JPS61214341A - Charged beam focusing device - Google Patents

Charged beam focusing device

Info

Publication number
JPS61214341A
JPS61214341A JP5505185A JP5505185A JPS61214341A JP S61214341 A JPS61214341 A JP S61214341A JP 5505185 A JP5505185 A JP 5505185A JP 5505185 A JP5505185 A JP 5505185A JP S61214341 A JPS61214341 A JP S61214341A
Authority
JP
Japan
Prior art keywords
charged beam
charged
hole
shape
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5505185A
Other languages
Japanese (ja)
Other versions
JPH0361980B2 (en
Inventor
Shingo Ichimura
信吾 一村
Hajime Shimizu
肇 清水
Hiroshi Murakami
寛 村上
Masatoshi Ono
雅敏 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5505185A priority Critical patent/JPS61214341A/en
Publication of JPS61214341A publication Critical patent/JPS61214341A/en
Publication of JPH0361980B2 publication Critical patent/JPH0361980B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure of a charged beam focusing device by focusing the charged beam by complete charging of an insulating member which has a hole for passing the beam and is located in the path of the beam. CONSTITUTION:A charged beam focusing device for lithography or a similar method is assembled by locating an insulating member 7, which has a central hole extending along the beam axis, in the path of a charged beam 1 and fixing the flange 7a of the insulating member 7 to the outer wall 4 of a vacuum device by means of an adhesive or similar material. A blocking electric field 8 produced by completely charging the insulating member 7 is used to focus the beam 1 toward the center of the member 7 thereby producing a charged beam 1c with high density. The beam 1 can be focused into an arbitrary shape by properly selecting the shape of the cross section of the hole of the member 7. Accordingly, it is possible to produce a charged beam focusing device with simple structure which is free from any trouble such as discharge.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、半導体素子製造の基本工程であるリングラフ
ィやスパッタリングにおいて、或いは実用材料の評価手
段として近年とみに利用されている物理分析装置におい
て、重要な構成要素としての位置を占めるイオン・電子
ビーム(以下、荷電ビームと総称する)の集束装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is applicable to physical analysis apparatuses that have recently been used in phosphorography and sputtering, which are the basic steps of semiconductor device manufacturing, or as a means of evaluating practical materials. The present invention relates to a focusing device for ion/electron beams (hereinafter collectively referred to as charged beams), which occupies a position as an important component.

[発明の概要] 本発明は、リングラフィやスパッタリング等に利用され
る荷電ビーム(イオン・電子ビーム)の集束装置に関し
、絶縁性物質のチャージアップ現象を荷電ビームの集束
作用に利用することにより、簡単な部品構成で高圧電源
の必要なく、木質的に放電等のトラブルが生じずに指定
のビーム形状を得られるようにしたものである。
[Summary of the Invention] The present invention relates to a focusing device for charged beams (ion/electron beams) used in phosphorography, sputtering, etc., by utilizing the charge-up phenomenon of an insulating material for focusing the charged beam. With a simple component configuration, it is possible to obtain a specified beam shape without the need for a high-voltage power supply and without causing problems such as wood discharge.

[従来の技術] 半導体素子の高密度化、或いは製造物質の高純度化の流
れの中で、ビーム露光やエツチングなどの反応を誘起す
るプローブとしても、また高分解能SIMS、SEM、
Auger−SEX装置などの物理分析用プローブとし
て−も、荷電ビームの電波密度を希望する形状に高める
ことへの要請は、近年ますます強くなっている。
[Prior Art] With the trend toward higher density of semiconductor devices and higher purity of manufacturing materials, it is also used as a probe for inducing reactions such as beam exposure and etching, as well as for high-resolution SIMS, SEM,
In recent years, there has been an increasing demand for increasing the radio wave density of a charged beam into a desired shape even as a probe for physical analysis such as an Auger-SEX device.

この要請を実現するために、これまで試みられできた荷
電ビーム集束装置は、大別すると、(a)複数の金属製
電極を荷電ビームの進路中に配置し、これらの電極に独
立に電圧を印加して集束電界を作る静電レンズ型のもの
、および(b)荷電ビームの軌道の回りに電磁石を配置
して磁界の集束作用を利用する磁気レンズ型のもの、 とに分類できる。
In order to realize this request, the charged beam focusing devices that have been tried so far can be roughly divided into (a) multiple metal electrodes placed in the path of the charged beam, and voltage applied to these electrodes independently; They can be classified into two types: (b) electrostatic lens type, which creates a focused electric field by applying an electric field, and (b) magnetic lens type, which utilizes the focusing effect of a magnetic field by placing an electromagnet around the orbit of the charged beam.

[発明が解決しようとする問題点] しかしながら、上述の従来装置ではそれぞれ次の様な欠
点がある。
[Problems to be Solved by the Invention] However, the above-mentioned conventional devices each have the following drawbacks.

(a)の静電レンズ型のものでは、第1図に示すように
、荷電ビーム1、静電レンズ2、電極保持部品(通常絶
縁物質)3.真空装置外壁4、電圧導入用端子5および
高電圧電源6から構成されて      −いる、この
ように従来の静電レンズ型装置では希望する電位勾配を
実現するために、1(1のレンズでも必然的に複数の電
極が必要であり、しかもこの電極2を電極保持部品3に
よりすべて電気的に独立に保持しなければならない、従
って、その絶縁等を考えれば構造が複雑になる上に、レ
ンズを構成する電極数だけ高圧電源が必要になるという
欠点がある。(但し、電極の一部をアース電位にして、
必要な電源の台数を減らす方式も一般にとられている。
In the electrostatic lens type (a), as shown in FIG. 1, there is a charged beam 1, an electrostatic lens 2, an electrode holding part (usually an insulating material), 3. The conventional electrostatic lens type device, which is composed of an outer wall 4 of the vacuum device, a voltage introduction terminal 5, and a high voltage power source 6, requires a Therefore, multiple electrodes are required, and all of the electrodes 2 must be electrically held independently by the electrode holding part 3. Therefore, considering the insulation, etc., the structure becomes complicated, and the lens The disadvantage is that a high-voltage power supply is required for each electrode.(However, if some of the electrodes are at ground potential,
A method of reducing the number of required power supplies is also commonly used.

)最近用途の多い大型の荷電ビーム装置では、複数個の
組合せレンズによる集束方式が採用されると同時に、荷
電ビームの加速電圧も益々高くなっており、そのため放
電のトラブル等を考慮に入れたレンズの構造・保持方式
を考える事は、今後ますます難しい問題になると考えら
れる。
) In recent years, large-scale charged beam devices that have been widely used have adopted a focusing system using multiple combined lenses, and at the same time, the accelerating voltage of the charged beam has become higher and higher. It is thought that considering the structure and retention method of this will become an increasingly difficult problem in the future.

(b)の磁界レンズ型のものでは、電磁石を荷電、ビー
ム軌道の回りに配置するので、レンズ機構が大がかりに
なりすぎて簡単な荷電ビーム装置には使いにくいという
欠点がある。これに加えて、磁界は荷電粒子の質量の逆
数に比例して作用するので、イオンに対しては集束効果
が小さく利用しにくいという問題がある。更に(a)、
(b)の静電層。
In the magnetic field lens type shown in (b), the electromagnets are arranged around the charge and beam orbits, so the lens mechanism becomes too large-scale and has the disadvantage that it is difficult to use in a simple charged beam device. In addition, since the magnetic field acts in proportion to the reciprocal of the mass of the charged particle, there is a problem in that it has a small focusing effect on ions and is difficult to utilize. Furthermore (a),
(b) Electrostatic layer.

磁界形レンズのどちらも、期待する形状に荷電ビームを
集束しようとするこ−とは、必要となる偏向板電極、或
いはマグネットの形状を考慮すれば極めて困難と考えら
れる。
With either magnetic field type lens, it is considered extremely difficult to focus the charged beam into the expected shape, considering the shape of the required deflection plate electrode or magnet.

そこで、本発明の目的は静電レンズ型の長所である、 (1)イオンビームの集束作用にも適用できるという特
色を失うことなく、従来の静電レンズ型と異なって、 (2)簡単な部品構成で高圧電源の必要性なく集束作用
を行わせることができること。
Therefore, the purpose of the present invention is to take advantage of the advantages of the electrostatic lens type. The component configuration allows focusing to be performed without the need for a high-voltage power source.

(3)木質的に放電等のトラブルが生じないこと、およ
び (4)期待するビーム形状に荷電ビームを集束すること
の特色とを付加して荷電ビーム集束器としての機能を格
段に高めようとするものである。
We aim to significantly improve the function of a charged beam concentrator by adding (3) the absence of problems such as discharge due to the nature of the wood, and (4) the ability to focus a charged beam into the expected beam shape. It is something to do.

[問題点を解決するための手段] 本発明は、荷電ビームの通過用の空孔を備えた絶縁性物
質を荷電ビームの進路中に配置したことを特徴とする。
[Means for Solving the Problems] The present invention is characterized in that an insulating material having holes through which the charged beam passes is disposed in the path of the charged beam.

また本発明は、空孔は指定のビーム集束形状に対°応し
た断面を有し、荷電ビームの照射に伴う絶縁性物質のチ
ャージアップ効果を利用して空孔内を通過する前記荷電
ビームの空間密度を指定のビーム集束形状で高めること
を特徴とする。
Further, in the present invention, the hole has a cross section corresponding to a specified beam focusing shape, and the charged beam passes through the hole by utilizing the charge-up effect of the insulating material accompanying the irradiation of the charged beam. It is characterized by increasing the spatial density with a specified beam focusing shape.

[作 用] 本発明は、絶縁性物質で形成された荷電ビーム集束器を
用いているので、絶縁性物質のチャージアップ現象によ
り、荷電ビームの集束作用が得られ、これにより放電の
トラブル等がなく構造が簡潔となる等の利点が得られる
[Function] Since the present invention uses a charged beam concentrator made of an insulating material, the charge-up phenomenon of the insulating material provides a focusing effect on the charged beam, thereby preventing problems such as discharge. This provides advantages such as a simpler structure.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明は、絶縁性物質のチャージアップ現象を荷電ビー
ムの集束作用に利用する点において本質的な特徴を有し
ている0本発明荷電ビーム集束器の配置構成例を第2図
(A)に示す、第2図(B)は本集束器の集束作用を模
式的に示したものである。第2図において、7は絶縁性
物質で形成された円筒(絶縁物集束器)であり、上流側
端部に横方向の円形のフランジ(鍔部) 7aを有する
。また、フランジ7aは真空装置外壁4に接着等で固定
しである。この円筒7に荷電ビーム1が当たると1円筒
7の絶縁性物質のチャージアップにより、第2図(B)
の破線8で示すような荷電ビームに対する阻止電界がで
きる。この阻止電界8は。
The present invention has an essential feature in that the charge-up phenomenon of an insulating material is utilized for the focusing action of a charged beam. An example of the arrangement and configuration of the charged beam focuser of the present invention is shown in FIG. 2(A). FIG. 2(B) schematically shows the focusing action of the present focusing device. In FIG. 2, 7 is a cylinder (insulator concentrator) made of an insulating material, and has a horizontal circular flange (flange) 7a at its upstream end. Further, the flange 7a is fixed to the outer wall 4 of the vacuum apparatus by adhesive or the like. When the charged beam 1 hits this cylinder 7, the insulating material of the cylinder 7 is charged up, as shown in Fig. 2 (B).
A blocking electric field against the charged beam as shown by the broken line 8 is created. This blocking electric field 8 is.

もともと円筒7のフランジ7aの部分に当たっていた荷
電ビーム1の一部をその円筒の内部の方向に曲げる0円
筒7の内部に曲げられた荷電ビームlbともともと円筒
内部を通過していた荷電ビーム1aとは、円筒7の内筒
部7bにできるチャージアップ作用により1円筒7の中
心部に集束させられるので、空間密度の高い荷電ビーム
lcが得られる。
A part of the charged beam 1 that originally hit the flange 7a of the cylinder 7 is bent toward the inside of the cylinder.The charged beam lb is bent into the inside of the cylinder 7 and the charged beam 1a that originally passed through the inside of the cylinder. is focused at the center of one cylinder 7 due to the charge-up effect generated in the inner cylindrical portion 7b of the cylinder 7, so that a charged beam lc with a high spatial density is obtained.

この本発明集束装置では、絶縁性物質による入射荷電ビ
ームlの作るチャージアップ現象を利用しているので、
従来の静電レンズ型で必要とじた真空内への電圧導入端
子や高圧電源は不要になり、構成が極めて簡潔となる。
This focusing device of the present invention utilizes the charge-up phenomenon created by the incident charged beam l due to an insulating material.
There is no need for a voltage introduction terminal into the vacuum or a high-voltage power supply, which were required with the conventional electrostatic lens type, making the configuration extremely simple.

しかも、チャージアップ電位は、入射荷電ビーム1の加
速エネルギーに自動的に対応して一定値に定まるので、
任意の荷電ビーム加速電圧で希望する集束効果を有する
集束器の設計をすることが可能である。また、集束器7
は真空容器壁4と直接接続が可能なので、集束器の保持
手段が簡単となる上に、放電等のトラブルが起こり得な
いという利点がある。
Moreover, since the charge-up potential is automatically determined to a constant value in accordance with the acceleration energy of the incident charged beam 1,
It is possible to design a concentrator with a desired focusing effect at any charged beam acceleration voltage. In addition, the concentrator 7
Since it is possible to connect directly to the wall 4 of the vacuum container, there is an advantage that the means for holding the concentrator is simple and troubles such as discharge do not occur.

フランジ付円筒形状を有する絶縁物(以下、集束器と称
する)7を用いてイオンビームに対する集束作用を実際
に調べた所、この集束器7の前方(上流)でビーム径は
ぼ5+++s (電流密度50 k A/c+a2)の
イオンビーム1が、内円筒部直径はぼ4.2mmを有す
る絶縁物集束器7により集束器7の後方(下流)でビー
ム径はぼ2+++m (電流密度はぼ300 g A/
cm2)に集束されることが確認できた。
When we actually investigated the focusing effect on the ion beam using an insulator 7 having a cylindrical shape with flanges (hereinafter referred to as a focuser), we found that the beam diameter was approximately 5+++s (current density) in front (upstream) of this focuser 7. An ion beam 1 of 50 k A/c+a2) is passed through an insulator focuser 7 having an inner cylindrical diameter of about 4.2 mm, and the beam diameter is about 2+++ m (current density is about 300 g) behind (downstream of) the focuser 7. A/
cm2).

上述の実施例では円筒型空孔部を有する荷電ビーム集束
器7を例示したが、チャージアップに伴う荷電ビームの
阻止電界が絶縁物集束器の形状に大きく依存する事を利
用すれば、その集束器の形状を変えて種々の所望する特
性を備えた荷電ビームを作ることも可能である0例えば
■ 第3図(A)〜(D)に示すように絶縁物集束器7
の空孔部7eを円形、楕円、双曲線、放物線などの曲線
で囲ったもの、更に第3図(E)〜()I)に示すよう
にその空孔部を三角形、矩形、多角形およびそれらを変
形したものにして、その空孔部の形状に対応するビーム
形状を得ることが可能である。また、荷電ビーム1が照
射される絶縁物集束器7の端面7aの形状も希望するビ
ーム特性を得る上で重要であり、端面、空孔部の形状に
は上に例示した色々なものの組合せが考えられる0例え
ば、円形の端面形状の絶縁物内に四則形の空孔部を形成
した場合がその一例である。
In the above embodiment, the charged beam focuser 7 having a cylindrical hole was used as an example, but if the blocking electric field of the charged beam caused by charge-up is largely dependent on the shape of the insulating material focuser, the focusing can be improved. It is also possible to create charged beams with various desired characteristics by changing the shape of the device.
The hole 7e is surrounded by a curve such as a circle, an ellipse, a hyperbola, or a parabola, and the hole 7e is surrounded by a triangle, rectangle, polygon, etc. as shown in FIGS. It is possible to obtain a beam shape corresponding to the shape of the hole by modifying the shape of the hole. In addition, the shape of the end surface 7a of the insulator concentrator 7, which is irradiated with the charged beam 1, is also important in obtaining the desired beam characteristics, and the shape of the end surface and the hole may be combined with the various shapes listed above. One possible example is a case where four regular-shaped holes are formed in an insulator with a circular end face shape.

■ 第3図(I)に示すように絶縁物集束器7の筒の部
分を長くとって、−ドリフトチューブとして用いること
も可能である。
(2) As shown in FIG. 3(I), it is also possible to make the cylindrical portion of the insulator concentrator 7 long and use it as a drift tube.

■ 第3図(J)〜(L)に示すように、絶縁物集束器
7の筒部の両端または一部、或いは中央部を絞ったり広
げたり段付きにしたりして、入射荷電ビームの発散角に
対応した集束作用を与えたり、また希望するビームの発
散特性を得ることも可能である。
■ As shown in Figures 3 (J) to (L), both ends or a part of the cylindrical part of the insulator concentrator 7, or the central part are constricted, widened, or stepped to diverge the incident charged beam. It is also possible to provide a focusing effect corresponding to the angle, or to obtain a desired beam divergence characteristic.

■ 第3図(M)、(N)に示すように、絶縁物集束器
7の両端または一部にフランジを有する構造のものでは
フランジの部分を皿型にしたり曲率をもたせたりして、
集束作用を更に高めることも可能である。
■ As shown in FIGS. 3(M) and (N), when the insulator concentrator 7 has a flange at both ends or a part thereof, the flange part is made into a dish shape or has a curvature.
It is also possible to further increase the focusing effect.

■ また、上述の■〜■の構造を組合わせて希望するビ
ーム特性を得るようにすることが可能である。
(2) It is also possible to obtain desired beam characteristics by combining the structures (1) to (2) above.

上述の■〜■の空孔形集束器の構成例を実現する上で、
絶縁性物質は一般に加工性の点で難点があるが、その場
合には、例えば第4図(A)に示すように適当な形状に
加工した絶縁物部品11A、11Bを組合せて作製した
り、或いは第3図(B)に示すように希望する形状に加
工した金属12の上に絶縁性物質を塗布後焼結したり、
化成蒸着(CVO;化学反応を伴う気相成長)、プラズ
マCVO,スパッタ蒸着(スパッタリング)法等の製造
方法で絶縁物物質11を堆積させて作成することにより
対処できる。
In realizing the configuration examples of the hole type concentrator mentioned above,
Insulating materials generally have difficulties in terms of workability, but in that case, for example, as shown in FIG. Alternatively, as shown in FIG. 3(B), an insulating material is coated on the metal 12 processed into a desired shape and then sintered,
This can be solved by depositing the insulating material 11 using a manufacturing method such as chemical vapor deposition (CVO; vapor phase growth accompanied by a chemical reaction), plasma CVO, or sputter deposition (sputtering).

このような製造方法で金属の上に作った絶縁物11も、
荷電ビームに対して本発明の原理に従って集束作用する
ものと期待できる。逆に、第4図(C)に示すように、
絶縁物物質11の一部(例えば、絶縁物円筒内部など)
に導電性物質14を堆積させて空間的に一様電位のチャ
ージアップ現象を誘起する事も、場合においては本発明
の集束器の機能を高める変形例となる。なお、このよう
な導電性物質部品や金属部分が、外部接続端子14を有
してしれば、チャージアップをリフレッシュし、別の加
速電圧に対する最適条件をす早く実現する際に役立つと
考えられる。更に、第4図(D)に示すように数種の絶
縁物11G、110を組合せて本発明の集束器を作成す
るのも有効である。
The insulator 11 made on metal by such a manufacturing method also
It can be expected that the charged beam will be focused according to the principles of the present invention. Conversely, as shown in Figure 4(C),
A part of the insulating material 11 (for example, the inside of an insulating cylinder)
Depositing a conductive material 14 to induce a charge-up phenomenon of a spatially uniform potential is also a modification to enhance the function of the concentrator of the present invention in some cases. It should be noted that if such a conductive material component or metal part has an external connection terminal 14, it would be useful to refresh the charge-up and quickly realize the optimum conditions for another acceleration voltage. Furthermore, it is also effective to create the concentrator of the present invention by combining several types of insulators 11G and 110, as shown in FIG. 4(D).

[発明の効果] 以上説明したように、本発明によれば絶縁性物質のチャ
ージアップ現象を荷電ビームの集束作用に利用している
ので、所期の目的が達成され、レンズ構造や保持方式が
格段に簡単になり、荷電ビーム装置の製造工程の簡潔化
や製造コストの低減化に非常に大きく寄与できると期待
できる。
[Effects of the Invention] As explained above, according to the present invention, since the charge-up phenomenon of an insulating material is utilized for the focusing action of a charged beam, the intended purpose is achieved and the lens structure and holding method are improved. It is expected that the method will be much simpler and will greatly contribute to simplifying the manufacturing process and reducing manufacturing costs of charged beam devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電レンズ型荷電ビーム集束装置の配置
構成例を示す断面図、 第2図(A)は本発明荷電ビーム集束器の配置構成例を
示す断面図、 第2図(B)はその動作原理を示す態様図、第3図(A
)〜(N)は、それぞれ本発明集束器の空孔部の加工形
状の一例を示したものであって、同図(A)〜(H)は
その空孔部の正面図、同図(I)〜(N)は筒部の断面
図、 第4図(A)〜(D)はそれぞれ本発明集束器の作成方
式の一例を示した断面図である。 1・・・荷電ビーム、 2・・・静電レンズ電極、 3・・・電極保持部品、 4・・・真空装置外壁、 5・・・電圧導入用端子、 B・・・高電圧電源。 7・・・絶縁物製集束器、 8・・・チャージアップに伴う阻止電位(阻止電界)。 11、IIA、IIB、tiG、110・・・絶縁物、
12.13・・・金属、 14・・・外部接続端子。 第1図 第2図 ’15   8  風土電界 第3図
FIG. 1 is a sectional view showing an example of the arrangement of a conventional electrostatic lens type charged beam focusing device; FIG. 2(A) is a sectional view showing an example of the arrangement of the charged beam focusing device of the present invention; FIG. ) is a mode diagram showing the principle of operation, and Fig. 3 (A
) to (N) each show an example of the processed shape of the hole in the concentrator of the present invention, and (A) to (H) are front views of the hole, and ( I) to (N) are sectional views of the cylindrical portion, and FIGS. 4(A) to 4(D) are sectional views each showing an example of the method of manufacturing the concentrator of the present invention. DESCRIPTION OF SYMBOLS 1... Charged beam, 2... Electrostatic lens electrode, 3... Electrode holding part, 4... Outer wall of vacuum device, 5... Voltage introduction terminal, B... High voltage power supply. 7... Concentrator made of insulator, 8... Blocking potential (blocking electric field) accompanying charge-up. 11, IIA, IIB, tiG, 110... insulator,
12.13...Metal, 14...External connection terminal. Figure 1 Figure 2 '15 8 Wind and electric field Figure 3

Claims (1)

【特許請求の範囲】 1)荷電ビームの進路中に該ビームと同一方向に貫通し
た空孔を中央に備えた絶縁物体を配置たことを特徴とす
る荷電ビーム集束器。 2)前記空孔は期待するビーム形状に対応した断面形状
を有し、前記空孔を介して前記荷電ビームを前記期待す
るビーム形状に整形することを特徴とする特許請求の範
囲第1項記載の荷電ビーム集束器。 3)前記荷電ビームの照射による前記絶縁物体のチャー
ジアップ現象を利用して前記空孔内を通過する前記荷電
ビームの空間密度を前記空孔の断面形状で高めることを
特徴とする特許請求の範囲第2項記載の荷電ビーム集束
器。 4)前記絶縁物体は中央に小孔を有する薄い円板である
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかの項に記載の荷電ビーム集束器。
[Claims] 1) A charged beam concentrator characterized in that an insulating object having a hole in the center that penetrates in the same direction as the beam is disposed in the path of the charged beam. 2) The hole has a cross-sectional shape corresponding to an expected beam shape, and the charged beam is shaped into the expected beam shape through the hole, according to claim 1. charged beam focuser. 3) A claim characterized in that the spatial density of the charged beam passing through the hole is increased by the cross-sectional shape of the hole by utilizing a charge-up phenomenon of the insulating object due to irradiation with the charged beam. Charged beam focuser according to item 2. 4) The charged beam concentrator according to any one of claims 1 to 3, wherein the insulating object is a thin disk having a small hole in the center.
JP5505185A 1985-03-19 1985-03-19 Charged beam focusing device Granted JPS61214341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5505185A JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5505185A JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Publications (2)

Publication Number Publication Date
JPS61214341A true JPS61214341A (en) 1986-09-24
JPH0361980B2 JPH0361980B2 (en) 1991-09-24

Family

ID=12987873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5505185A Granted JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Country Status (1)

Country Link
JP (1) JPS61214341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190044A (en) * 1989-12-19 1991-08-20 Ebara Corp Electron beam accelerator
JP2007003418A (en) * 2005-06-24 2007-01-11 Institute Of Physical & Chemical Research Charged particle beam deflecting/converging method and charged particle beam deflecting/converging equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190044A (en) * 1989-12-19 1991-08-20 Ebara Corp Electron beam accelerator
JP2007003418A (en) * 2005-06-24 2007-01-11 Institute Of Physical & Chemical Research Charged particle beam deflecting/converging method and charged particle beam deflecting/converging equipment
JP4713242B2 (en) * 2005-06-24 2011-06-29 独立行政法人理化学研究所 Charged particle beam deflection / focusing method and charged particle beam deflection / focusing device

Also Published As

Publication number Publication date
JPH0361980B2 (en) 1991-09-24

Similar Documents

Publication Publication Date Title
US4987346A (en) Particle source for a reactive ion beam etching or plasma deposition installation
US5022977A (en) Ion generation apparatus and thin film forming apparatus and ion source utilizing the ion generation apparatus
US5215703A (en) High-flux neutron generator tube
US8242674B2 (en) Device for the field emission of particles and production method
US4179351A (en) Cylindrical magnetron sputtering source
TW200305185A (en) Ion beam mass separation filter and its mass separation method, and ion source using the same
JPH05109382A (en) Charged particle beam system
JPS63108646A (en) Ion source
JPS6330987B2 (en)
JP2002352765A (en) Ion implantion apparatus
US6238526B1 (en) Ion-beam source with channeling sputterable targets and a method for channeled sputtering
US6985553B2 (en) Ultra-short ion and neutron pulse production
US5133849A (en) Thin film forming apparatus
US4542321A (en) Inverted magnetron ion source
JP3481953B2 (en) Equipment for coating substrates
JPS61214341A (en) Charged beam focusing device
CN112599397B (en) Storage type ion source
JP2011003425A (en) Ion pump
JP3556069B2 (en) Ion implantation equipment
JPH10112274A (en) Electron gun
CN114242549B (en) Ion source device for forming plasma by material sputtering
JPS6046368A (en) Sputtering target
JPH024979B2 (en)
JPH0451438A (en) Electron beam exposure device and method
JP2001083298A (en) Electrostatic containment nuclear fusion device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term