる金属支持
体2を固定し、その上にアルミナなどのセラミツ
ク板3によつて絶縁されたパワートランジスタチ
ツプ4とセラミツク板5の上の厚膜印刷回路に図
示しない回路部品を取り付けてなる制御部とが備
えられる。セラミツク板3ははんだで接着するた
めに通常表面がメタライズしてある。11はセラ
ミツク板3のメタライズ層である。制御部の端子
とトランジスタとはリード線6によつて接続され
る。この場合の構成材料はアルミニウム、鉄、セ
ラミツクス、半導体の順に熱膨脹係数が小さくな
る。 〔考案が解決しようとする課題〕 しかしながら、このような熱膨脹係数の異なる
部材間をろう材、接着材などで貼合せると、膨脹
係数の差によりバイメタル効果に伴なうそりを生
じ、アルミナ板のような曲げに弱い部材は損傷し
てしまう。また損傷しないにしても、特にパワー
素子における動作中の発熱あるいは冷却による膨
脹、収縮によりろう材または接着剤と部材との剥
離が生じたり、ろう材、接着剤樹脂の中間層に疲
労破壊が生じ、電気抵抗、熱抵抗が増加して個々
の機能素子を熱的に破壊させる。この対策とし
て、例えば図の容器1と支持体2との間で行われ
ており第4図にA−A線断面で示すように、ばね
7を介してねじ8により両者を加圧接触させる方
法が知られている。しかしこの方法は部品の数が
ふえ、両接触面の平滑度が良好で両者が平面接触
しなければならぬので加工工数も多くなる。従つ
て通常の加工面において適用できるろう付、接着
により信頼性の高い結合のできることが望まし
い。 また、部材間を接着するろう材、接着剤を厚く
して、熱膨脹差により生ずる応力を緩和させるこ
とも考えられるが、ろう材、接着剤を厚くすると
上側の部材が大きく傾くようになり、この傾きに
より上側の部材上の半導体素子へのリード線のボ
ンデイングができなくなる等の不具合を生ずる。 したがつて本考案の目的はこのような熱膨脹係
数の異なる部材間がろう付、接着により信頼性高
く結合されたハイブリツト集積回路を提供するこ
とにある。 〔課題を解決するための手段〕 本考案は、ハイブリツト集積回路のろう付または
接着により導熱的に結合される熱膨脹係数の異な
る部材のうち、熱膨脹係数の大きい方の部材の小
さい方の部材に対向する面のろう付または接着さ
れる部分に複数の溝を設け、該溝の部分も含めて
ろう付または接着されることを特徴としている。 〔作用〕 上述のように本考案では複数の溝を設けて熱膨
脹係数の異なる部材間をろう付または接着するは
んだまたは接着剤の見かけ上の厚さつまり部材間
隔を変えることなく、はんだまたは接着剤の量を
増加させたために、これらのはんだまたは接着剤
の弾性変形が大きくなり緩衝材として働らくよう
になり、部材間の熱膨脹差により生ずる応力を吸
収し緩和させる。 〔実施例〕 以下本考案を実施例に基づき説明する。 第1図は本考案の一実施例を示す接着部の断面
図である。第1図において、ハイブリツト集積回
路のアルミニウム容器1に、例えば加圧接触法で
固定された鉄からなる厚さ0.1mmの支持体2の表
面に、例えば深さ300μm、幅150μmのV形溝9を
50μmの間隔を置いて形成し、その面の上にはん
だあるいは接着剤10を用いて厚さ0.635mmのア
ルミナ板3が接着されている。比較実験として溝
を設けた鉄板および設けない鉄板を共晶組成の融
点183℃のはんだでアルミナ板と50〜100μmの厚
さのはんだによつてろう付したものに急激な温度
変化を与え、アルミナ板に割れが発生するか否か
を調べた。各温度への移行時間は5秒以内で、第
1表はその結果を示した不良発生率の分母は試料
数、分子は割れ発生数である。
[Industrial Application Field] The present invention relates to a hybrid integrated circuit in which circuits consisting of circuit components including power semiconductor elements that generate heat during operation are integrated. [Prior Art] Semiconductor devices are used in a wide range of applications from small signals to power fields, and the trend from individual devices to integration and modularization is expanding, and semiconductor devices are being used in automotive electronic equipment, consumer electronic equipment, and industrial electronic equipment. Hybrid integrated circuits have come into widespread use. Such hybrid integrated circuits are composed of materials with different coefficients of thermal expansion, such as structural metals, conductive metals, insulators, and semiconductors, and are mechanically strong and conductive. Alternatively, there are many locations where thermally conductive bonding is required. 2 and 3 show an example of a hybrid integrated circuit, and FIG. 5 is a sectional view of the bonded portion. A metal support 2 made of an iron plate is fixed on the bottom surface of an aluminum container 1 shown in FIG. A control section formed by attaching circuit components (not shown) to a membrane printed circuit is provided. The surface of the ceramic plate 3 is usually metallized in order to be bonded with solder. 11 is a metallized layer of the ceramic plate 3. The terminals of the control section and the transistors are connected by lead wires 6. In this case, the constituent materials have decreasing coefficients of thermal expansion in the order of aluminum, iron, ceramics, and semiconductors. [Problem to be solved by the invention] However, when such members with different coefficients of thermal expansion are bonded together using a brazing material, adhesive, etc., the difference in coefficients of expansion causes warpage due to the bimetallic effect, and the alumina plate Such members that are weak against bending will be damaged. Even if there is no damage, the brazing material or adhesive may peel off from the component due to expansion or contraction due to heat generation or cooling during operation, especially in power devices, or fatigue fracture may occur in the intermediate layer between the brazing material and adhesive resin. , electrical resistance, and thermal resistance increase, causing thermal destruction of individual functional elements. As a countermeasure against this, for example, a method is used between the container 1 and the support body 2 shown in the figure, and as shown in the section taken along the line A-A in FIG. It has been known. However, in this method, the number of parts increases, and since both contact surfaces must have good smoothness and be in planar contact, the number of processing steps also increases. Therefore, it is desirable to be able to achieve highly reliable bonding by brazing or adhesion, which can be applied to commonly processed surfaces. Another possibility is to thicken the brazing material or adhesive that bonds the parts together to alleviate the stress caused by the difference in thermal expansion. The inclination causes problems such as making it impossible to bond lead wires to the semiconductor elements on the upper member. Therefore, an object of the present invention is to provide a hybrid integrated circuit in which members having different coefficients of thermal expansion are connected with high reliability by brazing or adhesion. [Means for Solving the Problems] The present invention provides a hybrid integrated circuit in which, among members having different coefficients of thermal expansion that are thermally connected by brazing or adhesion, the member with a larger coefficient of thermal expansion is opposed to the member with a smaller one. It is characterized in that a plurality of grooves are provided in the portion of the surface to be brazed or bonded, and the portions including the grooves are also brazed or bonded. [Function] As described above, the present invention provides a plurality of grooves to braze or bond members with different coefficients of thermal expansion without changing the apparent thickness of the solder or adhesive, that is, the spacing between the members. The increased amount of solder or adhesive increases the elastic deformation of these solders or adhesives, allowing them to act as a buffer, absorbing and relieving stress caused by differential thermal expansion between components. [Example] The present invention will be described below based on an example. FIG. 1 is a sectional view of a bonded portion showing an embodiment of the present invention. In FIG. 1, a V-shaped groove 9 having a depth of 300 μm and a width of 150 μm, for example, is formed on the surface of a 0.1 mm thick support 2 made of iron, which is fixed to an aluminum container 1 of a hybrid integrated circuit by, for example, a pressure contact method. of
They are formed at intervals of 50 μm, and an alumina plate 3 having a thickness of 0.635 mm is bonded onto the surface using solder or adhesive 10. As a comparative experiment, a steel plate with grooves and a steel plate without grooves were brazed to an alumina plate with a solder having a melting point of 183°C with a eutectic composition and a thickness of 50 to 100 μm was subjected to a sudden temperature change. It was investigated whether or not cracks would occur in the board. The transition time to each temperature was within 5 seconds, and Table 1 shows the results.The denominator of the failure rate is the number of samples, and the numerator is the number of cracks.

〔考案の効果〕[Effect of idea]

以上述べたように本考案はハイブリツト集積回
路を構成するパワー素子の発熱による温度上昇、
下降により熱膨脹係数の異なる部材間の接着部に
生ずる繰返し応力を、熱膨脹係数の大きい方の部
材の表面に溝を設けることによつて放熱効果を低
下させることなく緩和し、部材の変形ないし破損
を防止するので、ハイブリツト集積回路の信頼性
向上に対し極めて大きな効果を有する。
As mentioned above, the present invention solves the problem of temperature rise due to heat generation of power elements constituting a hybrid integrated circuit.
By providing grooves on the surface of the member with a larger coefficient of thermal expansion, the repetitive stress that occurs in the bond between members with different coefficients of thermal expansion due to lowering is alleviated without reducing the heat dissipation effect, thereby preventing deformation or damage of the member. This has an extremely large effect on improving the reliability of hybrid integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す接着部の断面
図、第2図はハイブリツト集積回路の一例の容器
を除いた平面図、第3図はその容器を含む断面
図、第4図は第2図のA−A線断面図、第5図は
従来の接着部の断面図である。 2……金属支持体、3,5……セラミツク板、
4……トランジスタチツプ、9……溝、10……
はんだ(または接着剤)。
FIG. 1 is a cross-sectional view of an adhesive part showing an embodiment of the present invention, FIG. 2 is a plan view of an example of a hybrid integrated circuit excluding the container, FIG. 3 is a cross-sectional view including the container, and FIG. FIG. 2 is a cross-sectional view taken along the line A-A, and FIG. 5 is a cross-sectional view of a conventional adhesive portion. 2... Metal support, 3, 5... Ceramic plate,
4...transistor chip, 9...groove, 10...
solder (or glue).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ろう付または接着により導熱的に結合される熱
膨脹係数の異なる部材のうち、熱膨脹係数の大き
い方の部材の小さい方の部材に対向する面のろう
付または接着される部分に複数の溝を設け、該溝
の部分も含めてろう付または接着されることを特
徴とするハイブリツト集積回路。
Among members having different coefficients of thermal expansion that are thermally conductively coupled by brazing or gluing, a plurality of grooves are provided in the part to be brazed or bonded on the surface of the member with a larger coefficient of thermal expansion that faces the smaller member; A hybrid integrated circuit characterized in that the groove portion is also brazed or bonded.
JP15919281U 1981-10-26 1981-10-26 hybrid integrated circuit Granted JPS5866690U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15919281U JPS5866690U (en) 1981-10-26 1981-10-26 hybrid integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15919281U JPS5866690U (en) 1981-10-26 1981-10-26 hybrid integrated circuit

Publications (2)

Publication Number Publication Date
JPS5866690U JPS5866690U (en) 1983-05-06
JPH0319258Y2 true JPH0319258Y2 (en) 1991-04-23

Family

ID=29951654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15919281U Granted JPS5866690U (en) 1981-10-26 1981-10-26 hybrid integrated circuit

Country Status (1)

Country Link
JP (1) JPS5866690U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162297A (en) * 1979-06-04 1980-12-17 Fujitsu Ltd Method of mounting microwave integrated circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162297A (en) * 1979-06-04 1980-12-17 Fujitsu Ltd Method of mounting microwave integrated circuit board

Also Published As

Publication number Publication date
JPS5866690U (en) 1983-05-06

Similar Documents

Publication Publication Date Title
US5506446A (en) Electronic package having improved wire bonding capability
KR101194429B1 (en) Semiconductor device and method for producing the same
JPH04162756A (en) Semiconductor module
US7042103B2 (en) Low stress semiconductor die attach
JPH0319258Y2 (en)
JPH10144967A (en) Thermoelectric element module for cooling
JP4498966B2 (en) Metal-ceramic bonding substrate
JPS6348901A (en) Microwave device
JPH10247763A (en) Circuit board and manufacture thereof
KR0183010B1 (en) Semiconductor device having particular solder interconnection arrangement
JPH11214576A (en) Package for mounting semiconductor chip
JPH06244051A (en) Structure of electrode in electronic part
JPH03228339A (en) Bonding tool
JPH0234577A (en) Ceramic-metal composite substrate
JPH08222670A (en) Package for mounting semiconductor element
JPS62216251A (en) High thermal conductive substrate
JPS6276588A (en) Hybrid integrated circuit device
JP2651853B2 (en) Electronic equipment
JPS6199359A (en) Hybrid integrated circuit device
JPH05283555A (en) Semiconductor device
JPS6321766A (en) Copper-ceramics joint for double side mounting
JPH01143227A (en) Hybrid integrated circuit device
JP2007067349A (en) Pressure-welding semiconductor device
JPH06334073A (en) Semiconductor device
JPH0234579A (en) Production of ceramic/metallic clad base plate