JPH03190204A - Ferrite magnetic material and manufacture thereof - Google Patents
Ferrite magnetic material and manufacture thereofInfo
- Publication number
- JPH03190204A JPH03190204A JP1330509A JP33050989A JPH03190204A JP H03190204 A JPH03190204 A JP H03190204A JP 1330509 A JP1330509 A JP 1330509A JP 33050989 A JP33050989 A JP 33050989A JP H03190204 A JPH03190204 A JP H03190204A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- ferrite
- glass
- temperature
- highly crystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 86
- 239000000696 magnetic material Substances 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000843 powder Substances 0.000 claims abstract description 80
- 239000011521 glass Substances 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000000465 moulding Methods 0.000 claims abstract description 5
- 238000010304 firing Methods 0.000 claims description 16
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 10
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910007565 Zn—Cu Inorganic materials 0.000 claims description 7
- 229910018605 Ni—Zn Inorganic materials 0.000 claims 1
- 230000035699 permeability Effects 0.000 abstract description 17
- 238000009792 diffusion process Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000005368 silicate glass Substances 0.000 description 5
- 229910001035 Soft ferrite Inorganic materials 0.000 description 4
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、フェライト磁性体はトランス、インダクタ、
磁気ヘッド等の各種電子部品に利用される高結晶性フェ
ライト粉末をガラス材で結着固化してなる超低収縮率の
フェライト磁性体とその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to ferrite magnetic materials used in transformers, inductors,
The present invention relates to a ferrite magnetic material with an ultra-low shrinkage rate made by bonding and solidifying highly crystalline ferrite powder with a glass material, which is used in various electronic components such as magnetic heads, and a method for manufacturing the same.
従来の技術
従来のフェライト磁性体の製造方法は、主として粉体冶
金法、すなわち、粉末成型と高温焼成の工程を必要とす
る焼結法がほとんどである。BACKGROUND OF THE INVENTION Conventional methods for producing ferrite magnetic materials are mostly based on powder metallurgy, that is, sintering methods that require powder molding and high-temperature firing steps.
Ni−Zn−Cu系フェライト磁性体を作る場合は、出
発原料であるFe2e3.Nip、ZnO。When producing a Ni-Zn-Cu-based ferrite magnetic material, starting materials Fe2e3. Nip, ZnO.
CuOを所定の割合で配合し、脱ガスおよびある程度の
固相反応を進めるために、700〜1000℃程度で仮
焼、粉砕しくこれを仮焼粉という)、造粒。CuO is blended in a predetermined ratio, and calcined and pulverized at about 700 to 1000°C (referred to as calcined powder) and granulated in order to promote degassing and a certain degree of solid phase reaction.
成型という工程を経て、その成型体を適切な雰囲気中で
前記の仮焼成温度より高温である1000〜1400℃
程度で本焼成することによって多結晶質のフェライト磁
性体を得ている。所望の磁気特性を得るために、上記の
出発原料にさらに様々な酸化物が少量される場合も多い
。After the process of molding, the molded body is heated to a temperature of 1000 to 1400°C, which is higher than the above-mentioned pre-firing temperature, in an appropriate atmosphere.
A polycrystalline ferrite magnetic material is obtained by main firing at a certain temperature. In order to obtain the desired magnetic properties, small amounts of various oxides are often added to the above starting materials.
低損失のNi−Zn−Cu系フェライト磁性体を得よう
とする場合、CO2O3の少量添加が有効であることは
公知である。しかし、一般にCO2O3の添加は同時に
透磁率を著しく減少させてしまう。It is known that adding a small amount of CO2O3 is effective when trying to obtain a low-loss Ni-Zn-Cu-based ferrite magnetic material. However, generally, the addition of CO2O3 also causes a significant decrease in magnetic permeability.
そこで、例えば特公昭35−1576号公報に記載され
ているようにCO2O3と同時にBi2O,+を添加し
、透磁率の低下を抑え、低損失でかつ高透磁率のフェラ
イト磁性体を得ている。Bi2O3と同様に、V2O5
,PbOの少量添加も透磁率向上に有効であることもよ
く知られている。この効果は、それぞれが添加されるこ
とにより、フェライト粒界が活性化し焼結反応が促進さ
れ、収縮、ち密化が進み、すなわちフェライトが高結晶
化することに帰因するとされている。Therefore, as described in Japanese Patent Publication No. 35-1576, for example, Bi2O,+ is added at the same time as CO2O3 to suppress the decrease in magnetic permeability and obtain a ferrite magnetic material with low loss and high magnetic permeability. Similar to Bi2O3, V2O5
It is also well known that addition of a small amount of PbO is also effective in improving magnetic permeability. This effect is said to be attributable to the fact that the addition of each activates the ferrite grain boundaries, promotes the sintering reaction, advances shrinkage and densification, and in other words, makes the ferrite highly crystallized.
発明が解決しようとする課題
従来の技術によって得られるフェライト磁性体は、本焼
成で数lθ%の収縮が生じるという欠点を有していた。Problems to be Solved by the Invention Ferrite magnetic materials obtained by conventional techniques have the disadvantage that shrinkage of several lθ% occurs during main firing.
そのため以下のようにして超低収縮フェライト磁性体を
得ることを可能にした。すなわち、高温で十分にフェラ
イト化させた高結晶フェライト粉末と、この焼成温度よ
り低い軟化点を持つガラス粉末を混合し、このガラス粉
末の軟化点温度以上でかつ上記高結晶性フェライト粉末
の焼成温度以下の範囲で加熱処理することによって高結
晶性フェライト粉末をガラスに結着し、収縮率を数%に
抑えることを可能にした。Therefore, it was possible to obtain an ultra-low shrinkage ferrite magnetic material as follows. That is, a high-crystalline ferrite powder that has been sufficiently ferrite-ized at a high temperature is mixed with a glass powder having a softening point lower than this firing temperature, and the firing temperature is set at a temperature equal to or higher than the softening point temperature of this glass powder and the above-mentioned high-crystalline ferrite powder. By heat-treating in the following range, we were able to bind highly crystalline ferrite powder to glass and suppress the shrinkage rate to a few percent.
ところが、上記の超低収縮フェライト磁性体では、用い
るフェライト粉末は高温焼成によって十分に高結晶化す
るために、従来の高透磁化のための酸化物の微量添加は
ほとんど影響を与えない。However, in the above-mentioned ultra-low shrinkage ferrite magnetic material, the ferrite powder used is sufficiently highly crystallized by high-temperature firing, so the conventional addition of a small amount of oxide for high magnetic permeability has almost no effect.
そのため従来のようにCO2O3とBi2O3のような
高透磁率のための酸化物の複合添加では低損失化は達成
されるものの透磁率の著しい減少を抑えることができず
、低損失高透磁率の超低収縮フェライト磁性体を得るこ
とが困難であった。Therefore, although the conventional combination of oxides such as CO2O3 and Bi2O3 for high magnetic permeability achieves low loss, it is not possible to suppress the significant decrease in magnetic permeability, and It has been difficult to obtain low shrinkage ferrite magnetic materials.
本発明の目的は、超低収縮フェライト磁性体で、低損失
のフェライト磁性体とその製造方法を提供するものであ
る。An object of the present invention is to provide an ultra-low shrinkage ferrite magnetic material with low loss and a method for manufacturing the same.
課題を解決するための手段
上記課題を解決するために本発明では、高結晶性フェラ
イト粉末と少なくともCo成分を含有するガラス粉末と
の混合物もしくは高結晶性フェライト粉末とガラス粉末
と酸化コバルトとの混合物を、このガラス粉末と酸化コ
バルトの溶融反応の生じる温度以上でかつ上記高結晶性
フェライト粉末の焼成温度以下の範囲で加熱処理して、
高結晶性フェライト粉末をガラスで結着した構造を持つ
超低収縮フェライト磁性体とするものである。Means for Solving the Problems In order to solve the above problems, the present invention provides a mixture of a highly crystalline ferrite powder and a glass powder containing at least a Co component, or a mixture of a highly crystalline ferrite powder, a glass powder, and a cobalt oxide. is heated at a temperature higher than the temperature at which the melting reaction between the glass powder and cobalt oxide occurs and lower than the firing temperature of the highly crystalline ferrite powder,
This is an ultra-low shrinkage ferrite magnetic material with a structure in which highly crystalline ferrite powder is bonded with glass.
作用
以上のように高結晶性フェライト粉末の結着材であるガ
ラス材に含まれるCo成分が加熱処理中に高結晶フェラ
イト粉末内に拡散していく段階で、処理時間が短かいた
めに十分拡散できずに結着部分にCo成分が多く存在す
るような構造となり、透磁率の低下が少ないにもかかわ
らず低損失化がなされるという従来とは異なる挙動を示
すと考えられる。Function As described above, the Co component contained in the glass material, which is the binder for the highly crystalline ferrite powder, diffuses into the highly crystalline ferrite powder during the heat treatment, and because the treatment time is short, it is sufficiently diffused. This is thought to result in a structure in which a large amount of Co component is present in the bonded portion, resulting in a behavior different from that of the conventional method in which loss is reduced despite a small decrease in magnetic permeability.
なお、高結晶性フェライト粉末とガラス粉末と酸化コバ
ルトの混合物を用いた場合でも同様の結果が得られたの
は、ガラス粉末と酸化コバルトの溶融反応が先に生じ、
Co成分を含有したガラスが溶融した場合と同じ状態に
なり、次にCo成分の一部がフェライト粉末中に拡散す
るというプロセスをとるためと考えられる。Note that similar results were obtained when using a mixture of highly crystalline ferrite powder, glass powder, and cobalt oxide because the melting reaction between the glass powder and cobalt oxide occurred first.
This is thought to be due to a process in which the state is the same as when glass containing a Co component is melted, and then a part of the Co component is diffused into the ferrite powder.
実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.
すなわち、本発明は、第1図に示すように高結晶性フェ
ライト粉末1をこの高結晶性フェライト粉末工の焼成温
度以下で軟化溶融するCo成分を含有するガラス材2で
結着した構造とするものである。なお、図中3は空隙、
4は高結晶性フェライト粉末l中のボアである。That is, as shown in FIG. 1, the present invention has a structure in which a highly crystalline ferrite powder 1 is bound with a glass material 2 containing a Co component that softens and melts at a temperature below the firing temperature of this highly crystalline ferrite powder. It is something. In addition, 3 in the figure is a void,
4 is a bore in the highly crystalline ferrite powder l.
具体的には、高結晶性フェライト粉末1とCo成分を含
有したガラス粉末とをよく混合する。場合によっては、
例えば、ガラス作成が困難なほどCo成分を多く含有さ
せたい場合などでは、高結晶性フェライト粉末1とガラ
ス粉末と粉末状酸化コバルトをよく混合する。この混合
物を造粒、加圧成型した後、この成型体中の高結晶性フ
ェライト粉末1間に混在する上記ガラス粉末を軟化溶融
させることにより、高結晶性フェライト粉末1をガラス
材2で結着し固化した磁性体をいう。ただし、粉末状酸
化コバルトを混合する場合は、ガラス粉末・と酸化コバ
ルトが溶融反応する温度まで加熱する必要がある。Specifically, highly crystalline ferrite powder 1 and glass powder containing a Co component are thoroughly mixed. In some cases,
For example, in the case where it is desired to contain a large amount of Co component so as to make glass production difficult, highly crystalline ferrite powder 1, glass powder, and powdered cobalt oxide are thoroughly mixed. After granulating and press-molding this mixture, the glass powder mixed between the high-crystalline ferrite powders 1 in this molded body is softened and melted to bind the high-crystalline ferrite powders 1 with the glass material 2. A magnetic material that has been solidified. However, when mixing powdered cobalt oxide, it is necessary to heat it to a temperature at which the glass powder and cobalt oxide melt and react.
ここで使用する高結晶性フェライト粉末1は、高温焼成
によって十分にフェライト化したものであって、通常は
900℃以上で焼成したものが望ましい。The highly crystalline ferrite powder 1 used here is one that has been sufficiently ferrite-formed by high-temperature firing, and is preferably one that has been fired at 900° C. or higher.
軟質フェライト磁性体を得たい場合は、高結晶性フェラ
イト粉体1の保磁力Hcが小さいほどよいので、磁性粒
子のサイズが大きいほど望ましいが、一方、高結晶性フ
ェライト粉末1の充填密度が下がるので実際には100
〜200μm径までが適している。If you want to obtain a soft ferrite magnetic material, the smaller the coercive force Hc of the highly crystalline ferrite powder 1, the better, so the larger the size of the magnetic particles, the better. However, on the other hand, the packing density of the highly crystalline ferrite powder 1 decreases. So it's actually 100
A diameter of up to 200 μm is suitable.
次に、高結晶性フェライト粉末1を結着するガラス軟化
温度は加熱処理温度以下であればよいが、本発明による
フェライト磁性体の応用を考えると耐熱性の観点から下
限は300℃以上であることが望ましい。高結晶性フェ
ライト粉末1に加えるガラス粉末の量は0.3〜3Qw
t%がよくQ、3wt%より少ないと高結晶性フェライ
ト粉末1の結着効果が小さく機械的強度が確保できない
。一方、30wt%より多いガラス量では、結着力は十
分に強くなるが非磁性量が増すためにフェライト磁性体
としての磁気特性が著しく悪化して好ましくない。Next, the glass softening temperature for binding the highly crystalline ferrite powder 1 may be lower than the heat treatment temperature, but considering the application of the ferrite magnetic material according to the present invention, the lower limit is 300°C or higher from the viewpoint of heat resistance. This is desirable. The amount of glass powder added to high crystalline ferrite powder 1 is 0.3 to 3Qw
If the t% is less than Q, 3wt%, the binding effect of the highly crystalline ferrite powder 1 is small and mechanical strength cannot be ensured. On the other hand, if the amount of glass is more than 30 wt%, the binding force will be sufficiently strong, but the non-magnetic amount will increase, so the magnetic properties as a ferrite magnetic material will be significantly deteriorated, which is not preferable.
なお、用いる酸化コバルトは、CO2031Cooのよ
うにCoの価数が変化しても同様な結果が得られる。Note that similar results can be obtained even if the cobalt oxide used changes the valence of Co, such as CO2031Coo.
以下、具体的な実施例について説明する。Hereinafter, specific examples will be described.
(実施例1)
Fe203とNiOとZnOとCuOの配合モル比が4
8.5 :15.3 : 32.2 : 3.5よりな
る混合物と上記混合物に対しCO2O3を0.2重量部
添加した混合物を別々に1320℃6時間焼成し、平均
粒径7Q4mのNi−Zn−Cu系フェライト本焼成分
を2種類準備した。X線解析した結果では2種類とも軟
質フェライト特有の鋭いスピネル構造回折線が得られ、
結晶性の非常に高いフェライト磁性粉末であることを確
認した。(Example 1) The molar ratio of Fe203, NiO, ZnO, and CuO is 4
A mixture consisting of 8.5:15.3:32.2:3.5 and a mixture obtained by adding 0.2 parts by weight of CO2O3 to the above mixture were separately calcined at 1320°C for 6 hours to obtain Ni- Two types of Zn-Cu based ferrite final firing components were prepared. As a result of X-ray analysis, sharp spinel structure diffraction lines characteristic of soft ferrite were obtained for both types.
It was confirmed that the powder was a highly crystalline ferrite magnetic powder.
一方、Co成分を含まない無アルカリはうけい酸鉛系ガ
ラスにCO2O3を6.6重量部添加し、800℃に加
熱溶融させた後、急冷し、平均粒径1μmのCo成分を
含有したガラス粉末を準備した。X線解析した結果では
ガラス質特有の回折パターンが得られ、十分反応しガラ
ス化していることを確認した。On the other hand, alkali-free glass containing no Co component is made by adding 6.6 parts by weight of CO2O3 to lead silicate glass, heating and melting it at 800°C, and then rapidly cooling it. Prepared powder. As a result of X-ray analysis, a diffraction pattern unique to glass was obtained, confirming that sufficient reaction had occurred and vitrification had occurred.
Co2O3を添加していない上記高結晶性フェライト粉
末に対し、3.2重量部の上記のCo成分を含有したガ
ラス粉末をよく混合し、その混合物を造粒後、3ton
/cfflの圧力で内径7mm、外径12mm、厚さ3
mmのリング状成型品を作成した。The above-mentioned highly crystalline ferrite powder to which no Co2O3 was added was thoroughly mixed with 3.2 parts by weight of the above-mentioned glass powder containing the Co component, and after granulating the mixture, 3 tons
/cffl pressure, inner diameter 7mm, outer diameter 12mm, thickness 3
A ring-shaped molded product with a diameter of mm was created.
この成型品を電気炉内に配置し、1200℃で60分間
空気中で加熱処理し、ガラス結着型のリング状フェライ
トコアを得た(本発明品1)。This molded product was placed in an electric furnace and heat-treated in air at 1200° C. for 60 minutes to obtain a glass-bonded ring-shaped ferrite core (Product 1 of the present invention).
一方、Co2O3を添加していない上記高結晶性フェラ
イト粉末と、Co成分を含まないガラス粉末と、CO2
O3を100:3:0.2重量比でよく混合し、その混
合物から本発明品1と同一条件でガラス結着型のリング
状フェライトコアを得た(本発明品2)。On the other hand, the above-mentioned highly crystalline ferrite powder to which Co2O3 is not added, glass powder containing no Co component, and CO2
O3 was thoroughly mixed in a weight ratio of 100:3:0.2, and a glass-bonded ring-shaped ferrite core was obtained from the mixture under the same conditions as Inventive Product 1 (Inventive Product 2).
比較のため、CO2O3を添加した上記高結晶性フェラ
イト粉末にCo成分を含まない無アルカリはうけい酸鉛
系ガラスを3.0重量部添加した混合物から本発明品1
と同一条件でガラス結着型のリング状フェライトコアを
得た(比較界)。For comparison, inventive product 1 was prepared from a mixture in which 3.0 parts by weight of alkali-free lead silicate glass containing no Co component was added to the above-mentioned highly crystalline ferrite powder to which CO2O3 was added.
A glass-bonded ring-shaped ferrite core was obtained under the same conditions as (comparison world).
本発明品19本発明品2.比較品は組成的には全く同じ
である。また、これらの微細構造の走査型電子顕微鏡で
の観察では差異は認められない。Invention product 19 Invention product 2. Comparative products have exactly the same composition. Moreover, no difference is observed when observing these fine structures with a scanning electron microscope.
これらの材料特性を第1表に示す。The properties of these materials are shown in Table 1.
第1表 本発明品1と本発明品2はほぼ同じ特性を有している。Table 1 Product 1 of the present invention and Product 2 of the present invention have almost the same characteristics.
比較品に対しては損失(tanδ)は50%以下に低下
したにもかかわらず、透磁率は2倍近くあり、低損失高
透磁率の超低収縮率のフェライト磁性体が得られた。Although the loss (tan δ) was reduced to 50% or less compared to the comparative product, the magnetic permeability was nearly double, and a ferrite magnetic material with low loss, high magnetic permeability, and an ultra-low shrinkage rate was obtained.
(実施例2)
実施例1と同一条件で作成したリング状成型体を3個ず
つ(本発明品11本発明品2.比較品を1つずつ)電気
炉内に設置し、1200℃で加熱処理した。その際の温
度プロフィールは、昇温速度を170℃/1h、降温速
度を300℃/hとし、1200℃での保持時間を30
〜180分で行った。得られたフェライト磁性体の特性
を第2図に示す。本発明品1と本発明品2とでは特性に
ほとんど差は認められず、比較品に対しては、いずれの
保持時間においても、損失(t anδ)は小さく、透
磁率(μ)が大きくなっている。ただし、保持時間が長
くなるにしたがってその特性は比較品に近づいている。(Example 2) Three ring-shaped molded bodies created under the same conditions as Example 1 (one each of the present invention product, the present invention product 2, and the comparison product) were placed in an electric furnace and heated at 1200°C. Processed. The temperature profile at that time was a heating rate of 170°C/1h, a cooling rate of 300°C/h, and a holding time of 30°C at 1200°C.
It took ~180 minutes. The characteristics of the obtained ferrite magnetic material are shown in FIG. There is almost no difference in the properties between Invention Product 1 and Invention Product 2, and compared to the comparative product, the loss (tan δ) is small and the magnetic permeability (μ) is large at all holding times. ing. However, as the retention time increases, the characteristics become closer to those of the comparative product.
微細構造を走査電子顕微鏡観察したが、フェライト粒径
等の構造変化は認められず、このことは、本発明品は高
結晶性フェライト粉末の結着部分にCo成分が局在して
おり、保持時間が長くなるに従って、Co成分が高結晶
フェライト粉末内に拡散していき、組成的に比較品に近
づくことを意味すると考えられる。第2図から保持時間
を120分以下としたときに本発明の特徴が多く現われ
ている。The microstructure was observed using a scanning electron microscope, but no structural changes such as the ferrite particle size were observed. This is thought to mean that as time increases, the Co component diffuses into the highly crystalline ferrite powder, and the composition approaches the comparative product. From FIG. 2, many of the features of the present invention appear when the holding time is 120 minutes or less.
(実施例3)
FezO:+とNiOとZnOとCuOのモル比が48
.5 :15.3 : 32.2:3.5よりなる出発
混合物にCO2O3をO〜0.5重量部添加し、よく混
合した後、1320℃6時間焼成し、平均粒径70μm
のNi−Zn−Cu系軟質フェライト本焼成粉を準備し
た。X線解析した結果では、軟質フェライト特有の鋭い
スピネル構造回折線が得られ、結晶性の非常に高いフェ
ライト磁性粉であることを確認した。(Example 3) FezO:+, NiO, ZnO, and CuO molar ratio is 48
.. 0 to 0.5 parts by weight of CO2O3 was added to a starting mixture consisting of 5:15.3:32.2:3.5, mixed well, and then calcined at 1320°C for 6 hours to obtain an average particle size of 70 μm.
A Ni-Zn-Cu based soft ferrite main fired powder was prepared. As a result of X-ray analysis, sharp spinel structure diffraction lines characteristic of soft ferrite were obtained, confirming that the powder was a highly crystalline ferrite magnetic powder.
CO2O3を出発混合物に添加しなかった上記高結晶性
フェライト粉末に対し、粉末状CO2O3を0〜0.5
重量部添加し、さらに、その混合物に対してCo成分を
含まない無アルカリはうけい酸鉛系ガラス粉末を3重量
部添加した混合物から、実施例1と同一条件でリング状
フェライトコアを作成した(本発明品)。For the above highly crystalline ferrite powder where no CO2O3 was added to the starting mixture, powdered CO2O3 was added from 0 to 0.5.
A ring-shaped ferrite core was prepared under the same conditions as in Example 1 from a mixture in which 3 parts by weight of alkali-free lead silicate glass powder containing no Co component was added to the mixture. (Product of the present invention).
一方、出発混合物にCO2O3を添加した上記高結晶性
フェライト粉末に対し、Co成分を含有しない無アルカ
リはうけい酸鉛系ガラス粉末を3重量部添加した混合物
から、実施例1と同一条件でリング状フェライトコアを
作成した(比較品)。On the other hand, to the above-mentioned highly crystalline ferrite powder obtained by adding CO2O3 to the starting mixture, an alkali-free product containing no Co component was prepared by adding 3 parts by weight of lead silicate glass powder to the starting mixture. A ferrite core with a similar shape was created (comparison product).
それぞれの特性を第3図に示す。The characteristics of each are shown in Figure 3.
すべてのCO2O3の添加量で、本発明品は、低損失高
透磁率磁性体であることを示している。It is shown that the product of the present invention is a low-loss, high-permeability magnetic material at all amounts of CO2O3 added.
ここで、高結晶性フェライト粉末に混合した粉末状CO
2O3の一部もしくはすべてを無アルカリはうけい酸鉛
系ガラスのCo成分とした場合でも、同一の特性が得ら
れることは実施例1から明らかである。Here, powdered CO mixed with highly crystalline ferrite powder
It is clear from Example 1 that the same characteristics can be obtained even when part or all of 2O3 is replaced by the Co component of an alkali-free lead silicate glass.
なお、上記実施例において、透磁率の測定は、JIS規
格(C2561)に準じ、まず前述のリング状フェライ
トコアに絶縁テープを一層巻いた後、線径0.26mr
oφの絶縁銅線を全周にわたって一層巻いた試料を準備
した。次にこのI M Hzでの自己インダクタンスL
および500 k HzでのQをマクスウェルブリッジ
で測定磁界の強さが0.8(A/m)以下にて測定し、
透磁率はこの自己インダクタンスLから算出した。損失
(t anδ)はQの逆数とした。In the above example, the magnetic permeability was measured in accordance with the JIS standard (C2561). First, a layer of insulating tape was wrapped around the ring-shaped ferrite core, and then the wire diameter was 0.26 mr.
A sample was prepared in which an oφ insulated copper wire was wound in one layer over the entire circumference. Next, this self-inductance L at I MHz
and Q at 500 kHz was measured with a Maxwell bridge at a magnetic field strength of 0.8 (A/m) or less,
Magnetic permeability was calculated from this self-inductance L. The loss (tanδ) was the reciprocal of Q.
さらに収縮率は熱処理前のリング状成型品と熱処理後の
リング状フェライトコアの外径寸法をそれぞれ測定し、
熱処理前後による寸法収縮率を算出した。Furthermore, the shrinkage rate was measured by measuring the outer diameter of the ring-shaped molded product before heat treatment and the ring-shaped ferrite core after heat treatment.
The dimensional shrinkage rate before and after heat treatment was calculated.
発明の効果
以上のように、本発明によれば、高結晶性フェライト粉
末を用いたガラス結着型低収縮フェライト磁性体で、結
着部分にCo成分が局在した構造となることによって、
寸法精度がよく、低損失高透磁率の磁性材料となり、各
種磁気応用製品に使われる有用な電子部品、材料として
優れた効果を奏しうるちのである。Effects of the Invention As described above, according to the present invention, a glass-bonded low-shrinkage ferrite magnetic material using highly crystalline ferrite powder has a structure in which the Co component is localized in the bonded portion.
It is a magnetic material with good dimensional accuracy, low loss, and high magnetic permeability, making it highly effective as a useful electronic component and material used in various magnetic application products.
第1図は本発明のフェライト磁性体の一実施例を示す微
細構造の模式図、第2図は成型体の加熱処理における1
200℃での保持時間と損失(tanδ)、透磁率(μ
)の関係を示す特性図、第3図はCo o2@配合量
と損失(t anδ)。
透磁率(μ)の関係を示す特性図である。
1・・・・・・高結晶性フェライト粉末、2・・・・・
・ガラス材、3・・・・・・空隙、4・・・・・・ボア
。Fig. 1 is a schematic diagram of a microstructure showing an example of the ferrite magnetic material of the present invention, and Fig. 2 is a schematic diagram of a microstructure showing an example of the ferrite magnetic material of the present invention.
Holding time and loss (tanδ) at 200℃, magnetic permeability (μ
), and Figure 3 shows the relationship between Co o2 @ compounding amount and loss (tan δ). It is a characteristic diagram showing the relationship of magnetic permeability (μ). 1... Highly crystalline ferrite powder, 2...
・Glass material, 3... air gap, 4... bore.
Claims (3)
n系もしくはNi−Zn−Cu系の高結晶性フェライト
粉末をこの焼成されたフェライト粉末より低い軟化点を
持つガラス材で結着し、高結晶性フェライト粒内よりも
結着部分にCo成分をより多く有するフェライト磁性体
。(1) Ni-Z that has been sufficiently converted into ferrite by high-temperature firing
Highly crystalline n-based or Ni-Zn-Cu-based ferrite powder is bound with a glass material that has a lower softening point than the fired ferrite powder, and the Co component is added to the bound part rather than within the highly crystalline ferrite grains. Ferrite magnetic material with more.
n系もしくはNi−Zn−Cu系の高結晶性フェライト
粉末と、この焼成された高結晶性フェライト粉末より低
い軟化点を持ち少なくともCo成分を含有するガラス粉
末とを混合、造粒した混合物を加圧成型した後、上記高
結晶性フェライト粉末の焼成温度以下の加熱処理により
、この成型体中に混在するガラス粉末を軟化溶融させて
高結晶性フェライト粉末をガラス材で結着するフェライ
ト磁性体の製造方法。(2) Ni-Z that has been sufficiently converted into ferrite by high-temperature firing
A mixture of n-based or Ni-Zn-Cu-based highly crystalline ferrite powder and glass powder having a softening point lower than that of the fired high-crystalline ferrite powder and containing at least a Co component is added. After pressure molding, the glass powder mixed in the molded body is softened and melted by heat treatment at a temperature lower than the firing temperature of the high crystalline ferrite powder, and the high crystalline ferrite powder is bonded with the glass material. Production method.
晶性フェライト粉末と、ガラス粉末と粉末状の酸化コバ
ルトとの混合物の加熱処理温度をガラス粉末と酸化コバ
ルトが溶融反応する温度以上でかつ上記高結晶性フェラ
イト粉末の焼成温度以下とした請求項2記載のフェライ
ト磁性体の製造方法。(3) Heat treatment temperature of a mixture of Ni-Zn-based or Ni-Zn-Cu-based highly crystalline ferrite powder, glass powder, and powdered cobalt oxide at a temperature higher than the temperature at which the glass powder and cobalt oxide melt and react. 3. The method for producing a ferrite magnetic material according to claim 2, wherein the firing temperature is lower than or equal to the firing temperature of the highly crystalline ferrite powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1330509A JP2830241B2 (en) | 1989-12-20 | 1989-12-20 | Ferrite magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1330509A JP2830241B2 (en) | 1989-12-20 | 1989-12-20 | Ferrite magnetic material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03190204A true JPH03190204A (en) | 1991-08-20 |
JP2830241B2 JP2830241B2 (en) | 1998-12-02 |
Family
ID=18233427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1330509A Expired - Fee Related JP2830241B2 (en) | 1989-12-20 | 1989-12-20 | Ferrite magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2830241B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06120021A (en) * | 1992-10-01 | 1994-04-28 | Hitachi Ferrite Ltd | High-frequency power source ferrite core and manufacture thereof |
JP2007273725A (en) * | 2006-03-31 | 2007-10-18 | Murata Mfg Co Ltd | Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63158810A (en) * | 1986-12-23 | 1988-07-01 | Toshiba Corp | Dust core |
JPH01253209A (en) * | 1988-03-31 | 1989-10-09 | Matsushita Electric Ind Co Ltd | Magnetic material and manufacture thereof |
-
1989
- 1989-12-20 JP JP1330509A patent/JP2830241B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63158810A (en) * | 1986-12-23 | 1988-07-01 | Toshiba Corp | Dust core |
JPH01253209A (en) * | 1988-03-31 | 1989-10-09 | Matsushita Electric Ind Co Ltd | Magnetic material and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06120021A (en) * | 1992-10-01 | 1994-04-28 | Hitachi Ferrite Ltd | High-frequency power source ferrite core and manufacture thereof |
JP2007273725A (en) * | 2006-03-31 | 2007-10-18 | Murata Mfg Co Ltd | Magnetic substance, method of manufacturing magnetic substance, winding coil, and method of manufacturing winding coil |
JP4687536B2 (en) * | 2006-03-31 | 2011-05-25 | 株式会社村田製作所 | Magnetic body and method for manufacturing the same, and winding coil and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2830241B2 (en) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920004025B1 (en) | Ferrite magnets and making method thereof | |
US4540500A (en) | Low temperature sinterable oxide magnetic material | |
EP1101736A1 (en) | Mn-Zn ferrite and production thereof | |
JPS61256967A (en) | Manufacture of mn-zn ferrite | |
US3415751A (en) | Manganese-zinc ferrites | |
JPH03190204A (en) | Ferrite magnetic material and manufacture thereof | |
JP2762531B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JPH03233908A (en) | Ferrite magnetic substance and its manufacture | |
JP2762530B2 (en) | Manufacturing method of ferrite magnetic material | |
JP2830071B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP2762532B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JPH04101401A (en) | Ferrite magnetic body and production thereof | |
JP2760026B2 (en) | Ferrite magnetic body and method of manufacturing the same | |
JP2914554B2 (en) | Method for producing high permeability MnZn ferrite | |
JPH05299229A (en) | Ferrite magnetic body and manufacturing method thereof | |
JPH04237104A (en) | Ferrite magnetic material and manufacture thereof | |
JPH0374811A (en) | Ferrite magnetic material | |
JPH0433301A (en) | Formation of ferrite magnetic substance | |
JPH06151148A (en) | Ferrite magnetic body and manufature thereof | |
JPH02177511A (en) | Ferrite magnetic material and manufacture thereof | |
JP3391108B2 (en) | Magnetic body and method of manufacturing the same | |
KR100302070B1 (en) | Method for preparing soft magnetic ferrite | |
KR100302069B1 (en) | Method for preparing soft magnetic ferrite | |
JPH08259315A (en) | Production of ferrite sintered compact | |
JPH0917625A (en) | Oxide magnetic material and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |