JPH03190044A - Electron beam accelerator - Google Patents

Electron beam accelerator

Info

Publication number
JPH03190044A
JPH03190044A JP1328878A JP32887889A JPH03190044A JP H03190044 A JPH03190044 A JP H03190044A JP 1328878 A JP1328878 A JP 1328878A JP 32887889 A JP32887889 A JP 32887889A JP H03190044 A JPH03190044 A JP H03190044A
Authority
JP
Japan
Prior art keywords
electron beam
hot cathode
power source
accelerated
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1328878A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagai
一敏 長井
Tatsuya Nishimura
達也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP1328878A priority Critical patent/JPH03190044A/en
Priority to EP90124729A priority patent/EP0434018B1/en
Priority to US07/630,323 priority patent/US5227700A/en
Priority to DE69031161T priority patent/DE69031161T2/en
Publication of JPH03190044A publication Critical patent/JPH03190044A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Particle Accelerators (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To reduce an electron beam accelerator in size and reduce a manufacturing cost by electrically isolating an accelerating system of a hot cathode from an accelerating system of an electron beam, and adjusting heating temperature by means of feeding back an amount of accelerated electron beams. CONSTITUTION:A hot cathode 21 is made of metal oxide or lanthanum hexaboride. The hot cathode 21 generates thermions due to heat of a quarts rod 22 heated by an infrared ray lamp 23, and the thermions are accelerated to form an accelerated electron beam 6. The infrared ray lamp 23 is heated by a power source 24 completely isolated from a high voltage power source of a thermion accelerating system. A signal according to an incidence amount of the accelerated electrons 6 is output by an accelerated electron beam detecting electrode 13 which operates by a power source isolated from the accelerating power source, the signal is fed back to the power source 24 via an amplifier 25, and emission amount of the infrared ray lamp 23 is controlled so that the amount of generation of the accelerated electrons 6 is constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は真空容器内で熱陰極から放出される電子をこの
容器外に配置した高電圧源に接続した容器内の陽極によ
り静電的に加速する電子線加速器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is a vacuum container in which electrons emitted from a hot cathode are electrostatically collected by an anode in the container connected to a high voltage source placed outside the container. Regarding accelerating electron beam accelerator.

(従来の技術) このような電子線加速器は、グラフト重合、排ガス処理
、材料分析などに広く利用されており、この構成として
は、従来、例えば第4図に示す装置がある。
(Prior Art) Such an electron beam accelerator is widely used for graft polymerization, exhaust gas treatment, material analysis, etc., and a conventional device with this configuration is shown in FIG. 4, for example.

真空容器12内には、熱陰極1、これを内包する配置の
円錐台形状のバイアス電極2、電子通過口である中心口
を持つドーナツ形状の引き出し陽極3と静電レンズ群4
、及び加速電子線検出電極13が、この順に中心軸上に
並んで収容されている。熱陰極lと引き出し陽極3.静
電レンズ群4との間には直流高電圧源8が接続され、引
き出し陽極3.静電レンズ群4の各電極はデバイダ−抵
抗7によって分割された電源8の電圧が印加されている
。熱陰極1は可変直流電源9よって加熱され、熱陰極1
直前に配置されたバイアス電極2は直流電源10によっ
て熱陰極1よりも負の電位に保たれる。そして、これら
の直流電源9及び10は絶縁トランス11から電力の供
給を受けて駆動している。
Inside the vacuum container 12 are a hot cathode 1, a truncated cone-shaped bias electrode 2 arranged to enclose the hot cathode 1, a donut-shaped drawer anode 3 having a center opening that is an electron passage hole, and an electrostatic lens group 4.
, and the accelerated electron beam detection electrode 13 are housed in this order in line on the central axis. Hot cathode l and drawer anode 3. A DC high voltage source 8 is connected between the electrostatic lens group 4 and the lead-out anode 3. A voltage from a power source 8 divided by a divider resistor 7 is applied to each electrode of the electrostatic lens group 4 . The hot cathode 1 is heated by a variable DC power supply 9, and the hot cathode 1
The bias electrode 2 placed immediately before is kept at a more negative potential than the hot cathode 1 by the DC power supply 10 . These DC power supplies 9 and 10 are driven by receiving power from an isolation transformer 11.

この電子線加速器が駆動すると、熱陰極1は赤熱し、引
き出し陽極3によってこの熱陰極1から発生した熱電子
5が引き出される。そして、バイアス電極2には電子通
過口が設けられており、上述のような電位であるので、
ここを通過する熱電子5を結果的に絞り込むように作用
し、引き出し陽極3の電子通過口の中央部を通過する。
When the electron beam accelerator is driven, the hot cathode 1 becomes red hot, and the hot electrons 5 generated from the hot cathode 1 are extracted by the extraction anode 3. Since the bias electrode 2 is provided with an electron passage hole and has the potential as described above,
It acts to narrow down the thermoelectrons 5 passing through this, and passes through the center of the electron passage opening of the extraction anode 3.

更に加速電極を兼ねる静電レンズ群4の電子通過口に進
入し、収束・加速を繰り返して加速電子線6となって放
出される。
Furthermore, the electron beam enters the electron passage port of the electrostatic lens group 4 which also serves as an accelerating electrode, and is repeatedly converged and accelerated to become an accelerated electron beam 6 and emitted.

この時、バイアス電極2の電位又は熱電子5の引き出し
速度によっては適正な絞り状態からはずれ、熱電子が引
き出し陽極3や静電レンズ群4に衝突して加速電子線6
を効率的に得られないことがある。このため前述の加速
電子線検出電極13が設けられており、この検出電極1
3に入射した、電子線量に比例した電流が、DC/AC
コンバーター14によって交流信号に変換され、高電位
にある直流電源9に対応させるために信号伝達用絶縁ト
ランス15を経て、AC/DCコンバーター16で再び
直流信号に変換され、直流電源9の出力にフィードバッ
クされる。このフィードバックによって直流電源9がネ
ガティブに制御され、加速電子線6の線量が一定となる
安定した熱陰極1の加熱温度とすることができる。
At this time, depending on the potential of the bias electrode 2 or the extraction speed of the thermionic electrons 5, the aperture deviates from the appropriate aperture state, and the thermionic electrons collide with the extraction anode 3 and the electrostatic lens group 4, causing the accelerated electron beam 6
may not be obtained efficiently. For this reason, the aforementioned accelerated electron beam detection electrode 13 is provided, and this detection electrode 1
The current proportional to the electron dose incident on 3 is DC/AC
The signal is converted into an AC signal by the converter 14, passes through a signal transmission isolation transformer 15 in order to correspond to the DC power supply 9 at a high potential, is converted back to a DC signal by the AC/DC converter 16, and is fed back to the output of the DC power supply 9. be done. By this feedback, the DC power supply 9 is negatively controlled, and the heating temperature of the hot cathode 1 can be stabilized so that the dose of the accelerated electron beam 6 is constant.

(発明が解決しようとする課題) ところで、このような電子線加速器は通常、高い電圧を
使用して高速の電子線を得ている。例えば、I MeV
の電子線を得るためにIMVの直流電圧が必要となる。
(Problems to be Solved by the Invention) Incidentally, such an electron beam accelerator usually uses a high voltage to obtain a high-speed electron beam. For example, IMeV
In order to obtain an electron beam of , a DC voltage of IMV is required.

一方、加速電子線検出電極13は接地電位にあって直流
電源9の電位との差は非常に大きくなり、この電圧に耐
えるために絶縁トランス11.15は大型となり、且つ
高価なものとなってしまう。したがって、このような装
置においてはスペース的且つコスト的な問題を有してい
た。
On the other hand, the accelerated electron beam detection electrode 13 is at ground potential, and the difference in potential from the DC power supply 9 becomes very large.In order to withstand this voltage, the isolation transformer 11.15 becomes large and expensive. Put it away. Therefore, such a device has problems in terms of space and cost.

本発明の目的は、上記問題を解決することであり、コン
パクト且つ安価で、安定して高エネルギーの電子線を発
生することのできる電子線加速器を提供することにある
An object of the present invention is to solve the above problems, and to provide an electron beam accelerator that is compact, inexpensive, and capable of stably generating a high-energy electron beam.

(課題を解決するための手段) 本発明は、真空容器内で熱陰極から放出される電子を高
電圧源で接続した陽極により静電的に加速する電子線加
速器であって、前記熱陰極が酸化物又は6ほう化ランタ
ンより成り、一端が該陰極近傍に位置し且つ他端が真空
容器外へ貫通している赤外線導光部材と、真空容器外の
赤外線導光部材端部に近接配置され且つ該赤外線導光部
材を介する赤外線照射により前記熱陰極を加熱する赤外
線ランプと、赤外線ランプ用電源と、電子線照射口近傍
に配置される電子線検出部材とを有し、前記赤外線ラン
プと前記赤外線ランプ用電源と前記電子線検出部材とに
より赤外線照射量を調整し且つ前記高電圧源から電気的
に独立した加熱系となるフィードバック回路を成す構成
により上記目的を達成することができる。
(Means for Solving the Problems) The present invention is an electron beam accelerator in which electrons emitted from a hot cathode in a vacuum container are electrostatically accelerated by an anode connected to a high voltage source, wherein the hot cathode is an infrared light guide member made of lanthanum oxide or hexaboride, one end of which is located near the cathode and the other end of which penetrates outside the vacuum vessel; and an infrared lamp that heats the hot cathode by infrared irradiation via the infrared light guide member, an infrared lamp power source, and an electron beam detection member disposed near the electron beam irradiation port, the infrared lamp and the The above object can be achieved by a configuration in which the infrared lamp power source and the electron beam detection member form a feedback circuit that adjusts the amount of infrared irradiation and serves as a heating system electrically independent from the high voltage source.

すなわち、前記赤外線導光部材を介して赤外線ランプか
ら赤外線を照射し、前記熱陰極を加熱している。従って
、これら赤外線照射系とこの熱陰極に接続している高電
圧源とは電気的に完全に分離しており、前記電子線検出
部材からのフィードバック回路を含む赤外線ランプまで
の赤外線照射系を特徴とする請が無(なる。
That is, the hot cathode is heated by irradiating infrared rays from an infrared lamp through the infrared light guiding member. Therefore, these infrared irradiation systems and the high voltage source connected to this hot cathode are electrically completely separated, and the infrared irradiation system includes a feedback circuit from the electron beam detection member to the infrared lamp. There is no request to do so.

これにより、前記電子線検出部材からの信号を増幅する
程度で前記赤外線ランプ用電源にフィードパツクするこ
とができ、高電位部と低電位部との間の信号の受渡しの
ために、従来装置で必要であった絶縁トランス、及びフ
ィードバック用コンバーターが不要となり、装置全体を
小型化することができる。
As a result, the signal from the electron beam detection member can be fed back to the power source for the infrared lamp to the extent that the signal is amplified, and the conventional device can transfer the signal between the high potential part and the low potential part. The required isolation transformer and feedback converter are no longer necessary, and the entire device can be made smaller.

ここで、前記赤外線導光部材としては石英ロッドなどの
赤外線を透過する材料が使用できる。
Here, as the infrared light guiding member, a material that transmits infrared rays, such as a quartz rod, can be used.

また、上記電子線加速器において、前記赤外線ランプ及
びその電源に代えてレーザー照射手段を備え、前記赤外
線導光部材に代えて透明で密閉されたレーザー照射窓を
備える構成としても同様の効果を得ることができる。
Further, in the electron beam accelerator, the same effect can be obtained by providing a laser irradiation means in place of the infrared lamp and its power source, and a transparent and sealed laser irradiation window in place of the infrared light guiding member. I can do it.

なお、前記熱陰極と前記陽極との間で電子通過口を備え
て熱陰極近傍に配置されて電子線の絞りの働きをするバ
イアス電極が、電気的に絶縁状態である、最も単純な構
成とすることができる。このバイアス電極は初めは中性
状態であるが、熱陰極からの電子線の入射により負に帯
電する。従ってその後に引き出される電子線を反発し、
絞りの働きを行うことができる。
The simplest configuration is one in which a bias electrode, which is provided with an electron passage hole between the hot cathode and the anode and is placed near the hot cathode and acts as a throttle for the electron beam, is electrically insulated. can do. This bias electrode is initially in a neutral state, but becomes negatively charged by the incidence of an electron beam from the hot cathode. Therefore, it repels the electron beam that is subsequently drawn out,
It can act as an aperture.

(実施例) 以上、添付図面に示した本発明の実施例について説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention shown in the accompanying drawings will be described.

第1図は本発明の電子線加速器の一実施例を示す概略図
である。図中の番号2〜8.12.13で示した要素は
従来例を示した第4図内の対応する要素と同一の機能及
び動作を有する。
FIG. 1 is a schematic diagram showing an embodiment of the electron beam accelerator of the present invention. Elements designated by numbers 2 to 8, 12, and 13 in the figure have the same functions and operations as the corresponding elements in FIG. 4, which shows a conventional example.

真空容器12内において、熱陰極21はBr、 Sr。In the vacuum container 12, the hot cathode 21 is made of Br or Sr.

Ca等の酸化物、又はLa Be(6ほう化ランタン)
から成り、この熱陰極21の電子線照射側近傍にバイア
ス電極2が電子線照射口をその中央に空けて配置されて
いる。更に、その前方にド、−ナツ形状である引き出し
電極3、静電レンズ群4が電子線通路である中心軸に並
んで配置されている。引き出し電極3及び静電レンズ群
4は直流高圧電源8に直列に接続された各デバイダ−抵
抗群7の間に配置され、分割された電圧が印加されるこ
とになる。そして、このデバイダ−抵抗群7と直流高圧
電源8の負極側との間に抵抗26が配置され、この抵抗
26と直流高圧電源8の負極側との間にバイアス電極2
が接続され、デバイダ−抵抗群7と抵抗26との間に熱
陰極21が接続される。
Oxides such as Ca, or La Be (lanthanum hexaboride)
A bias electrode 2 is disposed near the electron beam irradiation side of the hot cathode 21 with an electron beam irradiation port in the center thereof. Furthermore, in front of the electrode, an extraction electrode 3 having a dot shape and an electrostatic lens group 4 are arranged in line with the central axis, which is the electron beam path. The extraction electrode 3 and the electrostatic lens group 4 are arranged between the divider resistor groups 7 connected in series to the DC high voltage power source 8, and the divided voltages are applied thereto. A resistor 26 is arranged between this divider resistor group 7 and the negative pole side of the DC high voltage power supply 8, and a bias electrode 26 is arranged between this resistor 26 and the negative pole side of the DC high voltage power supply 8.
are connected, and a hot cathode 21 is connected between the divider resistor group 7 and the resistor 26.

熱陰極21に極近接した端部を有する赤外線導光部材で
ある石英ロッド22が真空容器12外に密閉されて突き
出ている。この真空容器12外に突き出た側の端部に面
して赤外線ランプ23が配置されている。赤外線ランプ
23には赤外線ランプ用制御電源24が接続され、この
制御電源24は真空容器12内に配置された加速電子線
検出電極13からのフィードバックを受ける。
A quartz rod 22, which is an infrared light guiding member and has an end close to the hot cathode 21, protrudes from the vacuum container 12 in a sealed manner. An infrared lamp 23 is arranged facing the end of the vacuum container 12 that projects outside. An infrared lamp control power source 24 is connected to the infrared lamp 23, and this control power source 24 receives feedback from the accelerated electron beam detection electrode 13 disposed within the vacuum vessel 12.

この電子線加速器は以下のように動作する。This electron beam accelerator operates as follows.

赤外線ランプ用制御電源24により点灯される赤外線ラ
ンプ23からの赤外線は、石英ロッド22内を全反射し
つつ真空容器12内の熱陰極21に照射される。これに
より熱陰極21は赤熱される。熱陰極21の構成物質で
あるBr、 Sr、 Ca等の酸化物、又はLa B6
(6ほう化ランタン)は700〜1500℃程度に熱す
ると大量の熱電子5を発生する。この状態で各電極には
直流高圧電源8より電圧が印加されているので、熱電子
5はまず引き出し電極3方向に移動する。この時バイア
ス電極2は抵抗26によって熱陰極21よりも低い電位
となっているので、熱電子5はこの電位に反発し、結果
として絞られ、バイアス電極2に開いている電子線照射
口の中央を広がることなく通過し、静電レンズ群4方向
に移動する。そして、加速電極を兼ねる静電レンズ群4
によって加速電子線6が発生する。
The infrared rays from the infrared lamp 23 turned on by the infrared lamp control power supply 24 are totally reflected within the quartz rod 22 and irradiated onto the hot cathode 21 within the vacuum vessel 12 . As a result, the hot cathode 21 becomes red hot. Oxides of Br, Sr, Ca, etc., which are constituent materials of the hot cathode 21, or LaB6
(Lanthanum hexaboride) generates a large amount of thermoelectrons 5 when heated to about 700 to 1500°C. In this state, voltage is applied to each electrode from the DC high voltage power supply 8, so the thermoelectrons 5 first move in the direction of the extraction electrode 3. At this time, the bias electrode 2 has a lower potential than the hot cathode 21 due to the resistor 26, so the thermionic electrons 5 are repelled by this potential and are narrowed down to the center of the electron beam irradiation opening opened in the bias electrode 2. without spreading, and moves in the direction of the electrostatic lens group 4. And an electrostatic lens group 4 that also serves as an accelerating electrode.
Accordingly, an accelerated electron beam 6 is generated.

真空容器12内の加速電子線検出電極13は加速電子線
6の通路上に配置され、加速電子線6の入射量に応じた
信号を発生することになる。この加速電子線検出電極1
3からの信号を増幅アンプ25で増幅した後、赤外線ラ
ンプ用制御電源24にフィードバックする。そして、こ
の信号に対応して、加速電子線6の発生量が一定となる
ように熱陰極21の温度を調整すべ(、赤外線ランプ2
3の発光量が制御される。
The accelerated electron beam detection electrode 13 in the vacuum container 12 is placed on the path of the accelerated electron beam 6 and generates a signal according to the amount of the accelerated electron beam 6 incident thereon. This accelerated electron beam detection electrode 1
After the signal from 3 is amplified by the amplifier 25, it is fed back to the infrared lamp control power source 24. Then, in response to this signal, the temperature of the hot cathode 21 should be adjusted (and the infrared lamp 21 should be adjusted so that the amount of accelerated electron beam 6 generated is constant).
The amount of light emitted by No. 3 is controlled.

このように上記電子線加速器においては、熱陰極21と
赤外線ランプ23との間は電気的に完全に分離しており
、電子線加速部の電位と熱陰極加熱部の電位とを、絶縁
トランスなど使用せずに全く別の電位系とし、簡素な構
成のフィードバック回路を使用することができる。
In this way, in the above electron beam accelerator, the hot cathode 21 and the infrared lamp 23 are completely electrically separated, and the potential of the electron beam accelerating section and the potential of the hot cathode heating section are controlled by an insulating transformer or the like. Instead, a completely different potential system can be used, and a feedback circuit with a simple configuration can be used.

なお、前述した赤外線導光部材である石英ロッド22以
外にも赤外線を透過する材料であればよく、更に、熱陰
極21に赤外線を集中できる形状(例えばレンズ)であ
れば良い。
In addition to the quartz rod 22 which is the infrared light guiding member described above, any material may be used as long as it transmits infrared rays, and any shape (such as a lens) that can concentrate infrared rays on the hot cathode 21 may be used.

第2図は、本発明の他の実施例を示す概略図である。FIG. 2 is a schematic diagram showing another embodiment of the invention.

この装置は第1図の電子線加速器の構成要素のうち石英
ロッド22に代えてレーザー入射窓31を配置し、赤外
線ランプ23に代えて大出力レーザーへラド32を配置
し、赤外線ランプ用制御電源24に代えてレーザー用電
源33を配置している。そして、この装置は赤外線に代
えてレーザー光線を用いて熱陰極21を加熱するもので
あり、第1図の電子線加速器と同様の作用を行う。
This device has a laser entrance window 31 in place of the quartz rod 22 among the components of the electron beam accelerator shown in FIG. 24 is replaced by a laser power source 33. This device heats the hot cathode 21 using a laser beam instead of infrared rays, and performs the same function as the electron beam accelerator shown in FIG.

第3図は本発明の更に別の実施例を示す概略図である。FIG. 3 is a schematic diagram showing yet another embodiment of the invention.

この装置は第1図の電子線加速器の構成要素のうちバイ
アス電極2を他の構成要素から電気的に絶縁した構成で
あり、抵抗26を廃止している。
This device has a configuration in which the bias electrode 2 of the components of the electron beam accelerator shown in FIG. 1 is electrically insulated from other components, and the resistor 26 is eliminated.

このようなバイアス電極2では、電子線加速器の始動時
に、熱陰極21からの電子線5の一部が入射してくる。
A portion of the electron beam 5 from the hot cathode 21 is incident on such a bias electrode 2 when the electron beam accelerator is started.

そして他の構成要素から絶縁状態であるので、電荷が滞
留して負に帯電する。この帯電がある程度進むと、後続
の電子線50入射は抑制され、電子線通過口では出射の
広がりを規制する絞りの作用が発生する。このように、
より簡素化した電子線加速器を提供することができる。
Since it is insulated from other components, charge accumulates and it becomes negatively charged. When this charging progresses to a certain extent, subsequent incidence of the electron beam 50 is suppressed, and a diaphragm action is generated at the electron beam passage port to restrict the spread of the emission. in this way,
A more simplified electron beam accelerator can be provided.

(発明の効果) 以上述べたように、本発明は熱陰極の加熱を非接触の光
学的構成(赤外線ランプやレーデ−光線)によって行う
ことにより、熱陰極の加熱系と熱陰極から発生する電子
線の加速系とを電気的に完全に分離することができ、電
子線検出部材からのフィードバック回路部では信号増幅
アンプを使用する程度の非常に簡素な構成として、安定
して高エネルギーの電子線を発生し、且つ装置全体を小
型化することができる。
(Effects of the Invention) As described above, the present invention heats the hot cathode using a non-contact optical configuration (infrared lamp or radar beam), thereby generating electrons generated from the hot cathode heating system and the hot cathode. The beam acceleration system can be completely separated electrically, and the feedback circuit from the electron beam detection component has a very simple configuration that uses a signal amplification amplifier. can be generated, and the entire device can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子線加速器の一実施例を示す概略図
、 第2図は本発明の他の実施例を示す概略図、第3図は本
発明の更に別の実施例を示す概略図、第4図は従来の電
子線加速器を示す概略図である。 4・・・赤外線ランプ制御電源 5・・・増幅アンプ   26・・・抵抗1・・・レー
ザー入射窓 32・・・レーザーへラド3・・・レーザ
ー電源 (図中符号) 1.21・・・熱陰極   2・・・バイアス電極3・
・・引き出し電極   4・・・静電レンズ群5・・・
熱電子      6・・・加速電子線7・・・デバイ
ダ−抵抗群 8・・・直流高圧電源9・・・熱陰極加熱
電源 10・・・バイアス電極用電源 11.15・・・絶縁トランス 12・・・真空容器I
3・・・加速電子線検出電極 14・ DC/AC,+7バーター 16−AC/DCコン5−p−
Fig. 1 is a schematic diagram showing one embodiment of the electron beam accelerator of the present invention, Fig. 2 is a schematic diagram showing another embodiment of the invention, and Fig. 3 is a schematic diagram showing yet another embodiment of the invention. FIG. 4 is a schematic diagram showing a conventional electron beam accelerator. 4...Infrared lamp control power supply 5...Amplification amplifier 26...Resistor 1...Laser entrance window 32...Laser head 3...Laser power supply (symbol in the figure) 1.21... Hot cathode 2...bias electrode 3...
...Extraction electrode 4...Electrostatic lens group 5...
Thermionic electron 6... Accelerated electron beam 7... Divider resistor group 8... DC high voltage power supply 9... Hot cathode heating power supply 10... Bias electrode power supply 11.15... Isolation transformer 12. ...Vacuum container I
3... Accelerated electron beam detection electrode 14, DC/AC, +7 converter 16-AC/DC converter 5-p-

Claims (1)

【特許請求の範囲】 1)真空容器内で熱陰極から放出される電子を高電圧源
に接続した陽極により静電的に加速する電子線加速器で
あって、前記熱陰極が金属酸化物又は6ほう化ランタン
より成り、一端が該陰極近傍に位置し且つ他端が真空容
器外へ貫通している赤外線導光部材と、真空容器外の赤
外線導光部材端部に近接配置され且つ該赤外線導光部材
を介する赤外線照射により前記熱陰極を加熱する赤外線
ランプと、赤外線ランプ用電源と、電子線照射口近傍に
配置される電子線検出部材とを有し、前記赤外線ランプ
と前記赤外線ランプ用電源と前記電子線検出部材とが前
記高電圧源から電気的に独立で赤外線照射量を調整する
フィードバック回路を成すことを特徴とする電子線加速
器。 2)請求項(1)の電子線加速器において、前記赤外線
ランプ及びその電源に代えてレーザー照射手段を備え、
前記赤外線導光部材に代えて透明で密閉されたレーザー
照射窓を備えることを特徴とする電子線加速器。 3)請求項(1)又は(2)の電子線加速器において、
前記熱陰極と前記陽極との間で電子通過口を持って熱陰
極近傍に配置され、電気的に絶縁状態で、熱陰極からの
電子線の入射により負に帯電して電子通過口を電子線の
絞りとするバイアス電極を有することを特徴とする電子
線加速器。
[Scope of Claims] 1) An electron beam accelerator in which electrons emitted from a hot cathode are electrostatically accelerated by an anode connected to a high voltage source in a vacuum container, wherein the hot cathode is made of metal oxide or an infrared light guide member made of lanthanum boride, one end of which is located near the cathode and the other end of which penetrates outside the vacuum vessel; An infrared lamp that heats the hot cathode by infrared irradiation via an optical member, an infrared lamp power source, and an electron beam detection member disposed near an electron beam irradiation port, the infrared lamp and the infrared lamp power source and the electron beam detection member form a feedback circuit that is electrically independent from the high voltage source and adjusts the amount of infrared irradiation. 2) The electron beam accelerator according to claim (1), comprising a laser irradiation means in place of the infrared lamp and its power source,
An electron beam accelerator characterized by comprising a transparent and sealed laser irradiation window in place of the infrared light guiding member. 3) In the electron beam accelerator of claim (1) or (2),
The hot cathode and the anode are arranged near the hot cathode with an electron passage hole between them, and are electrically insulated and are negatively charged by the incidence of an electron beam from the hot cathode. An electron beam accelerator characterized by having a bias electrode having an aperture of.
JP1328878A 1989-12-19 1989-12-19 Electron beam accelerator Pending JPH03190044A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1328878A JPH03190044A (en) 1989-12-19 1989-12-19 Electron beam accelerator
EP90124729A EP0434018B1 (en) 1989-12-19 1990-12-19 Electron accelerator
US07/630,323 US5227700A (en) 1989-12-19 1990-12-19 Electron accelerator
DE69031161T DE69031161T2 (en) 1989-12-19 1990-12-19 Electron accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1328878A JPH03190044A (en) 1989-12-19 1989-12-19 Electron beam accelerator

Publications (1)

Publication Number Publication Date
JPH03190044A true JPH03190044A (en) 1991-08-20

Family

ID=18215107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1328878A Pending JPH03190044A (en) 1989-12-19 1989-12-19 Electron beam accelerator

Country Status (4)

Country Link
US (1) US5227700A (en)
EP (1) EP0434018B1 (en)
JP (1) JPH03190044A (en)
DE (1) DE69031161T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003418A (en) * 2005-06-24 2007-01-11 Institute Of Physical & Chemical Research Charged particle beam deflecting/converging method and charged particle beam deflecting/converging equipment

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003281513A1 (en) 2002-07-22 2004-02-09 Mba Polymers, Inc. Mediating electrostatic separations
US6847164B2 (en) 2002-12-10 2005-01-25 Applied Matrials, Inc. Current-stabilizing illumination of photocathode electron beam source
US6919570B2 (en) * 2002-12-19 2005-07-19 Advanced Electron Beams, Inc. Electron beam sensor
WO2004075171A2 (en) * 2003-02-14 2004-09-02 Oakley William S Data recording using carbon nanotube electron sources
US20060187802A1 (en) * 2003-07-03 2006-08-24 Oakley William S Array of cnt heads
WO2005067585A2 (en) * 2003-07-03 2005-07-28 William Oakley Adaptive read and read-after-write for carbon nanotube recorders
US7250618B2 (en) * 2005-02-02 2007-07-31 Nikon Corporation Radiantly heated cathode for an electron gun and heating assembly
US11417492B2 (en) * 2019-09-26 2022-08-16 Kla Corporation Light modulated electron source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223247A (en) * 1982-06-22 1983-12-24 Toshiba Corp Setting method for brightness of electron gun
JPS5960952A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Electron gun for electron-beam exposure device
JPS61214341A (en) * 1985-03-19 1986-09-24 Agency Of Ind Science & Technol Charged beam focusing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388280A (en) * 1966-04-19 1968-06-11 Victor E. De Lucia Laser energized hot cathode type of electron discharge device
NL7213355A (en) * 1972-10-03 1974-04-05
JPS51127671A (en) * 1975-04-30 1976-11-06 Hitachi Ltd Power supply for electron gun
US4167690A (en) * 1977-05-02 1979-09-11 Rca Corporation Cathode and method of operating the same
JPS6014462B2 (en) * 1979-06-26 1985-04-13 日本電子株式会社 electron beam device
US4705992A (en) * 1985-11-21 1987-11-10 Conrac Corporation System for stabilizing cathode emissions with an in-line gun cathode ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223247A (en) * 1982-06-22 1983-12-24 Toshiba Corp Setting method for brightness of electron gun
JPS5960952A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Electron gun for electron-beam exposure device
JPS61214341A (en) * 1985-03-19 1986-09-24 Agency Of Ind Science & Technol Charged beam focusing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003418A (en) * 2005-06-24 2007-01-11 Institute Of Physical & Chemical Research Charged particle beam deflecting/converging method and charged particle beam deflecting/converging equipment
JP4713242B2 (en) * 2005-06-24 2011-06-29 独立行政法人理化学研究所 Charged particle beam deflection / focusing method and charged particle beam deflection / focusing device

Also Published As

Publication number Publication date
EP0434018A3 (en) 1992-01-02
US5227700A (en) 1993-07-13
EP0434018B1 (en) 1997-07-30
DE69031161D1 (en) 1997-09-04
DE69031161T2 (en) 1998-03-05
EP0434018A2 (en) 1991-06-26

Similar Documents

Publication Publication Date Title
JPH03190044A (en) Electron beam accelerator
US4703228A (en) Apparatus and method for providing a modulated electron beam
US3581093A (en) Dc operated positive ion accelerator and neutron generator having an externally available ground potential target
JPS63503022A (en) plasma anode electron gun
US3700945A (en) High power pulsed electron beam
CA1136764A (en) Trirotron: triode rotating beam radio-frequency amplifier
US2709229A (en) Radioactive monokinetic charged particle generators
US5266809A (en) Imaging electron-optical apparatus
US3310678A (en) Method of producing electron multiplication utilizing an amplification cycle
US2414881A (en) Television transmitting tube with a concave secondary electron emitter
US2995676A (en) Electron gun
CN107026064B (en) A kind of miniaturization on-radiation electron source that emission current is controllable
JP3186812B2 (en) Secondary electron multiplier
US5164582A (en) Method for operating an image intensifier tube by generating high frequency alternating electric field between cathode and channel plate thereof
US5535254A (en) X-ray tube with self-biasing deck
JP2778227B2 (en) Ion source
CN207269014U (en) A kind of controllable miniaturization on-radiation electron source of emission current
US20230065039A1 (en) Particle beam column
JP2576303B2 (en) Radiation generator
JP3105931B2 (en) Electron beam irradiation apparatus and electron beam irradiation method
JPH01221848A (en) Charged particle ray device
JPH02288143A (en) Low energy electron generating device
Bondarenko et al. High intensity alkali ion sources for plasma diagnostics
CN112601339A (en) Modulated pulsed X-ray emission system
JPH04115453A (en) Charged particle beam apparatus