JPH03187908A - Production of spherical carbon material - Google Patents

Production of spherical carbon material

Info

Publication number
JPH03187908A
JPH03187908A JP1325864A JP32586489A JPH03187908A JP H03187908 A JPH03187908 A JP H03187908A JP 1325864 A JP1325864 A JP 1325864A JP 32586489 A JP32586489 A JP 32586489A JP H03187908 A JPH03187908 A JP H03187908A
Authority
JP
Japan
Prior art keywords
spherical
particles
carbon material
spherical particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1325864A
Other languages
Japanese (ja)
Other versions
JP2645756B2 (en
Inventor
Katsuya Tokutomi
徳冨 勝也
Akira Yokoyama
横山 昭
Takanobu Kawai
隆伸 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP1325864A priority Critical patent/JP2645756B2/en
Publication of JPH03187908A publication Critical patent/JPH03187908A/en
Application granted granted Critical
Publication of JP2645756B2 publication Critical patent/JP2645756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To improve electrical conductivity and dispersion stability by coating the surface of spherical particles comprising phenol resin, naphthalene resin, etc., with bulk mesophase pitch by mechanochemical method, heat-treating and burning under given conditions. CONSTITUTION:Spherical particles comprising phenol resin, naphthalene resin, xylene resin, divinylbenzene polymer, etc., having 3-50mum particle diameter are prepared. Fine particles of bulk mesophase pitch having particle diameter of <=2/5 the particle diameter of the spherical particle and <=10mum are prepared. Both the particles are blended in a dry state by mechanochemical method to give particles wherein the surface of the spherical particles is coated with the fine particles of bulk mesophase pitch. Then the particles are burnt in an inert atmosphere or in vacuum and carbonized and/or graphitized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は球状炭素材料の製造方法に関し、さらに詳しく
は導電性ゴム、導電性プラスチック、導電性塗料の充填
材等として有用な黒鉛質または炭素質の球状炭素材料の
製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a spherical carbon material, and more specifically to a method for producing a spherical carbon material, and more specifically, a graphite or carbon material useful as a filler for conductive rubber, conductive plastic, conductive paint, etc. The present invention relates to a method for producing a high quality spherical carbon material.

[従来の技術および発明が解決しようとする課題]従来
、ゴム、プラスチック、塗料の充填材等としては耐熱性
、耐薬品性に優れた球状炭素材料が使用されており、そ
のような球状炭素材料として、フェノール樹脂等の樹脂
系球状粒子やメソカーボンマイクロビーズを焼成して炭
素化および/または黒鉛化したものが知られている。
[Prior art and problems to be solved by the invention] Conventionally, spherical carbon materials with excellent heat resistance and chemical resistance have been used as fillers for rubber, plastics, paints, etc. As such, resin-based spherical particles such as phenol resin or mesocarbon microbeads are fired to carbonize and/or graphitize them.

このうち、フェノール樹脂、ジビニルベンゼン重合体、
スチレン−ジビニルベンゼン共重合体、ポリアクリロニ
トリル等の樹脂系球状粒子を炭素化して得られる炭素質
の球状炭素材料は、真球性、分散安定性に関しては特に
問題ないものの、ガラス質であるため結晶性が悪く、ま
た微細孔が多数存在し、電気伝導性が低い。また、樹脂
系球状粒子を黒鉛化して得られる黒鉛質の球状炭素材料
も電気伝導性の低減に限界があり、電気伝導性が充分に
低いものは未だ得られておらず、しかも黒鉛化する際に
球状粒子から発生した熱分解ガスが析出し、ロッド状の
生成物となって球状炭素材料表面に多数付着する。その
ため、樹脂系球状粒子から得た炭素質および/または黒
鉛質の球状炭素材料は近年需要が増大している導電性ゴ
ム、導電性プラスチック、導電性塗料等の充填材として
は不適当であった。
Among these, phenolic resin, divinylbenzene polymer,
Carbonaceous spherical carbon materials obtained by carbonizing resin-based spherical particles such as styrene-divinylbenzene copolymer and polyacrylonitrile have no particular problems with respect to sphericity and dispersion stability, but are glassy and crystalline. It has poor properties, has many micropores, and has low electrical conductivity. In addition, graphite spherical carbon materials obtained by graphitizing resin-based spherical particles have a limit in reducing electrical conductivity, and a material with sufficiently low electrical conductivity has not yet been obtained, and furthermore, when graphitizing The pyrolysis gas generated from the spherical particles precipitates and becomes rod-shaped products that adhere in large numbers to the surface of the spherical carbon material. Therefore, carbonaceous and/or graphite spherical carbon materials obtained from resin-based spherical particles are unsuitable as fillers for conductive rubber, conductive plastics, conductive paints, etc., which have been in increasing demand in recent years. .

一方、通常中ピツチを加熱焼成していく過程で生成する
球状結晶を大量のタール中油、キノリン等の溶剤で洗浄
することによって製造されるメソカーボンマイクロビー
ズを焼成することによって得られる球状炭素材料は、導
電性塗料等の充填材として用いるのに充分な電気伝導性
を有する。しかし、かかるメソカーボンマイクロビーズ
は焼成の際に不規則に収縮するため得られる球状炭素材
料の真球性が著しく低下し、さらにその粒度分布も非常
に広くなる。そのため、例えばこれらを充填材とした導
電性塗料で薄膜を形成した場合、導電性にバラツキが生
じ、特に接点材料等の均質な導電性を要求される用途に
使用できなくなる。また、メソカーボンマイクロビーズ
を焼成して得られる球状炭素材料は真比重が大きく、例
えば黒鉛化したもので2.1〜2.2程度あり、液体中
での分散安定性が悪く、塗料の充填材等には不適当であ
った。
On the other hand, the spherical carbon material is obtained by firing mesocarbon microbeads, which are usually produced by washing the spherical crystals generated during the heating and firing process with a large amount of tar oil, quinoline, or other solvents. , has sufficient electrical conductivity to be used as a filler in conductive paints, etc. However, since such mesocarbon microbeads shrink irregularly during firing, the sphericity of the obtained spherical carbon material is significantly reduced, and furthermore, the particle size distribution thereof is also extremely wide. Therefore, for example, if a thin film is formed with a conductive paint containing these as fillers, the conductivity will vary, making it impossible to use it particularly in applications that require uniform conductivity, such as contact materials. In addition, the spherical carbon material obtained by firing mesocarbon microbeads has a large true specific gravity, for example, about 2.1 to 2.2 when graphitized, and has poor dispersion stability in liquids, resulting in filling of paints. It was unsuitable for materials such as wood.

本発明は上記従来技術の問題に鑑み、電気伝導性、分散
安定性および真球性のいずれにも優れており、導電性ゴ
ム、導電性プラスチ・ツク、導電性塗料の充填材等とし
て有用な球状炭素材料を効率よく、しかも狭い粒度分布
で製造することができる方法を提供することを目的とす
る。
In view of the problems of the prior art described above, the present invention has excellent electrical conductivity, dispersion stability, and sphericity, and is useful as a filler for conductive rubber, conductive plastic, conductive paint, etc. It is an object of the present invention to provide a method that can efficiently produce a spherical carbon material with a narrow particle size distribution.

[課題を解決するための手段] 本発明者らは鋭意研究の結果、特定材質の球状粒子表面
にメカノケミカル法によってノ(ルクメソフェーズピッ
チを被覆し、それを一定条件下で熱処理した後に焼成す
ることによって上記目的が達成されることを見い出し、
本発明に到達した。
[Means for Solving the Problems] As a result of intensive research, the present inventors found that the surface of spherical particles made of a specific material was coated with mesophase pitch using a mechanochemical method, and then it was heat-treated under certain conditions and then fired. We have found that the above purpose can be achieved by
We have arrived at the present invention.

すなわち本発明は、フェノール樹脂、ナフタレン樹脂、
フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、
スチレン−ジビニルベンゼン共重合体、ポリアクリロニ
トリルのうちの少なくとも一種からなる粒子径3〜50
μmの球状粒子と、粒子径が10μ口以下でかつ上記球
状粒子径の275以下であるバルクメソフェーズピッチ
微粒子とをメカノケミカル法により乾式混合しt該球状
粒子表面を該バルクメソフェーズピッチで被覆して得ら
れるピッチ被覆された球状粒子を、酸化性雰囲気下で熱
処理して熱安定化し、次いで不活性雰囲気または真空下
で焼成して炭素化および/または黒鉛化することを特徴
とする球状炭素材料の製造方法にある。
That is, the present invention provides phenolic resin, naphthalene resin,
Furan resin, xylene resin, divinylbenzene polymer,
Particle size 3-50 consisting of at least one of styrene-divinylbenzene copolymer and polyacrylonitrile
Spherical particles of μm and bulk mesophase pitch fine particles having a particle size of 10 μm or less and 275 or less of the above spherical particle size are dry mixed by a mechanochemical method, and the surfaces of the spherical particles are coated with the bulk mesophase pitch. The resulting pitch-coated spherical particles are thermally stabilized by heat treatment in an oxidizing atmosphere, and then fired in an inert atmosphere or under vacuum to carbonize and/or graphitize the spherical carbon material. It's in the manufacturing method.

本発明の製造方法において出発材料として用いられる球
状粒子は、フェノール樹脂、ナフタレン樹脂、フラン樹
脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン
−ジビニルベンゼン共重合体、ポリアクリロニトリルの
うちの少なくとも一種からなるものである。これらの樹
脂系球状粒子は各々の原料から公知のエマルジョン重合
法等によって調製される。上記の球状粒子は、粒子径が
3〜50μ謂、好ましくは3〜30μlのものが有効に
使用される。
The spherical particles used as a starting material in the production method of the present invention are made of at least one of phenolic resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and polyacrylonitrile. It is. These resin-based spherical particles are prepared from each raw material by a known emulsion polymerization method or the like. The above-mentioned spherical particles having a particle diameter of 3 to 50 μl, preferably 3 to 30 μl, are effectively used.

また、本発明の製造方法において上記球状粒子と共に出
発材料として用いられるバルクメソフェーズピッチ微粒
子は、石油系または石炭系のバルクメソフェーズピッチ
(メソ相と呼ばれる光学的異方性の液晶を含有するピッ
チ)をショークラッシャー等の粉砕機で粗粉砕し、さら
に乾式または湿式のボールミル等で下記粒子径まで微粉
砕して得られる。本発明においでは粒子径が10μ匝以
下、好ましくは3μm以下で、かつ上記球状粒子径の2
15以下のバルクメソフェーズピッチ微粒子が有効に使
用される。また、バルクメソフェーズピッチのキノリン
ネ溶分(Ql) 、)ルエン不溶分(TI)等の組成は
特に制限されないが、軟化点が好ましくは200〜38
0℃、特に好ましくは280〜340℃のものを使用す
ると、酸化性雰囲気下で熱処理して熱安定化する処理が
短時間で済むようになり、効率が向上する傾向にある。
In addition, the bulk mesophase pitch fine particles used as a starting material together with the spherical particles in the production method of the present invention are petroleum-based or coal-based bulk mesophase pitch (pitch containing optically anisotropic liquid crystal called mesophase). It is obtained by coarsely pulverizing it with a pulverizer such as a show crusher, and then finely pulverizing it with a dry or wet ball mill to the following particle size. In the present invention, the particle size is 10 μm or less, preferably 3 μm or less, and 2 μm or less of the above spherical particle size.
Bulk mesophase pitch particles of 15 or less are effectively used. In addition, the composition of the quinoline soluble content (Ql), ) luene insoluble content (TI), etc. of the bulk mesophase pitch is not particularly limited, but the softening point is preferably 200 to 38
When a temperature of 0° C., particularly preferably 280 to 340° C., is used, heat treatment in an oxidizing atmosphere for heat stabilization can be completed in a short time, and efficiency tends to be improved.

本発明の製造方法においては、先ず前記の球状粒子とバ
ルクメソフェーズピッチ微粒子とをメカノケミカル法に
より乾式混合することによって球状粒子表面をバルクメ
ソフェーズピッチで被覆(カプセル化)してピッチ被覆
された球状粒子(以下、ピッチ被覆球状粒子という)を
得る。メカノケミカル法を用いることによって被覆が効
率よく行なわれ、かつ真球性等の諸特性に優れる球状炭
素材料が粒度分布が広範に亘ることなく得られる。
In the production method of the present invention, first, the spherical particles and bulk mesophase pitch fine particles are dry mixed by a mechanochemical method to coat (encapsulate) the surface of the spherical particles with bulk mesophase pitch, thereby producing pitch-coated spherical particles. (hereinafter referred to as pitch-coated spherical particles). By using the mechanochemical method, coating can be performed efficiently and a spherical carbon material having excellent properties such as sphericity can be obtained without having a wide particle size distribution.

本発明の製造方法で行なわれるメカノケミカル法は一般
に粉体/粉体混合法とも呼ばれる方法である。すなわち
、粒子径の異なる異種粉体、例えば本発明における球状
粒子と微粒子を乾式混合することによって先ず球状粒子
表面に微粒子が付着した状態となり、さらに混合を続け
ると加えられる剪断力、機械的衝撃、摩擦力等によって
球状粒子に付着した微粒子が連続した壁膜に変化して、
いわゆるマイクロカプセルとなる。
The mechanochemical method carried out in the production method of the present invention is generally also called a powder/powder mixing method. That is, by dry mixing different types of powders with different particle sizes, for example, the spherical particles and fine particles in the present invention, the fine particles are first attached to the surface of the spherical particles, and when the mixing is continued, shearing force, mechanical impact, Fine particles attached to spherical particles change into a continuous wall film due to frictional force, etc.
They become so-called microcapsules.

本発明にあっては、球状粒子100重量部に対して微粒
子12.5〜25重量部の混合割合で上記乾式混合を行
なうことが好ましい。また、メカノケミカル法における
乾式混合は常温、空気中でも可能であり、その際の諸条
件は使用する出発材料、処理量等に応じて適宜選択され
、混合中に球状粒子が粉砕せず、その表面にバルクメソ
フェーズピッチが均一に被覆され、結果として良好な球
状炭素材料が得られればよい。一般に1〜10時間の混
合で目的とするピッチ被覆球状粒子が得られ、また、0
.2〜2.0kg/c丑2の加圧条件下で抑圧混合する
とより効率良くピッチ被覆球状粒子が得られる。
In the present invention, it is preferable to carry out the dry mixing at a mixing ratio of 12.5 to 25 parts by weight of fine particles to 100 parts by weight of spherical particles. In addition, dry mixing in the mechanochemical method is possible at room temperature or in air, and the conditions at that time are appropriately selected depending on the starting materials used, the amount of processing, etc., and the spherical particles are not crushed during mixing and their surface It is sufficient that the bulk mesophase pitch is uniformly coated on the surface of the carbon material, resulting in a good spherical carbon material. In general, the desired pitch-coated spherical particles can be obtained by mixing for 1 to 10 hours, and
.. Pitch-coated spherical particles can be obtained more efficiently by suppressing mixing under a pressurized condition of 2 to 2.0 kg/c 2.

また、上記のメカノケミカル法における乾式混合に使用
する装置としては、球状粒子表面にバルクメソフェーズ
ピッチ微粒子を付着させるだけであればV型混合機のよ
うな一般的な混合装置でも可能であるが、連続的な壁膜
を形成するためには圧力、剪断力、機械的衝撃、摩擦力
等を連続して加えられる装置が必要であり、ライカイ機
(自動乳鉢)、遠心回転型混合機等が好ましく、工業的
利用性の点でライカイ機が特に好ましい。
In addition, as a device used for dry mixing in the above mechanochemical method, a general mixing device such as a V-type mixer can be used as long as the bulk mesophase pitch fine particles are simply attached to the surface of the spherical particles. In order to form a continuous wall film, a device that can continuously apply pressure, shearing force, mechanical impact, frictional force, etc. is required, and a laikai machine (automatic mortar), centrifugal rotating mixer, etc. are preferable. In terms of industrial applicability, the Laikai machine is particularly preferred.

ライカイ機を使用して乾式混合している様子の一例を第
1図に示す。同図において]は乳棒、2は乳鉢、3は球
状粒子と微粒子との混合物、aは乳棒1の回転方向、b
は乳鉢2の回転方向を示す。
An example of dry mixing using a Raikai machine is shown in Figure 1. In the figure] is a pestle, 2 is a mortar, 3 is a mixture of spherical particles and fine particles, a is the rotation direction of pestle 1, b
indicates the rotation direction of the mortar 2.

この場合、乳棒1を乳鉢2に押し付ける圧力を0.2〜
2.0  kg/cIl12、乳棒1の回転数/乳鉢2
の回転数を1b〜20ハ、混合物3の層の厚さを0.2
〜3.0m+nとすると効率良く乾式混合できるので好
ましい。なお、乳棒1の大きさおよび数、乳鉢2の大き
さ等のライカイ機の構造は特に制限されず、処理量等に
応じて市販のライカイ機を使用することができる。
In this case, the pressure with which pestle 1 is pressed against mortar 2 is 0.2~
2.0 kg/cIl12, number of rotations of pestle 1/mortar 2
The rotation speed is 1b to 20c, and the thickness of the layer of mixture 3 is 0.2
It is preferable to set the range to 3.0 m+n because dry mixing can be carried out efficiently. Note that the structure of the Raikai machine, such as the size and number of pestles 1 and the size of the mortar 2, is not particularly limited, and a commercially available Raikai machine may be used depending on the throughput and the like.

なお、本発明にあっては、付着、連続的壁膜形成の両工
程を同一の混合装置で連続して行なうことが好ましいが
、各々別の装置を用いて行なうことも可能である。
In the present invention, it is preferable that both the steps of adhesion and continuous wall film formation are carried out successively using the same mixing device, but it is also possible to carry out each step using separate devices.

次に、上述の方法で得られたピッチ被覆球状粒子を、バ
ッチ式、連続式、ロータリーキルン式等の熱処理炉内に
おいて空気、酸素等の酸化性雰囲気下で熱処理して熱安
定化(不融化)する。その際の熱処理条件としては、昇
温速度10〜80℃/hrで250〜350℃まで昇温
して熱処理する。前記温度範囲内で保持することは必ず
しも必要ではないが、10分〜1時間保持すればより好
ましい。
Next, the pitch-coated spherical particles obtained by the above method are thermally stabilized (infusible) by heat treatment in an oxidizing atmosphere such as air or oxygen in a heat treatment furnace such as a batch type, continuous type, or rotary kiln type. do. The heat treatment conditions at this time are such that the temperature is raised to 250 to 350°C at a heating rate of 10 to 80°C/hr. Although it is not necessarily necessary to maintain the temperature within the above temperature range, it is more preferable to maintain it for 10 minutes to 1 hour.

さらに、本発明の製造方法においては、このようにして
熱処理されたピッチ被覆球状粒子を窒素ガス、アルゴン
ガス等の不活性雰囲気下または真空下で焼成することに
よって炭素化および/または黒鉛化して球状炭素材料を
得る。その際の焼成条件としては、昇温速度30〜30
0’C/hrで800〜1000℃まで昇温しで炭素化
する。この温度範囲内に到達すれば必ずしも保持する必
要はないが、l。
Furthermore, in the production method of the present invention, the pitch-coated spherical particles heat-treated in this way are carbonized and/or graphitized by firing in an inert atmosphere such as nitrogen gas or argon gas or under vacuum, and the pitch-coated spherical particles are carbonized and/or graphitized to form spherical particles. Obtain carbon material. The firing conditions at that time include a heating rate of 30 to 30
The temperature is raised to 800 to 1000°C at 0'C/hr to carbonize. Although it is not necessarily necessary to maintain the temperature once it reaches this temperature range, l.

分〜2時間保持すればより好ましい。さらに、上記炭素
化の後に、引き続いて不活性雰囲気または真空下におい
て昇温速度50〜1000℃/hrで2000〜300
0℃まで昇温しで黒鉛化する。この温度範囲内に到達す
れば必ずしも保持する必要はないが、10] 0 分〜1時間保持すればより好ましい。黒鉛化すると得ら
れる球状炭素材料の被覆部の結晶化が進んだものとなる
ので電気伝導性がより向上し好ましい。
It is more preferable to hold it for minutes to 2 hours. Furthermore, after the above carbonization, the temperature is increased to 2000 to 300°C at a heating rate of 50 to 1000°C/hr in an inert atmosphere or under vacuum.
Graphitize by raising the temperature to 0°C. It is not necessary to hold the temperature once it reaches this temperature range, but it is more preferable to hold it for 10 minutes to 1 hour. Graphitization is preferable because the resulting coated portion of the spherical carbon material becomes more crystallized, which further improves electrical conductivity.

上述の本発明の製造方法によって、一般に、粉体電気比
抵抗が5.0X10−1〜5.0XlG−2ΩCl11
1真比重が1.4〜1.6、嵩比重がO,S〜0.9、
比表面積が約ITIt、/g未満の特性を有しかつ真球
性の高い球状炭素材料を得ることが可能である。
By the above-described manufacturing method of the present invention, the powder electrical resistivity is generally 5.0X10-1 to 5.0X1G-2ΩCl11
1 true specific gravity is 1.4 to 1.6, bulk specific gravity is O,S to 0.9,
It is possible to obtain a spherical carbon material having a specific surface area of less than about ITIt,/g and having high sphericity.

[実施例] 以下、実施例および比較例に基づいて本発明をより具体
的に説明する。
[Examples] Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples.

実施例1 湿式分級によってlO〜15μ■に整粒した市販の球状
フェノール樹脂600gと、粒子径3μ■以下に微粉砕
した石炭系バルクメソフェーズピッチ粉末(軟化点82
0℃)  100gとを出発材料として使用した。これ
らを均一に混合した後、ライカイ機(自動乳鉢、石川工
場製、型番71号)中で下記条件で乾式混合処理(メカ
ノケミカル処理)を行ない、球状フェノール樹脂粒子表
面をバルクメソフェーズピッチで均一に被覆してピッチ
被覆球状粒子を得た。
Example 1 600 g of a commercially available spherical phenol resin sized to 10 to 15 μ■ by wet classification and coal-based bulk mesophase pitch powder (softening point 82
0° C.) was used as starting material. After uniformly mixing these, dry mixing treatment (mechanochemical treatment) is performed in a Raikai machine (automatic mortar, manufactured by Ishikawa factory, model number 71) under the following conditions, and the surface of the spherical phenolic resin particles is uniformly coated with bulk mesophase pitch. Pitch-coated spherical particles were obtained by coating.

(メカノケミカル条件) ・処理時間・・・8.5hr ・乳棒を乳鉢に押し付ける圧力・・・1.2 kg/C
n2・乳棒の回転数/乳鉢の回転数・・・BOrpm/
80rpm・混合物の層の厚さ・・・約1ma+ このピッチ被覆球状粒子を空気中で30℃/hrの昇温
速度で280℃まで昇温し、1時間保持して熱安定化処
理を行なった。
(Mechanochemical conditions) ・Processing time...8.5hr ・Pressure for pressing pestle against mortar...1.2 kg/C
n2・Rotation speed of pestle/Rotation speed of mortar...BOrpm/
80 rpm・Mixture layer thickness: approx. 1 ma+ The pitch-coated spherical particles were heated to 280°C at a heating rate of 30°C/hr in air, and maintained for 1 hour for thermal stabilization treatment. .

次に、熱安定化処理されたピッチ被覆球状粒子を窒素雰
囲気下で200℃/hrの昇温速度で1000℃まで昇
温しで1時間保持して炭素化せしめて炭素質の球状炭素
材料を得た。
Next, the heat-stabilized pitch-coated spherical particles were heated to 1000°C at a heating rate of 200°C/hr in a nitrogen atmosphere, and held for 1 hour to carbonize the carbonaceous spherical carbon material. Obtained.

得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
Table 1 shows the particle diameter and various properties of the obtained spherical carbon material.

1 2 第1表から明らかなように、本実施例においては粉体電
気比抵抗が低くかつ他の諸特性にも優れた球状炭素材料
を得ることができた。
1 2 As is clear from Table 1, in this example, a spherical carbon material with low powder electrical resistivity and excellent other properties could be obtained.

比較例1 球状粒子をバルクメソフェーズピッチで被覆することな
くそのまま熱安定化および炭素化するようにした以外は
実施例1と同様にして球状炭素材料を得た。
Comparative Example 1 A spherical carbon material was obtained in the same manner as in Example 1, except that the spherical particles were thermally stabilized and carbonized as they were without being coated with bulk mesophase pitch.

得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
Table 1 shows the particle diameter and various properties of the obtained spherical carbon material.

第1表から明らかなように、本比較例において得られた
球状炭素材料には微細孔が多数存在しており、かつ粉体
電気比抵抗が著しく劣ったものであった。
As is clear from Table 1, the spherical carbon material obtained in this comparative example had a large number of micropores and had a significantly poor powder electrical resistivity.

実施例2 熱安定化処理されたピッチ被覆球状粒子を炭素化した後
に、引き続いて黒鉛化炉内で600℃/hrの昇温速度
で最終的に2800℃まで昇温しで30分間保持して黒
鉛化せしめた以外は実施例1と同様にして黒鉛質の球状
炭素材料を得た。
Example 2 After carbonizing the heat-stabilized pitch-coated spherical particles, the temperature was subsequently raised to 2800°C at a rate of 600°C/hr in a graphitization furnace and held for 30 minutes. A graphite spherical carbon material was obtained in the same manner as in Example 1 except that it was graphitized.

 4 得られた球状炭素材料の粒子構造を示す写真(S EM
写真)を第2図に示し、またその粒子径並びに諸特性を
第1表に示す。
4 Photograph showing the particle structure of the obtained spherical carbon material (SEM
(photo) is shown in FIG. 2, and its particle size and various properties are shown in Table 1.

第1表から明らかなように、本実施例においては粉体電
気比抵抗が非常に低くかつ他の諸特性にも優れた球状炭
素材料を得ることができた。
As is clear from Table 1, in this example, a spherical carbon material with a very low powder electrical resistivity and excellent other properties could be obtained.

比較例2 球状粒子をバルクメソフェーズピッチで被覆することな
くそのまま熱安定化、炭素化および黒鉛化するようにし
た以外は実施例2と同様にして球状炭素材料を得た。
Comparative Example 2 A spherical carbon material was obtained in the same manner as in Example 2, except that the spherical particles were thermally stabilized, carbonized, and graphitized without being coated with bulk mesophase pitch.

得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
Table 1 shows the particle diameter and various properties of the obtained spherical carbon material.

第1表から明らかなように、本比較例において得られた
球状炭素材料は粉体電気比抵抗が劣り、しかも球状粒子
から発生した熱分解ガスが析出し、ロッド状の生成物と
なって球状炭素材料表面に多数付着していた。
As is clear from Table 1, the spherical carbon material obtained in this comparative example has an inferior powder electrical resistivity, and furthermore, the pyrolysis gas generated from the spherical particles precipitates and becomes a rod-shaped product. A large number of particles were attached to the surface of the carbon material.

実施例3 使用する球状フェノール樹脂を粒子径45〜50μmの
もの、石炭系バルクメソフェーズピッチ粉末を粒子径1
0μm以下のものとし、かつライカイ機における乾式混
合条件を下記のようにした以外は実施例2と同様にして
黒鉛質の球状炭素材料を得た。
Example 3 The spherical phenol resin used had a particle size of 45 to 50 μm, and the coal-based bulk mesophase pitch powder had a particle size of 1.
A graphite spherical carbon material was obtained in the same manner as in Example 2 except that the particle size was 0 μm or less and the dry mixing conditions in the Laikai machine were as follows.

(メカノケミカル条件) ・処理時間・・・3hr ・乳棒を乳鉢に押し付ける圧力・・・0.5 kg/c
+n2・乳棒の回転数/乳鉢の回転数・・・80rpm
/80rpm・混合物の層の厚さ・・・約2mm 得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
(Mechanochemical conditions) ・Processing time...3hr ・Pressure for pressing pestle against mortar...0.5 kg/c
+n2・Rotation speed of pestle/Rotation speed of mortar...80rpm
/80 rpm・Thickness of layer of mixture...approximately 2 mm The particle diameter and various properties of the obtained spherical carbon material are shown in Table 1.

第1表から明らかなように、本実施例においては粉体電
気比抵抗が充分に低くかつ他の諸特性にも優れた球状炭
素材料を得ることができた。
As is clear from Table 1, in this example, a spherical carbon material with sufficiently low powder electrical resistivity and excellent other properties could be obtained.

実施例4 まず、平均分子量が2000のポリビニルアルコール2
0gと水400gをフラスコ中で撹拌して完全に溶解さ
せる。ここにジビニルベンゼン50gとスチレン50g
の混合液100g、重合触媒としてのベン 5 6 ゼンバーオキサイド1.0gおよび乳化剤としてのノニ
オン(非イオン性界面活性剤;ポリカルボン酸型高分子
界面活性剤)  1.Ogを添加して懸濁させ、撹拌し
ながら75〜85℃まで加温して重合反応を開始させて
1時間重合反応させた。その間に重合反応による発熱に
よって反応溶液は95〜98℃まで昇温した。その後、
得られた反応溶液を50℃以下になるまで撹拌しながら
冷却し、さらに室温まで放冷して分散液を得た。得られ
た分散液から球状生成物を濾別し、これを水で2回、さ
らにメタノールで3回洗浄した後、揮発成分による引火
に注意しながら100℃前後で乾燥して球状ジビニルベ
ンゼン重合体を得た。
Example 4 First, polyvinyl alcohol 2 with an average molecular weight of 2000
0 g and 400 g of water are stirred in a flask to completely dissolve. Here, 50g of divinylbenzene and 50g of styrene.
100 g of a mixed solution, 1.0 g of ben 5 6 sember oxide as a polymerization catalyst, and nonionic (nonionic surfactant; polycarboxylic acid type polymeric surfactant) as an emulsifier. Og was added and suspended, and the mixture was heated to 75 to 85° C. while stirring to initiate a polymerization reaction, and the polymerization reaction was carried out for 1 hour. During this time, the temperature of the reaction solution was raised to 95 to 98°C due to heat generated by the polymerization reaction. after that,
The resulting reaction solution was cooled to 50° C. or below while stirring, and then allowed to cool to room temperature to obtain a dispersion. A spherical product was filtered from the resulting dispersion, washed twice with water and three times with methanol, and dried at around 100°C while being careful not to catch fire from volatile components to obtain a spherical divinylbenzene polymer. I got it.

得られた球状ジビニルベンゼン重合体を湿式分級によっ
て15〜20μmに整粒したものを750gと、粒子径
5μm以下に微粉砕した石油系バルクメソフェーズピッ
チ粉末(軟化点334℃)  100gとを出発材料と
して使用し、かつライカイ機における乾式混合条件を下
記のようにし、さらに黒鉛化処理の際の昇温速度を60
0℃/11「、最終温度を2300℃とした以外は実施
例2と同様にして黒鉛質の球状炭素材料を得た。
As starting materials, 750 g of the obtained spherical divinylbenzene polymer was sized to 15 to 20 μm by wet classification, and 100 g of petroleum-based bulk mesophase pitch powder (softening point 334 ° C.) finely pulverized to a particle size of 5 μm or less. The dry mixing conditions in the Laikai machine were as follows, and the temperature increase rate during graphitization was set to 60°C.
A graphite spherical carbon material was obtained in the same manner as in Example 2 except that the final temperature was 2300°C.

(メカノケミカル条件) ・処理時間・・・2.5hr ・乳棒を乳鉢に押し付ける圧力・・・1.5 kg/c
m2・乳棒の回転数/乳鉢の回転数・・・Hrpm/3
0rpm・混合物の層の厚さ・・・約11 得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
(Mechanochemical conditions) ・Processing time: 2.5 hr ・Pressure to press the pestle against the mortar: 1.5 kg/c
m2・Rotation speed of pestle/Rotation speed of mortar...Hrpm/3
0 rpm・Thickness of layer of mixture: approx. 11 Table 1 shows the particle size and various properties of the obtained spherical carbon material.

第1表から明らかなように、本実施例においても粉体電
気比抵抗が充分に低くかつ他の諸特性にも優れた球状炭
素材料を得ることができた。
As is clear from Table 1, in this example as well, a spherical carbon material with sufficiently low powder electrical resistivity and excellent other properties could be obtained.

比較例3 球状粒子をバルクメソフェーズピッチで被覆することな
くそのまま熱安定化、炭素化および黒鉛化するようにし
た以外は実施例4と同様にして球状炭素材料を得た。
Comparative Example 3 A spherical carbon material was obtained in the same manner as in Example 4, except that the spherical particles were thermally stabilized, carbonized, and graphitized without being coated with bulk mesophase pitch.

得られた球状炭素材料の粒子径並びに諸特性を第1表に
示す。
Table 1 shows the particle diameter and various properties of the obtained spherical carbon material.

第1表から明らかなように、本比較例において 7 8 得られた球状炭素材料は粉体電気比抵抗が劣り、しかも
球状粒子から発生した熱分解ガスが析出し、ロッド状の
生成物となって球状炭素材料表面に多数付着していた。
As is clear from Table 1, the spherical carbon material obtained in this comparative example had poor powder electrical resistivity, and furthermore, the pyrolysis gas generated from the spherical particles precipitated and became rod-shaped products. A large number of particles were attached to the surface of the spherical carbon material.

比較例4 軟化点が311℃の石炭系バルクメソフェーズを微粉砕
した後、分級して粒子、径25〜50μのピッチ粉末を
得た。
Comparative Example 4 After finely pulverizing a coal-based bulk mesophase having a softening point of 311°C, it was classified to obtain pitch powder particles having a diameter of 25 to 50 μm.

得られたピッチ粉末80gをフタル酸ジイソブチル14
J中に分散させ、この全量を20Jオートクレーブ中に
投入した。
80 g of the obtained pitch powder was mixed with 14 g of diisobutyl phthalate.
The mixture was dispersed in J and the entire amount was put into a 20J autoclave.

投入後、オートクレーブ系内を真空引きし、窒素ガスで
パージした。そして、ピッチ粉末の沈降を防ぐため、直
ちに撹拌機を500rpmで回転させ、撹拌しながら1
20℃/hrで昇温を開始した。その後、系内の温度が
330℃に達したら直ちに放冷し、分散液を得た。なお
、撹拌は150℃に下がるまで続けた。
After charging, the inside of the autoclave system was evacuated and purged with nitrogen gas. Then, in order to prevent the pitch powder from settling, immediately rotate the stirrer at 500 rpm, and while stirring,
The temperature was started to increase at 20°C/hr. Thereafter, as soon as the temperature inside the system reached 330° C., the system was allowed to cool to obtain a dispersion liquid. Note that stirring was continued until the temperature dropped to 150°C.

この時、最大自生圧は6kg/cmであった。At this time, the maximum autogenous pressure was 6 kg/cm.

次に、得られた分散液をオートクレーブから取り出して
吸引濾過を行ない、濾別された球状生成物をアセトンで
洗浄、乾燥して球状のメソカーボンマイクロビーズを調
整した。
Next, the obtained dispersion was taken out from the autoclave and filtered by suction, and the filtered spherical product was washed with acetone and dried to prepare spherical mesocarbon microbeads.

得られた球状のメソカーボンマイクロビーズを湿式分級
によって25〜35μmに整粒したものを球状粒子とし
て用い、これをバルクメソフェーズピッチで被覆するこ
となくそのまま実施例2と同様の条件で熱安定化、炭素
化および黒鉛化して黒鉛質の球状炭素材料を得た。
The obtained spherical mesocarbon microbeads were sized to 25 to 35 μm by wet classification and used as spherical particles, which were then thermally stabilized under the same conditions as in Example 2 without being coated with bulk mesophase pitch. A graphitic spherical carbon material was obtained by carbonization and graphitization.

得られた球状炭素材料の粒子径並びに緒特性を第1表に
示す。
Table 1 shows the particle size and mechanical properties of the obtained spherical carbon material.

第1表から明らかなように、本比較例において得られた
球状炭素材料は真比重が大きくかつ真球性が極めて悪い
ものであり、しかも得られた球状炭素材料の粒度分布は
広かった。
As is clear from Table 1, the spherical carbon material obtained in this comparative example had a large true specific gravity and extremely poor sphericity, and the particle size distribution of the obtained spherical carbon material was wide.

[発明の効果] 以上説明のごとく、本発明の製造方法によって、電気伝
導性、分散安定性および真球性のいずれにも優れている
炭素質および/または黒鉛質の球状炭素材料を効率よく
、しかも狭い粒度分布で製造 9 0 することが可能となる。
[Effects of the Invention] As explained above, the production method of the present invention can efficiently produce carbonaceous and/or graphitic spherical carbon materials that are excellent in electrical conductivity, dispersion stability, and sphericity. Moreover, it becomes possible to manufacture with a narrow particle size distribution.

従って、本発明の製造方法によって得られる球状炭素材
料は、導電性ゴム、導電性プラスチック、導電性塗料の
充填材等として好適に使用されるものである。
Therefore, the spherical carbon material obtained by the production method of the present invention is suitably used as a filler for conductive rubber, conductive plastic, conductive paint, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明においてライカイ機で乾式混合する様子
の一例を模式的に示す断面図であり、第2図は本発明の
一実施例(実施例2)で得られた球状炭素材料の粒子構
造を示す写真である。
FIG. 1 is a cross-sectional view schematically showing an example of dry mixing using a Raikai machine in the present invention, and FIG. 2 is a spherical carbon material particle obtained in an example (Example 2) of the present invention. This is a photo showing the structure.

Claims (1)

【特許請求の範囲】 1、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キ
シレン樹脂、ジビニルベンゼン重合体、スチレン−ジビ
ニルベンゼン共重合体、ポリアクリロニトリルのうちの
少なくとも一種からなる粒子径3〜50μmの球状粒子
と、粒子径が10μm以下でかつ上記球状粒子径の2/
5以下であるバルクメソフェーズピッチ微粒子とをメカ
ノケミカル法により乾式混合して該球状粒子表面を該バ
ルクメソフェーズピッチで被覆して得られるピッチ被覆
された球状粒子を、酸化性雰囲気下で熱処理して熱安定
化し、次いで不活性雰囲気または真空下で焼成して炭素
化および/または黒鉛化することを特徴とする球状炭素
材料の製造方法。 2、前記球状粒子と前記バルクメソフェーズピッチ微粒
子との乾式混合を、ライカイ機によって0.2〜2.0
kg/cm^2の加圧下で行なうことを特徴とする、請
求項1に記載の球状炭素材料の製造方法。
[Scope of Claims] 1. Spherical particles with a particle size of 3 to 50 μm made of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and polyacrylonitrile. and the particle size is 10 μm or less and 2/2 of the above spherical particle size.
Pitch-coated spherical particles obtained by dry mixing bulk mesophase pitch fine particles having a particle diameter of 5 or less using a mechanochemical method and coating the surface of the spherical particles with the bulk mesophase pitch are heat-treated in an oxidizing atmosphere. A method for producing a spherical carbon material, which comprises stabilizing it and then carbonizing and/or graphitizing it by firing in an inert atmosphere or under vacuum. 2. The spherical particles and the bulk mesophase pitch fine particles are dry mixed using a Raikai machine at a concentration of 0.2 to 2.0
2. The method for producing a spherical carbon material according to claim 1, wherein the method is carried out under a pressure of kg/cm^2.
JP1325864A 1989-12-18 1989-12-18 Method for producing spherical carbon material Expired - Lifetime JP2645756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325864A JP2645756B2 (en) 1989-12-18 1989-12-18 Method for producing spherical carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325864A JP2645756B2 (en) 1989-12-18 1989-12-18 Method for producing spherical carbon material

Publications (2)

Publication Number Publication Date
JPH03187908A true JPH03187908A (en) 1991-08-15
JP2645756B2 JP2645756B2 (en) 1997-08-25

Family

ID=18181471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325864A Expired - Lifetime JP2645756B2 (en) 1989-12-18 1989-12-18 Method for producing spherical carbon material

Country Status (1)

Country Link
JP (1) JP2645756B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056811A1 (en) * 1999-03-23 2000-09-28 The University Of Melbourne Improved carbon-containing materials
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof
JP2006151797A (en) * 2004-10-28 2006-06-15 Mitsubishi Chemicals Corp Spherical carbon particle aggregate and manufacturing method thereof
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US7785661B2 (en) 2003-12-19 2010-08-31 Conocophillips Company Methods of preparing composite carbon-graphite-silicon particles and using same
EP1743870A4 (en) * 2004-03-30 2011-04-06 Kureha Corp Process for producing spherical carbon material
WO2011078145A1 (en) * 2009-12-24 2011-06-30 東レ株式会社 Carbon microparticle and process for production thereof
CN104984745A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Bactericidal composite spherical activated carbon and preparation method thereof
CN104984729A (en) * 2015-07-13 2015-10-21 安徽成方新材料科技有限公司 Fire proofed magnetic asphalt resin composite spherical activated carbon and preparation method thereof
CN104986763A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Asphalt resin composite spherical activated carbon with developed apertures and low energy consumption and preparation method thereof
CN104986764A (en) * 2015-07-13 2015-10-21 安徽成方新材料科技有限公司 Green environment-friendly light-weight porous reinforced compound spherical active carbon and preparation method of active carbon
CN104984727A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Asphalt resin composite-based spherical activated carbon with fast absorption effect enhanced and preparation method thereof
CN104998617A (en) * 2015-07-13 2015-10-28 安徽成方新材料科技有限公司 Composite based spherical active carbon added with hard polyurethane foam wastes and preparation method for spherical active carbon
CN105013441A (en) * 2015-07-06 2015-11-04 安徽成方新材料科技有限公司 High-temperature resistant corrosion resistant composite spherical activated carbon and preparation method therefor
CN105016336A (en) * 2015-07-13 2015-11-04 安徽成方新材料科技有限公司 Environmental-friendly type asphalt resin mixed base spherical activated carbon obtained through utilization of waste and preparation method of environmental-friendly type asphalt resin mixed base spherical activated carbon
CN105013440A (en) * 2015-07-06 2015-11-04 安徽成方新材料科技有限公司 Composite spherical activated carbon with enhanced oil absorption capability and preparation method therefor
CN105032347A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Smoke suppression and flame retardation modified asphalt composite resin spherical active carbon and preparation method thereof
CN105032346A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Nano zinc oxide zirconium oxide modified asphalt resin composite spherical active carbon and preparation method thereof
CN105032349A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Asphaltic resin composite spherical activated carbon with expanded graphite enhanced oil absorption property and preparation method therefor
CN105032350A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Sterilizing and deodorizing spherical activated carbon for gaseous-phase and liquid-phase adsorption and preparation method thereof
CN105032351A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Sawdust-reinforced oil-absorbing composite spherical active carbon and preparation method therefor
CN105032365A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Composite spherical active carbon with electrostatic adsorption effect, and preparation method thereof
CN105056879A (en) * 2015-07-13 2015-11-18 安徽成方新材料科技有限公司 Composite spherical activated carbon added with polyester fibers and capable of improving mechanical strength as well as preparation method of composite spherical activated carbon
CN105129793A (en) * 2015-07-06 2015-12-09 安徽成方新材料科技有限公司 Composite asphalt resin spherical active carbons with magnetism and preparation method thereof
CN105129794A (en) * 2015-07-13 2015-12-09 安徽成方新材料科技有限公司 Nano cotton adsorption-reinforced composite spherical activated carbon and preparation method thereof
CN108940134A (en) * 2018-06-20 2018-12-07 东南大学 Coal pitch spheres aoxidize infusible continuous reaction apparatus and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745217A (en) * 2018-05-11 2018-11-06 苏州泽漫生物技术有限公司 The preparation method of more shell hollow magnetic microballoons
KR102168615B1 (en) * 2019-12-11 2020-11-04 이재희 Nano-porous mineral activated carbon and its using method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056811A1 (en) * 1999-03-23 2000-09-28 The University Of Melbourne Improved carbon-containing materials
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof
US7618678B2 (en) * 2003-12-19 2009-11-17 Conocophillips Company Carbon-coated silicon particle powders as the anode material for lithium ion batteries and the method of making the same
US7785661B2 (en) 2003-12-19 2010-08-31 Conocophillips Company Methods of preparing composite carbon-graphite-silicon particles and using same
EP1743870A4 (en) * 2004-03-30 2011-04-06 Kureha Corp Process for producing spherical carbon material
JP2006151797A (en) * 2004-10-28 2006-06-15 Mitsubishi Chemicals Corp Spherical carbon particle aggregate and manufacturing method thereof
WO2011078145A1 (en) * 2009-12-24 2011-06-30 東レ株式会社 Carbon microparticle and process for production thereof
TWI496738B (en) * 2009-12-24 2015-08-21 Toray Industries Carbon microparticle and production method thereof
CN104984727A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Asphalt resin composite-based spherical activated carbon with fast absorption effect enhanced and preparation method thereof
CN105032347A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Smoke suppression and flame retardation modified asphalt composite resin spherical active carbon and preparation method thereof
CN104986763A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Asphalt resin composite spherical activated carbon with developed apertures and low energy consumption and preparation method thereof
CN105129793A (en) * 2015-07-06 2015-12-09 安徽成方新材料科技有限公司 Composite asphalt resin spherical active carbons with magnetism and preparation method thereof
CN104984745A (en) * 2015-07-06 2015-10-21 安徽成方新材料科技有限公司 Bactericidal composite spherical activated carbon and preparation method thereof
CN105032365A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Composite spherical active carbon with electrostatic adsorption effect, and preparation method thereof
CN105013441A (en) * 2015-07-06 2015-11-04 安徽成方新材料科技有限公司 High-temperature resistant corrosion resistant composite spherical activated carbon and preparation method therefor
CN105032346A (en) * 2015-07-06 2015-11-11 安徽成方新材料科技有限公司 Nano zinc oxide zirconium oxide modified asphalt resin composite spherical active carbon and preparation method thereof
CN105013440A (en) * 2015-07-06 2015-11-04 安徽成方新材料科技有限公司 Composite spherical activated carbon with enhanced oil absorption capability and preparation method therefor
CN104998617A (en) * 2015-07-13 2015-10-28 安徽成方新材料科技有限公司 Composite based spherical active carbon added with hard polyurethane foam wastes and preparation method for spherical active carbon
CN105016336A (en) * 2015-07-13 2015-11-04 安徽成方新材料科技有限公司 Environmental-friendly type asphalt resin mixed base spherical activated carbon obtained through utilization of waste and preparation method of environmental-friendly type asphalt resin mixed base spherical activated carbon
CN105032349A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Asphaltic resin composite spherical activated carbon with expanded graphite enhanced oil absorption property and preparation method therefor
CN105032350A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Sterilizing and deodorizing spherical activated carbon for gaseous-phase and liquid-phase adsorption and preparation method thereof
CN105032351A (en) * 2015-07-13 2015-11-11 安徽成方新材料科技有限公司 Sawdust-reinforced oil-absorbing composite spherical active carbon and preparation method therefor
CN104984729A (en) * 2015-07-13 2015-10-21 安徽成方新材料科技有限公司 Fire proofed magnetic asphalt resin composite spherical activated carbon and preparation method thereof
CN105056879A (en) * 2015-07-13 2015-11-18 安徽成方新材料科技有限公司 Composite spherical activated carbon added with polyester fibers and capable of improving mechanical strength as well as preparation method of composite spherical activated carbon
CN104986764A (en) * 2015-07-13 2015-10-21 安徽成方新材料科技有限公司 Green environment-friendly light-weight porous reinforced compound spherical active carbon and preparation method of active carbon
CN105129794A (en) * 2015-07-13 2015-12-09 安徽成方新材料科技有限公司 Nano cotton adsorption-reinforced composite spherical activated carbon and preparation method thereof
CN108940134A (en) * 2018-06-20 2018-12-07 东南大学 Coal pitch spheres aoxidize infusible continuous reaction apparatus and method

Also Published As

Publication number Publication date
JP2645756B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH03187908A (en) Production of spherical carbon material
JPS6150912B2 (en)
JPH0136670B2 (en)
JPH0131447B2 (en)
JP2000007436A (en) Graphite material and its production
JPH0826709A (en) Production of carbon material
CN108840331A (en) A kind of high interlamellar spacing artificial graphite material and preparation method thereof
KR100213315B1 (en) Manufacturing method of carbon-sintered body
KR101094785B1 (en) A method of preparing impregnating pitch for carbon-carbon composites
JPH02122828A (en) Manufacture of adsorbent
WO2004011690A1 (en) Sputtering target
JP2000319068A (en) Carbon/graphite composite molding
JP2924051B2 (en) Highly durable coating agent for carbonaceous molded insulation
JPS62292611A (en) Production of glassy carbon film
JPH01305859A (en) Production of high-density carbon material
JP2017178660A (en) Method for producing carbon particle
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JP2563105B2 (en) Manufacturing method of porous carbon material
KR100824430B1 (en) Graphite with high density and manufacturing method thereof
JP2023075031A (en) Composite material, resin composition and manufacturing method of composite material
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH06100366A (en) Production of ceramic-carbon composite material
JP2000319067A (en) Carbon/graphite composite molding
KR20040109982A (en) Manufacturing of carbonized low temperature heater
KR970008694B1 (en) Process for the preparation of carbon composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13