JPH0361980B2 - - Google Patents

Info

Publication number
JPH0361980B2
JPH0361980B2 JP5505185A JP5505185A JPH0361980B2 JP H0361980 B2 JPH0361980 B2 JP H0361980B2 JP 5505185 A JP5505185 A JP 5505185A JP 5505185 A JP5505185 A JP 5505185A JP H0361980 B2 JPH0361980 B2 JP H0361980B2
Authority
JP
Japan
Prior art keywords
charged beam
focusing
charged
shape
concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5505185A
Other languages
Japanese (ja)
Other versions
JPS61214341A (en
Inventor
Shingo Ichimura
Hajime Shimizu
Hiroshi Murakami
Masatoshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5505185A priority Critical patent/JPS61214341A/en
Publication of JPS61214341A publication Critical patent/JPS61214341A/en
Publication of JPH0361980B2 publication Critical patent/JPH0361980B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体素子製造の基本工程であるリ
ソグラフイやスパツタリングにおいて、或いは実
用材料の評価手段として近年とみに利用されてい
る物理分析装置において、重要な構成要素として
の位置を占めるイオン・電子ビーム(以下、荷電
ビームと総称する)の集束方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to physical analysis apparatuses that have been widely used in lithography and sputtering, which are the basic steps of semiconductor device manufacturing, or as a means of evaluating practical materials in recent years. This invention relates to a method for focusing ion and electron beams (hereinafter collectively referred to as charged beams), which occupy a position as an important component.

[発明の概要] 本発明は、リソグラフイやスパツタリング等に
利用される荷電ビーム(イオン・電子ビーム)の
集束方法に関し、絶縁性物質のチヤージアツプ現
象を荷電ビームの集束作用に利用することによ
り、簡単な部品構成で高圧電源の必要なく、本質
的に放電等のトラブルが生じずに指定のビーム形
状を得られるようにする方法に関するものであ
る。
[Summary of the Invention] The present invention relates to a method for focusing a charged beam (ion/electron beam) used in lithography, sputtering, etc., by utilizing the charge up phenomenon of an insulating material for focusing the charged beam. The present invention relates to a method that allows a specified beam shape to be obtained with a simple component configuration, without the need for a high-voltage power supply, and essentially without causing problems such as discharge.

[従来の技術] 半導体素子の高密度化、或いは製造物質の高純
度化の流れの中で、ビーム露光やエツチングなど
の反応を誘起するプローブとしても、また高分解
能SIMS、SEM、Auger−SEM装置などの物理
分析用プローブとしても、荷電ビームの電流密度
を希望する形状に高めることへの要請は、近年ま
すます強くなつている。
[Prior art] With the trend toward higher density of semiconductor devices and higher purity of manufacturing materials, it is also used as a probe for inducing reactions such as beam exposure and etching, and also as a high-resolution SIMS, SEM, and Auger-SEM equipment. In recent years, there has been an increasing demand for increasing the current density of a charged beam into a desired shape for physical analysis probes such as probes.

この要請を実現するために、これまで試みられ
てきた荷電ビーム集束方法は、大別すると、 (a) 複数の金属製電極を荷電ビームの進路中に配
置し、これらの電極に独立に電圧を印加して集
束電界を作る静電型レンズを利用する方法、及
び、 (b) 荷電ビームの軌道の回りに電磁石を配置して
磁界の集束作用を利用する磁気型レンズを利用
する方法、 とに分類できる。
Charged beam focusing methods that have been attempted so far to achieve this requirement can be roughly divided into: (a) placing multiple metal electrodes in the path of the charged beam and applying voltage to these electrodes independently; (b) A method using an electrostatic lens that applies an electric field to create a focusing electric field, and (b) a method using a magnetic lens that uses the focusing effect of a magnetic field by placing an electromagnet around the orbit of the charged beam. Can be classified.

[発明が解決しようとする問題点] しかしながら、上述の従来の方法ではそれぞれ
次の様な欠点がある。
[Problems to be Solved by the Invention] However, each of the above-mentioned conventional methods has the following drawbacks.

(a)の静電型レンズを用いる方法では、その代表
的な装置構成は第1図に示すように、荷電ビーム
1、静電レンズ電極2、電極保持部品(通常絶縁
物質)3、真空装置外壁4、電圧導入用端子5及
び高電圧電源6からなる。このように従来の静電
型レンズを用いる方法では希望する電位勾配を実
現するために、1個のレンズでも必然的に複数の
電極が必要であり、しかもこの電極2を電極保持
部品3によりすべて電気的に独立に保持しなけれ
ばならない。従つて、その絶縁等を考えれば構造
が複雑になる上に、レンズを構成する電極数だけ
高圧電源が必要になるという欠点がある。(但し、
電極の一部をアース電位にして、必要な電源の台
数を減らす方式も一般にとられている。)最近用
途の多い大型の荷電ビーム装置では、複数個の組
合せレンズによる集束方式が採用されると同時
に、荷電ビームの加速電圧も益々高くなつてお
り、そのため放電のトラブル等を考慮に入れたレ
ンズの構造・保持方式を考える事は、今後ますま
す難しい問題になると考えられる。
In the method using an electrostatic lens (a), the typical equipment configuration is as shown in Figure 1: a charged beam 1, an electrostatic lens electrode 2, an electrode holding part (usually an insulating material) 3, and a vacuum device. It consists of an outer wall 4, a voltage introduction terminal 5, and a high voltage power source 6. In this way, in the conventional method using an electrostatic lens, in order to realize a desired potential gradient, a plurality of electrodes are inevitably required for one lens. Must be electrically independent. Therefore, there is a disadvantage that the structure becomes complicated when considering insulation and the like, and that high-voltage power supplies are required for each number of electrodes forming the lens. (however,
A commonly used method is to reduce the number of required power supplies by setting part of the electrode to ground potential. ) In recent years, large-scale charged beam devices that have been widely used have adopted a focusing system using multiple combined lenses, and at the same time, the accelerating voltage of the charged beam has become higher and higher. It is thought that considering the structure and retention method of this will become an increasingly difficult problem in the future.

(b)の磁界型レンズを用いる方法では、電磁石を
荷電ビーム軌道の回りに配置するので、レンズ機
構が大がかりになりすぎて簡単な荷電ビーム装置
には使いにくいという欠点がある。これに加え
て、磁界は荷電粒子の質量の逆数に比例して作用
するので、イオンに対しては集束効果が小さく利
用しにくいという問題がある。更に(a)、(b)の静電
型、磁界型レンズのどちらも、期待する形状に荷
電ビームを集束しようとすることは、必要となる
偏向板電極、或いはマグネツトの形状を考慮すれ
ば極めて困難と考えられる。
In the method (b) using a magnetic field type lens, the electromagnet is arranged around the charged beam orbit, so the lens mechanism becomes too large and has the disadvantage that it is difficult to use in a simple charged beam device. In addition, since the magnetic field acts in proportion to the reciprocal of the mass of the charged particle, there is a problem in that it has a small focusing effect on ions and is difficult to utilize. Furthermore, with both the electrostatic type and magnetic field type lenses in (a) and (b), it is extremely difficult to focus the charged beam into the desired shape, considering the shape of the deflection plate electrode or magnet that is required. It is considered difficult.

そこで、本発明の目的は静電型レンズを用いる
方法の長所である、 (1) イオンビームの集束作用にも適用できるとい
う特色を失うことなく、従来の静電型レンズを
用いる方法と異なつて、 (2) 簡単な部品構成で高圧電源の必要性なく集束
作用を行わせることができること、 (3) 本質的に放電等のトラブルが生じないこと、
及び (4) 期待するビーム形状に荷電ビームを集束する
ことの特色とを付加して荷電ビームの集束方法
としての機能を格段に高めようとするものであ
る。
Therefore, the purpose of the present invention is to highlight the advantages of a method using an electrostatic lens. , (2) The focusing effect can be performed with a simple component configuration without the need for a high-voltage power supply, (3) There are essentially no problems such as electrical discharge,
and (4) the feature of focusing a charged beam into the expected beam shape is added to significantly improve the function as a method for focusing a charged beam.

[問題点を解決するための手段] 本発明は、荷電ビームの集束のために荷電ビー
ムの通過用の空孔を備えた絶縁性物質を荷電ビー
ムの進路中に配置したことを特徴とする。
[Means for Solving the Problems] The present invention is characterized in that, in order to focus the charged beam, an insulating material having holes through which the charged beam passes is disposed in the path of the charged beam.

また本発明は、空孔は指定のビーム集束形状に
対応した断面を有し、荷電ビームの照射に伴う絶
縁性物質のチヤージアツプ効果を利用して空孔内
を通過する前記荷電ビームの空間密度を指定のビ
ーム集束形状で高めることを特徴とする。
Further, in the present invention, the hole has a cross section corresponding to a specified beam focusing shape, and the spatial density of the charged beam passing through the hole is controlled by utilizing the charge up effect of an insulating material accompanying irradiation of the charged beam. It is characterized by enhanced beam focusing shape.

[作用] 本発明は、絶縁性物質のチヤージアツプ現象に
より、荷電ビームの集束作用が得られることを利
用する荷電ビームの集束方法であり、これにより
放電のトラブル等がなく、また、集束器の構造が
簡潔となる等の利点が得られる。
[Function] The present invention is a method for focusing a charged beam that utilizes the fact that a focusing effect of a charged beam can be obtained due to the charge-up phenomenon of an insulating material. This provides advantages such as simplicity.

[実施例] 以下、図面を参照して本発明を詳細に説明す
る。
[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明は、絶縁性物質のチヤージアツプ現象を
荷電ビームの集束作用に利用する点において本質
的な特徴を有している。本発明による荷電ビーム
の集束方法を実施するための装置構成例を第2図
Aに示す。以下、これを便宜上荷電ビームの集束
器と呼ぶ。第2図Bは本方法での集束作用を模式
的に示したものである。第2図において、7は絶
縁性物質で形成された円筒(絶縁物集束器)であ
り、上流側端部に横方向の円形のフランジ(鍔
部)7aを有する。また、フランジ7aは真空装
置外壁4に接着等で固定してある。この円筒7に
荷電ビーム1が当たると、円筒7の絶縁性物質の
チヤージアツプにより、第2図Bの破線8で示す
ような荷電ビームに対する阻止電界ができる。こ
の阻止電界8は、もともと円筒7のフランジ7a
の部分に当たつていた荷電ビーム1の一部をその
円筒の内部の方向に曲げる。円筒7の内部に曲げ
られた荷電ビーム1bと、もともと円筒内部を通
過していた荷電ビーム1aとは、円筒7の内筒部
7bにできるチヤージアツプ作用により、円筒7
の中心部に集束させられるので、空間密度の高い
荷電ビーム1cが得られる。
The present invention has an essential feature in that the charge-up phenomenon of an insulating material is utilized for the focusing action of a charged beam. FIG. 2A shows an example of the configuration of an apparatus for implementing the charged beam focusing method according to the present invention. Hereinafter, this will be referred to as a charged beam concentrator for convenience. FIG. 2B schematically shows the focusing effect in this method. In FIG. 2, 7 is a cylinder (insulator concentrator) made of an insulating material, and has a horizontal circular flange (flange) 7a at the upstream end. Further, the flange 7a is fixed to the outer wall 4 of the vacuum device by adhesive or the like. When the charged beam 1 hits the cylinder 7, a charge up of the insulating material of the cylinder 7 creates a blocking electric field against the charged beam as shown by the broken line 8 in FIG. 2B. This blocking electric field 8 was originally caused by the flange 7a of the cylinder 7.
The part of the charged beam 1 that was hitting the area is bent toward the inside of the cylinder. The charged beam 1b bent into the inside of the cylinder 7 and the charged beam 1a that had originally passed through the cylinder 7 are moved into the cylinder 7 due to the charge up action generated in the inner cylindrical portion 7b of the cylinder 7.
Since the charged beam 1c is focused at the center of the charged beam 1c, a charged beam 1c with a high spatial density can be obtained.

本発明の集束方法では、絶縁性物質による入射
荷電ビーム1の作るチヤージアツプ現象を利用し
ているので、従来の静電型レンズで必要とした真
空内への電圧導入端子や高圧電源は不要になり、
構成が極めて簡潔となる。しかも、チヤージアツ
プ電位は、入射荷電ビーム1の加速エネルギーに
自動的に対応して一定値に定まるので、任意の荷
電ビーム加速電圧で希望する集束効果を有する集
束器の設計をすることが可能である。また、集束
器7は真空容器壁4と直接接続が可能なので、集
束器の保持手段が簡単となる上に、放電等のトラ
ブルが起こり得ないという利点がある。
Since the focusing method of the present invention utilizes the charge-up phenomenon created by the incident charged beam 1 caused by an insulating material, there is no need for a voltage introduction terminal into the vacuum or a high-voltage power supply, which are required with conventional electrostatic lenses. ,
The configuration is extremely simple. Furthermore, since the charge up potential is determined to a constant value automatically in response to the acceleration energy of the incident charged beam 1, it is possible to design a concentrator that has the desired focusing effect at any charged beam acceleration voltage. . Further, since the concentrator 7 can be directly connected to the vacuum vessel wall 4, there is an advantage that the means for holding the concentrator is simple and troubles such as electric discharge cannot occur.

フランジ付円筒形状を有する絶縁物(以下、集
束器と称する)7を用いてイオンビームに対する
集束作用を実際に調べた所、この集束器7の前方
(上流)でビーム径ほぼ5mm(電流密度50μA/
cm2)のイオンビーム1が、内円筒部直径ほぼ4.2
mmを有する絶縁物集束器7により集束器7の後方
(下流)でビーム径ほぼ2mm(電流密度ほぼ
300μA/cm2)に集束されることが確認できた。
When we actually investigated the focusing effect on the ion beam using an insulator 7 having a cylindrical shape with flanges (hereinafter referred to as a focuser), we found that the beam diameter was approximately 5 mm (current density 50 μA) in front (upstream) of this focuser 7. /
cm 2 ), the ion beam 1 has an inner cylinder diameter of approximately 4.2 cm.
The beam diameter is approximately 2 mm (current density is approximately
It was confirmed that the current was focused at 300 μA/cm 2 ).

上述の実施例では円筒型空孔部を有する荷電ビ
ーム集束器7を例示したが、チヤージアツプに伴
う荷電ビームの阻止電界が絶縁物集束器の形状に
大きく依存する事を利用すれば、その集束器の形
状を変えて種々の所望する特性を備えた荷電ビー
ムを作ることも可能である。例えば、 第3図A〜Dに示すように絶縁物集束器7の
空孔部7eを円形、楕円、双曲線、放物線など
の曲線で囲つたもの、更に第3図E〜Hに示す
ようにその空孔部を三角形、矩形、多角形およ
びそれらを変形したものにして、その空孔部の
形状に対応するビーム形状を得ることが可能で
ある。また、荷電ビーム1が照射される絶縁物
集束器7の端面7aの形状も希望するビーム特
性を得る上で重要であり、端面、空孔部の形状
には上に例示した色々なものの組合せが考えら
れる。例えば、円形の端面形状の絶縁物内に四
角形の空孔部を形成した場合がその一例であ
る。
In the above embodiment, the charged beam concentrator 7 having a cylindrical hole was exemplified, but if the electric field blocking the charged beam due to charge up is largely dependent on the shape of the insulator concentrator, the concentrator 7 can be It is also possible to vary the shape of the charged beam to create charged beams with various desired properties. For example, as shown in FIGS. 3A to 3D, the hole 7e of the insulator concentrator 7 is surrounded by a curve such as a circle, an ellipse, a hyperbola, or a parabola, and furthermore, as shown in FIGS. 3E to H, By making the hole into a triangle, rectangle, polygon, or a modified shape thereof, it is possible to obtain a beam shape corresponding to the shape of the hole. In addition, the shape of the end surface 7a of the insulator concentrator 7, which is irradiated with the charged beam 1, is also important in obtaining the desired beam characteristics, and the shape of the end surface and the hole may be combined with the various shapes listed above. Conceivable. For example, a case where a rectangular hole is formed in an insulator having a circular end face shape is one example.

第3図Iに示すように絶縁物集束器7の筒の
部分を長くとつて、ドリフトチユーブとして用
いることも可能である。
As shown in FIG. 3I, it is also possible to make the cylindrical portion of the insulator concentrator 7 long and use it as a drift tube.

第3図J〜Lに示すように、絶縁物集束器7
の筒部の両端または一部、或いは中央部を絞つ
たり広げたり段付きにしたりして、入射荷電ビ
ームの発散角に対応した集束作用を与えたり、
また希望するビームの発散特性を得ることも可
能である。
As shown in FIG. 3 J to L, the insulator concentrator 7
Both ends or a part of the cylindrical part or the center part are constricted, widened, or stepped to give a focusing effect corresponding to the divergence angle of the incident charged beam,
It is also possible to obtain desired beam divergence characteristics.

第3図M,Nに示すように、絶縁物集束器7
の両端または一部にフランジを有する構造のも
のではフランジの部分を皿型にしたり曲率をも
たせたりして、集束作用を更に高めることも可
能である。
As shown in FIG. 3 M and N, the insulator concentrator 7
In the case of a structure having flanges at both ends or a part thereof, it is possible to further enhance the focusing effect by making the flange portion dish-shaped or having a curvature.

また、上述の〜の構造を組合せて希望す
るビーム特性を得るようにすることが可能であ
る。
Furthermore, it is possible to obtain desired beam characteristics by combining the above-mentioned structures.

上述の〜の空孔形集束器の構成例を実現す
る上で、絶縁性物質は一般に加工性の点で難点が
あるが、その場合には、例えば第4図Aに示すよ
うに適当な形状に加工した絶縁物部品11A,1
1Bを組合せて作製したり、或いは第3図Bに示
すように希望する形状に加工した金属12の上に
絶縁性物質を塗布後焼結したり、化成蒸着
(CVD;化学反応を伴う気相成長)、プラズマ
CVD、スパツタ蒸着(スパツタリング)法等の
製造方法で絶縁物物質11を堆積させて作成する
ことにより対処できる。このような製造方法で金
属の上に作つた絶縁物11も、荷電ビームに対し
て本発明の原理に従つて集束作用するものと期待
できる。逆に、第4図Cに示すように、絶縁物物
質11の一部(例えば、絶縁物円筒内部など)に
導電性物質14を堆積させて空間的に一様電位の
チヤージアツプ現象を誘起する事も、場合におい
ては本発明の集束器の機能を高める変形例とな
る。なお、このような導電性物質部品や金属部分
が、外部接続端子14を有していれば、チヤージ
アツプをリフレツシユし、別の加速電圧に対する
最適条件を素早く実現する際に役立つと考えられ
る。更に、第4図Dに示すように数種の絶縁物1
1C,11Dを組合せて本発明の方法による集束
器を作成するのも有効である。
In realizing the above-mentioned example of the structure of the hole-type concentrator, insulating materials generally have difficulties in terms of workability, but in that case, it is necessary to use an appropriate shape as shown in FIG. 4A, for example. Insulator parts 11A, 1 processed into
1B, or by coating and sintering an insulating material on the metal 12 processed into a desired shape as shown in FIG. growth), plasma
This can be solved by depositing the insulating material 11 using a manufacturing method such as CVD or sputtering. It can be expected that the insulator 11 made on the metal by such a manufacturing method will also have a focusing effect on the charged beam in accordance with the principles of the present invention. Conversely, as shown in FIG. 4C, a conductive material 14 may be deposited on a portion of the insulating material 11 (for example, inside an insulating cylinder) to induce a charge-up phenomenon of a spatially uniform potential. In some cases, this may also be a modification that enhances the functionality of the concentrator of the present invention. It should be noted that if such a conductive material component or metal part has an external connection terminal 14, it is considered to be useful in refreshing the charge up and quickly realizing the optimum conditions for another acceleration voltage. Furthermore, as shown in FIG. 4D, several types of insulators 1
It is also effective to create a concentrator by the method of the present invention by combining 1C and 11D.

[発明の効果] 以上説明したように、本発明によれば絶縁性物
質のチヤージアツプ現象を荷電ビームの集束作用
に利用しているので、所期の目的が達成され、レ
ンズ構造や保持方式が格段に簡単になり、荷電ビ
ーム装置の製造工程の簡潔化や製造コストの低減
化に非常に大きく寄与できると期待できる。
[Effects of the Invention] As explained above, according to the present invention, since the charge-up phenomenon of an insulating material is utilized for the focusing action of a charged beam, the intended purpose is achieved and the lens structure and holding method are significantly improved. It is expected that this method will greatly contribute to simplifying the manufacturing process and reducing manufacturing costs of charged beam devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電型レンズを用いる荷電ビー
ム集束方法の装置構成例を示す断面図、第2図A
は本発明荷電ビーム集束方法の配置構成例を示す
断面図、第2図Bはその動作原理を示す態様図、
第3図A〜Nは、それぞれ本発明集束方法を用い
る集束器の空孔部の加工形状の一例を示したもの
であつて、同図A〜Hはその空孔部の正面図、同
図I〜Nは筒部の断面図、第4図A〜Dはそれぞ
れ本発明集束方法を用いる集束器の作成方式の一
例を示した断面図である。 1……荷電ビーム、2……静電レンズ電極、3
……電極保持部品、4……真空装置外壁、5……
電圧導入用端子、6……高電圧電源、7……絶縁
物製集束器、8……チヤージアツプに伴う阻止電
位(阻止電界)、11,11A,11B,11C,
11D……絶縁物、12,13……金属、14…
…外部接続端子。
Figure 1 is a cross-sectional view showing an example of a device configuration for a conventional charged beam focusing method using an electrostatic lens, and Figure 2A.
is a sectional view showing an example of the arrangement and configuration of the charged beam focusing method of the present invention, FIG. 2B is an embodiment diagram showing the principle of operation thereof,
3A to 3N respectively show an example of the processed shape of the cavity of a focuser using the focusing method of the present invention, and FIGS. 3A to 3H are front views of the cavity, and FIGS. I to N are sectional views of the cylindrical portion, and FIGS. 4A to 4D are sectional views each showing an example of a method for producing a focusing device using the focusing method of the present invention. 1... Charged beam, 2... Electrostatic lens electrode, 3
... Electrode holding part, 4 ... Vacuum device outer wall, 5 ...
Voltage introduction terminal, 6... High voltage power supply, 7... Insulator concentrator, 8... Blocking potential (blocking electric field) due to charge up, 11, 11A, 11B, 11C,
11D...Insulator, 12, 13...Metal, 14...
...External connection terminal.

Claims (1)

【特許請求の範囲】 1 荷電ビームの進路中に該ビームと同一方向に
貫通した空孔を中央に備えた絶縁物体を配置し、
該絶縁物体のチヤージアツプ現象を利用して前記
空孔内を通過する前記荷電ビームの空間密度を高
めることを特徴とする荷電ビームの集束方法。 2 前記空孔は期待するビーム形状に対応した断
面形状を有し、前記空孔を介して前記荷電ビーム
を前記期待するビーム形状に整形することを特徴
とする特許請求の範囲第1項記載の荷電ビームの
集束方法。
[Claims] 1. An insulating object having a hole in the center that penetrates in the same direction as the beam is arranged in the path of the charged beam,
A method for focusing a charged beam, characterized in that the spatial density of the charged beam passing through the hole is increased by utilizing a charge up phenomenon of the insulating object. 2. The method according to claim 1, wherein the hole has a cross-sectional shape corresponding to an expected beam shape, and the charged beam is shaped into the expected beam shape through the hole. How to focus a charged beam.
JP5505185A 1985-03-19 1985-03-19 Charged beam focusing device Granted JPS61214341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5505185A JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5505185A JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Publications (2)

Publication Number Publication Date
JPS61214341A JPS61214341A (en) 1986-09-24
JPH0361980B2 true JPH0361980B2 (en) 1991-09-24

Family

ID=12987873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5505185A Granted JPS61214341A (en) 1985-03-19 1985-03-19 Charged beam focusing device

Country Status (1)

Country Link
JP (1) JPS61214341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190044A (en) * 1989-12-19 1991-08-20 Ebara Corp Electron beam accelerator
JP4713242B2 (en) * 2005-06-24 2011-06-29 独立行政法人理化学研究所 Charged particle beam deflection / focusing method and charged particle beam deflection / focusing device

Also Published As

Publication number Publication date
JPS61214341A (en) 1986-09-24

Similar Documents

Publication Publication Date Title
JP2724488B2 (en) Ion beam implanter and control method thereof
US5215703A (en) High-flux neutron generator tube
TW200305185A (en) Ion beam mass separation filter and its mass separation method, and ion source using the same
JPH05109382A (en) Charged particle beam system
JPH06235063A (en) Sputtering cathode
JPH05266787A (en) Device capable of controlling shape of charged particle beam
JP3481953B2 (en) Equipment for coating substrates
JPH0361980B2 (en)
CN114242549B (en) Ion source device for forming plasma by material sputtering
CN112599397B (en) Storage type ion source
US20020033446A1 (en) Neutral beam processing apparatus and method
US3914637A (en) Method and apparatus for focusing an electron beam
JPH0692638B2 (en) Thin film device
US4572982A (en) Apparatus for reducing the effects of thermal stresses on breakdown voltage in high voltage vacuum devices
JPH077639B2 (en) Ion source
JP3065620B2 (en) Electron gun system
JPS62147733A (en) Plasma processor
JP2947995B2 (en) Plasma processing method and processing apparatus
US2309220A (en) Electron discharge device
JP2001083298A (en) Electrostatic containment nuclear fusion device
JPH0578849A (en) High magnetic field microwave plasma treating device
JPS6046368A (en) Sputtering target
JP3104368B2 (en) Ion removal device and ion removal method
US3427449A (en) Cycloidal mass spectrometer employing crossed uniform magnetic and electric fields
JPS63221547A (en) Ion neutralizer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term