JPH02122828A - Manufacture of adsorbent - Google Patents

Manufacture of adsorbent

Info

Publication number
JPH02122828A
JPH02122828A JP63274441A JP27444188A JPH02122828A JP H02122828 A JPH02122828 A JP H02122828A JP 63274441 A JP63274441 A JP 63274441A JP 27444188 A JP27444188 A JP 27444188A JP H02122828 A JPH02122828 A JP H02122828A
Authority
JP
Japan
Prior art keywords
spherical
temperature
adsorbent
resin
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63274441A
Other languages
Japanese (ja)
Other versions
JP2646383B2 (en
Inventor
Katsuya Tokutomi
徳冨 勝也
Akira Yokoyama
横山 昭
Takanobu Kawai
隆伸 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbon Co Ltd
Original Assignee
Nippon Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Carbon Co Ltd filed Critical Nippon Carbon Co Ltd
Priority to JP63274441A priority Critical patent/JP2646383B2/en
Publication of JPH02122828A publication Critical patent/JPH02122828A/en
Application granted granted Critical
Publication of JP2646383B2 publication Critical patent/JP2646383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a good adsorbent by mixing and sticking together the spherical particles having a specific diameter and the ultrafine particles consisting of carbonaceous materials by mechanochemical method to coat the surfaces of the former uniformly with the latter, fixing them firmly and heat treating and baking. CONSTITUTION:The spherical particles consisting of phenol resin, naphthalene resin, furan resin, etc., and varying in size from 5mu to 120mu in diameter and the ultrafine particles consisting of carbonaceous materials (e.g., carbon black, colloidal graphite and graphite powder) and varying in size from 15nm to 100nm in diameter are mixed together by mechanochemical method, whereby the surfaces of the former are coated uniformly and firmly with the latter to form a porous spherical body, which, after its temperature is raised at a rate of 10-40 deg.C per hour for heat treatment at a temperature of 100-400 deg.C, is baked at a temperature of 800-3000 deg.C to obtain a carbonaceous and graphitized porous spherical adsorbent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吸着剤の製造方法に関し、さらに詳しくは高速
液体クロマトグラフィー(HP L C)、ゲル浸透ク
ロマトグラフィー(G P C)等に用いられるカラム
充填剤等として有用な炭素または黒鉛質の表面多孔性球
状吸着剤の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an adsorbent, and more specifically, an adsorbent used in high performance liquid chromatography (HPLC), gel permeation chromatography (GPC), etc. The present invention relates to a method for producing a surface-porous spherical carbon or graphite adsorbent useful as a column packing material, etc.

[従来の技術および発明が解決しようとする課題]従来
、カラム充填剤としては、試料の分離が良好にできるこ
とから0DS−シリカ系充填剤が主に用いられてきたが
、これは化学的な安定性が充分ではなく、特に耐アルカ
リ性に課題があり、さらに120℃程度を超えるような
条件下では側鎖が離脱して充填剤としての機能を失って
しまうので耐熱性に関しても充分なものではながった。
[Prior Art and Problems to be Solved by the Invention] Conventionally, 0DS-silica-based packing materials have been mainly used as column packing materials because they allow good separation of samples; It has insufficient properties, especially alkali resistance, and it also has insufficient heat resistance because the side chains are separated and it loses its function as a filler under conditions exceeding about 120°C. I got angry.

また、HPLC,GPC等用カラム充填剤として、ハイ
ポーラス型架橋球状ポリマー系充填剤が多用されている
が、これは溶媒により膨潤するので体積変化が生じ、さ
らにその体積変化の割合が溶媒の種類によって異なると
いう課題を有しており、また耐熱性に関しても現在市販
されているものでは140〜150℃が使用限界(高温
GPC用)であり、やはり充分なものではなかった。
In addition, highly porous crosslinked spherical polymer fillers are often used as column fillers for HPLC, GPC, etc., but as they swell with solvents, their volume changes, and the rate of volume change varies depending on the type of solvent. Furthermore, in terms of heat resistance, the use limit of currently commercially available products is 140 to 150°C (for high-temperature GPC), which is still not sufficient.

そこで、上述の課題を解決する吸着剤として、従来はガ
ス吸着、溶剤回収等に利用されていた活性炭のような炭
素系吸着剤が考えられた。しかし、市販されている活性
炭は破砕状、ペレット状のものが大半であり、球状のも
のにしても大多数は細孔径が20人未満のミクロポアの
ものなので、一般に細孔径が20〜1000人のトラン
ジショナルボアの球状吸着剤が好適に使用されるHPL
C,GPC等用カラム充填剤としては活性炭は一般に不
適であった。他方、従来の炭素系吸着剤のうちHPLC
SGPC等用カラム充填剤に供することが可能なもので
あっても、その細孔径、粒子径を任意に、精度よく制御
することが困難であり、試料の分離能力等の点で不十分
なものであった。
Therefore, carbon-based adsorbents such as activated carbon, which have been conventionally used for gas adsorption, solvent recovery, etc., have been considered as adsorbents to solve the above-mentioned problems. However, most commercially available activated carbon is in crushed or pellet form, and even if it is spherical, the majority have micropores with a pore size of less than 20 pores, so generally the pore size is between 20 and 1000 pores. HPL where transitional bore spherical adsorbent is preferably used
Activated carbon is generally unsuitable as a column packing material for C, GPC, etc. On the other hand, among conventional carbon-based adsorbents, HPLC
Even if it is possible to use it as a column packing material for SGPC, etc., it is difficult to arbitrarily and accurately control the pore size and particle size, and it is insufficient in terms of sample separation ability, etc. Met.

本発明はかかる現状に鑑み、細孔径、粒子径が任意に、
かつ精度よく制御されており、試料の分離が良好であり
、しかもカラム充填剤として充分な強度、優れた耐薬品
性、耐熱性を持ち、溶媒による体積変化も起こさない、
HPLCSGPC等用のカラム充填剤等として有用な吸
着剤の製造方法を提供することを目的とする。
In view of the current situation, the present invention provides that the pore size and particle size can be adjusted arbitrarily.
It is precisely controlled, provides good sample separation, and has sufficient strength as a column packing material, excellent chemical resistance, and heat resistance, and does not cause volume changes due to solvent.
It is an object of the present invention to provide a method for producing an adsorbent useful as a column packing material for HPLCSGPC, etc.

[課題を解決するための手段] 本発明の上記目的は、フェノール樹脂、ナフタレン樹脂
、フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体
、スチレン−ジビニルベンゼン共重合体、メンカーボン
のうち少なくとも一種からなる球状粒子と、炭素質材料
からなる微粒子とをメカノケミカル法により混合して球
状粒子表面に微粒子を均一に付着、固定化させて得られ
る表面多孔性球体を、一定条件下で熱処理した後に焼成
することによって達成される。
[Means for Solving the Problems] The above object of the present invention is to provide a spherical material made of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and mencarbon. A surface porous sphere obtained by mixing particles and fine particles made of carbonaceous material using a mechanochemical method to uniformly adhere and fix the fine particles on the surface of the spherical particles is heat-treated under certain conditions and then fired. achieved by.

すなわち本発明は、フェノール樹脂、ナフタレン樹脂、
フラン樹脂、キシレン樹脂、ジビニルベンゼン重合体、
スチレン−ジビニルベンゼン共重合体、メソカーボンの
うち少なくとも一種からなる粒子径5〜120μの球状
粒子と、粒子径15〜1100nの炭素質材料からなる
微粒子とをメカノケミカル法により混合して該球状粒子
表面に該微粒子を均一に付着、固定化させて得られる表
面多孔性球体を、酸化性雰囲気下、昇温速度10〜40
℃/hrで昇温して100〜400℃に保持し、次いで
不活性雰囲気または真空下、昇温速度50〜600℃/
hrで昇温して最終処理温度800〜3000℃で焼成
することを特徴とする吸着剤の製造方法にある。
That is, the present invention provides phenolic resin, naphthalene resin,
Furan resin, xylene resin, divinylbenzene polymer,
Spherical particles made of at least one of styrene-divinylbenzene copolymer and mesocarbon with a particle size of 5 to 120μ and fine particles made of a carbonaceous material with a particle size of 15 to 1100n are mixed by a mechanochemical method to obtain the spherical particles. Surface porous spheres obtained by uniformly adhering and fixing the fine particles to the surface are heated at a heating rate of 10 to 40 in an oxidizing atmosphere.
The temperature is raised at a rate of 100-400°C and then heated at a rate of 50-600°C/hr in an inert atmosphere or under vacuum.
The method of producing an adsorbent is characterized in that the temperature is raised for 1 hour and the final treatment temperature is 800 to 3000°C.

本発明の製造方法において出発材料として用いられる球
状粒子は、フェノール樹脂、ナフタレン樹脂、フラン樹
脂、キシレン樹脂、ジビニルベンゼン重合体、スチレン
ージ、ビニルベンゼン共重合体、メソカーボンのうち少
なくとも一種からなり、以下に詳述する焼成によって収
率よく炭素化および/または黒鉛化されるものであり、
粒子径は5〜120μのものが有効に使用される。
The spherical particles used as a starting material in the production method of the present invention are made of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene resin, vinylbenzene copolymer, and mesocarbon, and include the following: It is carbonized and/or graphitized with good yield by calcination as detailed in .
Particles having a diameter of 5 to 120 microns are effectively used.

また、本発明の製造方法において上記球状粒子と共に出
発材料として用いられる微粒子は、カーボンブラック、
コロイド状黒鉛、黒鉛粉末、コークス粉末、上記の球状
粒子の成分である化合物を焼成して炭素化させたものの
粉末等の炭素質材料のうち少なくとも一種からなるもの
であり、粒子径は15〜100 rvのものが有効に使
用される。
Further, in the production method of the present invention, the fine particles used as a starting material together with the above spherical particles include carbon black,
It is made of at least one type of carbonaceous material such as colloidal graphite, graphite powder, coke powder, and powder obtained by firing and carbonizing the compound that is a component of the above spherical particles, and the particle size is 15 to 100. rv is effectively used.

なお、それぞれの混合割合は、球状粒子100重量部に
対して微粒子1〜4重量部であることが好ましい。上記
出発材料とすることによって、以下に詳述するメカノケ
ミカル法による混合において球状粒子表面に微粒子が良
好に付着、固定化され、目的とする吸着剤が良好に得ら
れる。
Note that the mixing ratio of each is preferably 1 to 4 parts by weight of fine particles to 100 parts by weight of spherical particles. By using the above-mentioned starting material, the fine particles can be well attached and immobilized on the surface of the spherical particles during mixing by the mechanochemical method described in detail below, and the desired adsorbent can be obtained well.

本発明の製造方法においては、先ず前記の球状粒子と微
粒子とをメカノケミカル法により混合して球状粒子表面
に微粒子を均一に付着、固定化させて表面多孔性球体を
得る。
In the production method of the present invention, first, the above-mentioned spherical particles and fine particles are mixed by a mechanochemical method, and the fine particles are uniformly adhered and immobilized on the surface of the spherical particles to obtain a surface-porous sphere.

本発明の製造方法で用いられるメカノケミカル法は一般
に粉体/粉体混合法とも呼ばれる方法である。すなわち
、粒子径の異なる異種粉体(例えば本発明における球状
粒子と微粒子)を加圧下で乾式混合することによってま
ず球状粒子表面に微粒子が付着された状態となり、さら
に混合を行なうと球状粒子に付着された微粒子に加えら
れる機械的衝撃、圧力、摩擦力等によるメカノケミカル
反応によって微粒子と接触している球状粒子表面部分が
軟化、融解等して微粒子が球状粒子表面に固定化される
。この混合は本発明にあっては常温、空気中でも可能で
あり、混合時間は10〜100分が好ましい。また、加
圧条件等の他の条件も本発明にあっては特に制限されず
、用いる出発材料、処理量等によって適宜選択され、混
合中に各粒子が粉砕せず、球状粒子表面に微粒子が均一
に付着、固定化され、結果として良好な吸着剤が得られ
ればよい。
The mechanochemical method used in the production method of the present invention is generally also called a powder/powder mixing method. That is, by dry mixing different types of powders with different particle sizes (for example, spherical particles and fine particles in the present invention) under pressure, the fine particles are first attached to the surface of the spherical particles, and when further mixing is performed, the particles are attached to the spherical particles. Due to a mechanochemical reaction caused by mechanical impact, pressure, frictional force, etc. applied to the microparticles, the surface portion of the spherical particles in contact with the microparticles is softened, melted, etc., and the microparticles are immobilized on the surface of the spherical particles. In the present invention, this mixing can be carried out at room temperature or in air, and the mixing time is preferably 10 to 100 minutes. In addition, other conditions such as pressurization conditions are not particularly limited in the present invention, and are appropriately selected depending on the starting materials used, the processing amount, etc., so that each particle is not crushed during mixing and fine particles are formed on the surface of the spherical particles. It is sufficient that the adsorbent can be uniformly adhered and immobilized, resulting in a good adsorbent.

また、上記のメカノケミカル法による混合に使用する装
置としては、球状粒子表面に微粒子を付着させる工程だ
けであればV型混合機のような一般的な混合装置でも可
能であるが、固定化させる工程には機械的衝撃、圧力、
摩擦力等を連続して加えられる装置が必要であり、自動
乳鉢、遠心回転型混合機等が好ましい。なお、本発明に
あっては、付着、固定化の両工程を同一の混合装置で連
続して行なうことも、別々の装置を用いて行なうことも
可能である。
In addition, as the device used for mixing by the mechanochemical method mentioned above, a general mixing device such as a V-type mixer can be used as long as the process of adhering fine particles to the surface of spherical particles is possible, but it is possible to use a general mixing device such as a V-type mixer. The process involves mechanical shock, pressure,
A device that can continuously apply frictional force is required, and automatic mortar, centrifugal mixer, etc. are preferable. In the present invention, both the adhesion and immobilization steps can be performed successively using the same mixing device, or can be performed using separate devices.

次に、上記のようにして得られた表面多孔性球体を空気
、酸素等の酸化性雰囲気下、昇温速度10〜40℃/h
rで昇温して100〜400℃に、好ましくは0.1−
1時間保持して熱処理を施す。
Next, the surface porous spheres obtained as described above were heated at a heating rate of 10 to 40°C/h in an oxidizing atmosphere such as air or oxygen.
r to 100-400°C, preferably 0.1-
Heat treatment is performed by holding for 1 hour.

さらに、本発明の製造方法においては、このようにして
熱処理された表面多孔性球体を窒素ガス、アルゴンガス
等の不活性雰囲気下または真空下、昇温速度50〜60
0℃/hrで昇温し、最終処理温度800〜3000℃
で焼成して炭素化および/または黒鉛化処理を行ない、
炭素または黒鉛質の表面多孔性球状吸着剤を得る。なお
、上記焼成の際に、処理温度1200℃までは昇温速度
50〜300℃/hrで昇温することが望ましく、また
1200℃以下で一旦0.1〜1時間保持することが好
ましい。
Furthermore, in the manufacturing method of the present invention, the surface-porous spheres heat-treated in this way are heated at a heating rate of 50 to 60% under an inert atmosphere such as nitrogen gas or argon gas or under vacuum.
Raise temperature at 0℃/hr, final treatment temperature 800-3000℃
Carbonization and/or graphitization treatment is performed by firing with
A carbon or graphitic superficially porous spherical adsorbent is obtained. In addition, during the above-mentioned firing, it is desirable to raise the temperature at a rate of 50 to 300°C/hr until the processing temperature reaches 1200°C, and it is preferable to hold the temperature at 1200°C or lower for 0.1 to 1 hour.

このように本発明の製造方法によって得られる炭素また
は黒鉛質の表面多孔性球状吸着剤は、使用する球状粒子
および微粒子の各粒子径等を選択することによって簡便
に、しかも精度よく、粒子径3〜100μ、細孔径50
〜350人の範囲の吸着剤を任意に得ることが可能であ
り、得られる吸着剤の比表面積は2〜10m/ g (
BET法による)である。また、本発明の製造方法にお
ける収率は10〜70%である。
As described above, the carbon or graphite surface porous spherical adsorbent obtained by the production method of the present invention can be easily and precisely produced by selecting the particle diameters of the spherical particles and fine particles used. ~100μ, pore size 50
It is possible to arbitrarily obtain adsorbents in the range of ~350 people, and the specific surface area of the resulting adsorbents is between 2 and 10 m/g (
(based on the BET method). Moreover, the yield in the production method of the present invention is 10 to 70%.

[実施例] 以下、実施例に基づいて本発明をより具体的に説明する
[Examples] Hereinafter, the present invention will be described in more detail based on Examples.

実施例1 湿式分級によって18〜22μに整粒した市販の球状フ
ェノール樹脂10.0gと平均粒子径30n日のカーボ
ンブラック0.30gとを出発材料として使用した。
Example 1 10.0 g of a commercially available spherical phenol resin sized to 18 to 22 μm by wet classification and 0.30 g of carbon black with an average particle size of 30 n days were used as starting materials.

これらを均一に混合した後、自動乳鉢中で10分間混合
処理を行ない、球状フェノール樹脂粒子表面をカーボン
ブラック粒子で均一に被覆させ、かつメカノケミカル反
応により固定化させて表面多孔性球体を得た。
After uniformly mixing these, a mixing treatment was carried out for 10 minutes in an automatic mortar to uniformly coat the surface of the spherical phenolic resin particles with carbon black particles, which were then fixed by a mechanochemical reaction to obtain surface-porous spheres. .

この表面子、孔性球体を空気中で30℃/hrの昇温速
度で280℃まで昇温し、1時間保持して熱処理を行な
った。
The surface particles and porous spheres were heated to 280° C. at a heating rate of 30° C./hr in air and held for 1 hour for heat treatment.

次に、熱処理された表面多孔性球体を窒素雰囲気下で2
00℃/hrの昇温速度で1000℃まで昇温して1時
間保持して炭素化させ、引き続いて黒鉛化炉内で600
℃/hrの昇温速度で最終的に2000℃まで昇温して
黒鉛化せしめて黒鉛質の表面多孔性球状吸着剤を得た。
Next, the heat-treated surface porous spheres were placed in a nitrogen atmosphere for 2 hours.
The temperature was raised to 1000°C at a heating rate of 00°C/hr, held for 1 hour to carbonize, and then heated to 600°C in a graphitization furnace.
The temperature was finally raised to 2000°C at a heating rate of °C/hr to graphitize the mixture to obtain a graphitic surface porous spherical adsorbent.

得られた吸着剤の粒子径は10±2μ程度、細孔径は 
170±50人程度、BET法による比表面積は5JT
It/gであり、収率は44%であった。
The particle size of the obtained adsorbent was about 10±2μ, and the pore size was
Approximately 170±50 people, specific surface area by BET method is 5JT
It/g, and the yield was 44%.

この黒鉛質の表面多孔性球状吸着剤を4■φ×250m
mjのHPLC用カラムに湿式充填し、HPLC装置に
装着した。溶離液をメタノール/水−80/ 20重量
%混合液として、カラムを安定化させた後、下記条件に
おいてフタル酸エステル類の混合物(1:フタル酸ジメ
チル、2:フタル酸ジアリル、3:フタル酸ジ−n−ブ
チル)の分離を行なった。その結果のHPLCチャート
を第1図に示す。
This graphite surface porous spherical adsorbent was
It was wet-packed into a mj HPLC column and attached to an HPLC apparatus. After stabilizing the column by using an 80/20 wt% mixture of methanol/water as the eluent, a mixture of phthalate esters (1: dimethyl phthalate, 2: diallyl phthalate, 3: phthalate) was added under the following conditions. di-n-butyl). The resulting HPLC chart is shown in FIG.

(測定条件) 流  量     1.0aIi!/mln検出器  
 UV (254ns) 温  度     26 ℃ 圧  力     55  KW/ai第1図から明ら
かなように、実施例1によって得られる黒鉛質の表面多
孔性球状吸着剤は、HPLC用カラム充填剤として供す
ることにより、上記各フタル酸エステル類を良好に分離
することが可能である。
(Measurement conditions) Flow rate 1.0aIi! /mln detector
UV (254 ns) Temperature: 26°C Pressure: 55 KW/ai As is clear from FIG. 1, the graphitic superficially porous spherical adsorbent obtained in Example 1 can It is possible to separate each of the above phthalate esters well.

実施例2 使用するカーボンブラックを平均粒子径47rvのもの
とし、使用量を0.36gとした以外は実施例1と同様
にして黒鉛質の表面多孔性球状吸着剤を得た。
Example 2 A graphite surface-porous spherical adsorbent was obtained in the same manner as in Example 1, except that the carbon black used had an average particle diameter of 47 rv and the amount used was 0.36 g.

得られた吸着剤の粒子径は10±2μ程度、細孔径は2
00±50人程度、BET法による比表面積は3.3T
IL/gであり、収率は45%であった。
The particle size of the obtained adsorbent was approximately 10±2μ, and the pore size was 2
00±50 people, specific surface area by BET method is 3.3T
The yield was 45%.

この黒鉛質の表面多孔性球状吸着剤を用いて実施例1と
同様にして下記条件においてフタル酸エステル類の混合
物の分離を行なった。その結果のHPLCチャートを第
2図に示す。
Using this graphite surface porous spherical adsorbent, a mixture of phthalate esters was separated in the same manner as in Example 1 under the following conditions. The resulting HPLC chart is shown in FIG.

(測定条件) 流  量     1.0d/+gln検出器   U
V (254nm) 温  度     25 ℃ 圧  力     95  Kg/ci第2図から明ら
かなように、実施例2によって得られる黒鉛質の表面多
孔性球状吸着剤も、HPLC用カラム充填剤として供す
ることにより、上記各フタル酸エステル類を良好に分離
することが可能である。
(Measurement conditions) Flow rate 1.0d/+gln detector U
V (254 nm) Temperature: 25° C. Pressure: 95 Kg/ci As is clear from FIG. It is possible to separate each of the above phthalate esters well.

実施例3 まず、平均分子量が2000のポリビニルアルコール2
0gと水400gをフラスコ中で撹拌して完全に溶解さ
せる。ここにジビニルベンゼン50gとスチレン50g
の混合液loOg、重合触媒としてのベンゼンパーオキ
サイド1.0gおよび乳化剤としてのノニオン(非イオ
ン性界面活性剤;ポリカルボン酸型高分子界面活性剤)
  1.ogを添加して懸濁させ、撹拌しながら75〜
85℃まで加温して重合反応を開始させて1時間重合反
応させた。その間に重合反応による発熱によって反応溶
液は95〜98℃まで昇温した。その後、得られた反応
溶液を50℃以下になるまで撹拌しながら冷却し、さら
に室温まで放冷して分散液を得た。得られた分散液から
球状生成物を濾別し、これを水で2回、さらにメタノー
ルで3回洗浄した後、揮発成分による引火に注意しなが
ら 100℃前後で乾燥して球状ジビニルベンゼン重合
体を得た。
Example 3 First, polyvinyl alcohol 2 with an average molecular weight of 2000
0 g and 400 g of water are stirred in a flask to completely dissolve. Here, 50g of divinylbenzene and 50g of styrene.
mixed solution loOg, 1.0 g of benzene peroxide as a polymerization catalyst, and nonionic (nonionic surfactant; polycarboxylic acid type polymeric surfactant) as an emulsifier.
1. Add og and suspend, stirring for 75~
The polymerization reaction was initiated by heating to 85° C. and continued for 1 hour. During this time, the temperature of the reaction solution was raised to 95 to 98°C due to heat generated by the polymerization reaction. Thereafter, the obtained reaction solution was cooled to 50° C. or below while stirring, and further cooled to room temperature to obtain a dispersion. A spherical product was filtered from the resulting dispersion, washed twice with water and three times with methanol, and then dried at around 100°C while being careful not to catch fire from volatile components to obtain a spherical divinylbenzene polymer. I got it.

得られた球状ジビニルベンゼン重合体を湿式分級によっ
て15〜25μに整粒し、これを10,Ogと、平均粒
子径47niのカーボンブラック0.30gとを出発材
料として用いた以外は実施例1と同様にして黒鉛質の表
面多孔性球状吸着剤を得た。
The procedure of Example 1 was repeated except that the obtained spherical divinylbenzene polymer was sized to 15 to 25μ by wet classification, and 10.0g of this and 0.30g of carbon black with an average particle size of 47ni were used as starting materials. A graphite surface-porous spherical adsorbent was obtained in the same manner.

得られた吸着剤の粒子径は8〜15μ、細孔径は175
±30人程度、BET法による比表面積は3.OTIt
/gであり、収率は14%であった。
The particle size of the obtained adsorbent is 8 to 15μ, and the pore size is 175.
±30 people, specific surface area by BET method is 3. OTIt
/g, and the yield was 14%.

この黒鉛質の表面多孔性球状吸着剤を用いて実施例1と
同様にしてフタル酸エステル類の混合物の分離を行なっ
たところ、第1図と同様の結果が得られ、前記各フタル
酸エステル類を良好に分離することができた。
When a mixture of phthalate esters was separated in the same manner as in Example 1 using this graphitic surface porous spherical adsorbent, results similar to those shown in FIG. 1 were obtained, and each of the phthalate esters were able to be separated well.

実施例4 偏光顕微鏡視野観察下におけるメソフェーズ量(光学的
異方性領域)が100%、軟化点311℃、キノリンネ
溶分(Ql)が17重量%、トルエン不溶分(TI)が
80重量%の石炭系バルクメソフェーズを微粉砕した後
、分級して粒子径25〜50μのピッチ粉末を得た。
Example 4 Mesophase amount (optically anisotropic region) under polarized light microscopy field observation was 100%, softening point was 311°C, quinoline soluble content (Ql) was 17% by weight, and toluene insoluble content (TI) was 80% by weight. After finely pulverizing the coal-based bulk mesophase, it was classified to obtain pitch powder with a particle size of 25 to 50 μm.

得られたピッチ粉末80gをフタル酸ジイソブチル14
4中に分散させ、この全量を204オートクレーブ中に
投入した。
80 g of the obtained pitch powder was mixed with 14 g of diisobutyl phthalate.
4 and the entire amount was put into a 204 autoclave.

投入後、オートクレーブ系内を真空引きし、窒素ガスで
パージした。そして、ピッチ粉末の沈降を防ぐため、直
ちに撹拌機を50Orpmで回転させ、撹拌しながら 
120℃/hrで昇温を開始した。その後、系内の温度
が330℃に達したら直ちに放冷し、分散液を得た。な
お、撹拌は150℃に下がるまで続けた。
After charging, the inside of the autoclave system was evacuated and purged with nitrogen gas. Then, to prevent the pitch powder from settling, immediately rotate the stirrer at 50 rpm, and while stirring,
The temperature was started to increase at 120°C/hr. Thereafter, as soon as the temperature inside the system reached 330° C., the system was allowed to cool to obtain a dispersion liquid. Note that stirring was continued until the temperature dropped to 150°C.

この時、最大自生圧は6kg/ciであった。At this time, the maximum autogenous pressure was 6 kg/ci.

次に、得られた分散液をオートクレーブから取り出して
吸引濾過を行ない、濾別された球状生成物をアセトンで
洗浄、乾燥して球状のメソカーボンマイクロビーズを調
整した。
Next, the obtained dispersion was taken out from the autoclave and filtered by suction, and the filtered spherical product was washed with acetone and dried to prepare spherical mesocarbon microbeads.

得られた球状のメソカーボンマイクロビーズを湿式分級
によって18〜25μに整粒した。
The obtained spherical mesocarbon microbeads were sized to a size of 18 to 25μ by wet classification.

他方、フラン樹脂を窒素雰囲気下50℃/hrの昇温速
度で1000℃まで加熱して炭素化後、乾式粉砕し、更
にボールミルにより湿式粉砕した。次いで、得られた粉
体を湿式分級によって整粒し、平均粒子径100rvの
炭素質の微粒子を得た。
On the other hand, the furan resin was carbonized by heating to 1000° C. in a nitrogen atmosphere at a heating rate of 50° C./hr, then dry-pulverized, and further wet-pulverized using a ball mill. Next, the obtained powder was sized by wet classification to obtain carbonaceous fine particles with an average particle diameter of 100 rv.

上述の炭素質の微粒子064gとメソカーボンマイクロ
ビーズ15gとを出発材料として使用した。
064 g of the above carbonaceous fine particles and 15 g of mesocarbon microbeads were used as starting materials.

これらを均一に混合した後、自動乳鉢中で40分間混合
処理を行ない、メソカーボンマイクロビーズ表面を炭素
質の微粒子で均一に被覆させ、かつメカノケミカル反応
により固定化させて表面多孔性球体を得た。
After uniformly mixing these, a mixing treatment is performed for 40 minutes in an automatic mortar to uniformly coat the surface of mesocarbon microbeads with carbonaceous particles, which are then immobilized by a mechanochemical reaction to obtain surface porous spheres. Ta.

この表面多孔性球体を空気中で30℃/hrの昇温速度
で300℃まで昇温し、1時間保持して熱処理を行なっ
た。
This surface-porous sphere was heated to 300° C. at a heating rate of 30° C./hr in air and held for 1 hour for heat treatment.

次に、熱処理された表面多孔性球体を窒素雰囲気下で1
00”c/hrの昇温速度で1000℃まで昇温して炭
素化させ、引き続いて黒鉛化炉内で350℃/hrの昇
温速度で最終的に2300℃まで昇温して黒鉛化せしめ
て黒鉛質の表面多孔性球状吸着剤を得た。
Next, the heat-treated surface porous spheres were placed in a nitrogen atmosphere for 1
The temperature was raised to 1000°C at a heating rate of 00"c/hr for carbonization, and then the temperature was finally raised to 2300°C at a heating rate of 350°C/hr in a graphitization furnace for graphitization. A graphite surface-porous spherical adsorbent was obtained.

得られた吸着剤の粒子径は15±3μ程度、細孔径は1
000±500人程度、BET法による比表面積は2r
rt/gであり、収率は70%であった。
The particle size of the obtained adsorbent was approximately 15±3μ, and the pore size was 1
000±500 people, specific surface area by BET method is 2r
rt/g, and the yield was 70%.

この黒鉛質の表面多孔性球状吸着剤を411φX250
avJのHPLC用カラムに湿式充填し、HPLC装置
に装着した。溶離液をメタノール/水−80/ 20重
量%混合液として、カラムを安定化させた後、下記条件
においてジニトロベンゼン類の混合物(11:o−ジニ
トロベンゼン、12:m−ジニトロベンゼン、13:p
−ジニトロベンゼン)の分離を行なった。その結果のH
PLCチャートを第3図に示す。
This graphite surface porous spherical adsorbent is 411φX250
It was wet packed into an avJ HPLC column and attached to an HPLC apparatus. After stabilizing the column by using an 80/20 wt% mixture of methanol/water as the eluent, a mixture of dinitrobenzenes (11: o-dinitrobenzene, 12: m-dinitrobenzene, 13: p-dinitrobenzene) was added under the following conditions.
- dinitrobenzene) was separated. The resulting H
A PLC chart is shown in FIG.

(測定条件) 流  量     1.OId/sin検出器   U
V (254rv) 温  度     25 ℃ 圧  力     40  Kg/cM第3図から明ら
かなように、実施例4によって得られる黒鉛質の表面多
孔性球状吸着剤・は、HPLC用カラム充填剤として供
することにより、上記各ジニトロベンゼン類を良好に分
離することが可能である。
(Measurement conditions) Flow rate 1. OId/sin detector U
V (254rv) Temperature: 25°C Pressure: 40 Kg/cM As is clear from Fig. 3, the graphitic superficially porous spherical adsorbent obtained in Example 4 can be , it is possible to separate each of the above dinitrobenzenes well.

[発明の効果] 以上説明のごとく、本発明の製造方法によって得られる
炭素質または黒鉛質の表面多孔性球状吸着剤は、その目
的に応じて粒子径、細孔径を任意に、かつ精度よく調節
することができ、しかも球状吸着剤の表面近傍部分が多
孔質であるため、HPLC,GPC等用のカラム充填剤
等として試料の分離を良好に行なうことが可能である。
[Effects of the Invention] As explained above, the carbonaceous or graphite superficially porous spherical adsorbent obtained by the production method of the present invention has particle size and pore size that can be adjusted arbitrarily and accurately depending on the purpose. Furthermore, since the surface area of the spherical adsorbent is porous, it can be used as a column packing material for HPLC, GPC, etc. to effectively separate samples.

また、本発明によって得られる吸着剤は焼成によって得
られた炭素質または黒鉛質であるので、強度はカラム充
填剤として充分で、かつ耐薬品性、耐熱性に優れ、溶媒
による体積変化も起こさない。
In addition, since the adsorbent obtained by the present invention is carbonaceous or graphite obtained by calcination, it has sufficient strength as a column filler, has excellent chemical resistance and heat resistance, and does not cause volume change due to solvent. .

従って本発明によって得られる吸着剤はHPLC,GP
C等用のカラム充填剤等として、例えば各種エステル類
の分離、各種含チツ素化合物にトロ基を含むもの等)の
分離、オルト、メタ、パラ位の各置換体の分離等に好適
に使用可能である。
Therefore, the adsorbent obtained by the present invention can be used for HPLC, GP
Suitable for use as a column packing material for C, etc., for example, for the separation of various esters, various nitrogen-containing compounds containing tro groups, etc.), and the separation of substituents at the ortho, meta, and para positions. It is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の一実施例(実施
例1、実施例2)に係るフタル酸エステル類の混合物(
1〜3)のHPLCチャートであり、 第3図は本発明の一実施例(実施例4)に係るジニトロ
ベンゼン類の混合物(11−13)のHPLCチャート
である。 1 : 2 : 3 = ll: 12: 13: フタル酸ジメチル、 フタル酸ジアリル、 フタル酸ジ−n−ブチル、 0−ジニトロベンゼン、 m−ジニトロベンゼン、 p−ジニトロベンゼン。 特許出願人 日本カーボン株式会社 代理人 弁理士 伊 東 辰 雄 代理人 弁理士 伊 東 哲 也 ↑ 注入  溶出時間 (min) o11 第 図
FIG. 1 and FIG. 2 respectively show mixtures of phthalate esters (
1 to 3), and FIG. 3 is an HPLC chart of a mixture of dinitrobenzenes (11-13) according to an example (Example 4) of the present invention. 1:2:3=ll:12:13: dimethyl phthalate, diallyl phthalate, di-n-butyl phthalate, 0-dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene. Patent Applicant Nippon Carbon Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito↑ Injection Elution time (min) o11 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、フェノール樹脂、ナフタレン樹脂、フラン樹脂、キ
シレン樹脂、ジビニルベンゼン重合体、スチレン−ジビ
ニルベンゼン共重合体、メソカーボンのうち少なくとも
一種からなる粒子径5〜120μの球状粒子と、粒子径
15〜100nmの炭素質材料からなる微粒子とをメカ
ノケミカル法により混合して該球状粒子表面に該微粒子
を均一に付着、固定化させて得られる表面多孔性球体を
、酸化性雰囲気下、昇温速度10〜40℃/hrで昇温
して100〜400℃に保持し、次いで不活性雰囲気ま
たは真空下、昇温速度50〜600℃/hrで昇温して
最終処理温度800〜3000℃で焼成することを特徴
とする吸着剤の製造方法。
1. Spherical particles with a particle size of 5 to 120 μ and a particle size of 15 to 100 nm made of at least one of phenol resin, naphthalene resin, furan resin, xylene resin, divinylbenzene polymer, styrene-divinylbenzene copolymer, and mesocarbon. A surface porous sphere obtained by mixing fine particles made of a carbonaceous material by a mechanochemical method and uniformly adhering and immobilizing the fine particles on the surface of the spherical particle is heated under an oxidizing atmosphere at a heating rate of 10 to 10. Raise the temperature at a rate of 40°C/hr and maintain it at 100-400°C, then raise the temperature at a rate of 50-600°C/hr in an inert atmosphere or vacuum, and bake at a final processing temperature of 800-3000°C. A method for producing an adsorbent characterized by:
JP63274441A 1988-11-01 1988-11-01 Adsorbent production method Expired - Lifetime JP2646383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274441A JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274441A JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Publications (2)

Publication Number Publication Date
JPH02122828A true JPH02122828A (en) 1990-05-10
JP2646383B2 JP2646383B2 (en) 1997-08-27

Family

ID=17541723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274441A Expired - Lifetime JP2646383B2 (en) 1988-11-01 1988-11-01 Adsorbent production method

Country Status (1)

Country Link
JP (1) JP2646383B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020639A1 (en) * 2001-08-31 2003-03-13 Cabot Corporation Material for chromatography_and method for manufacturing the material
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2008069016A (en) * 2006-09-12 2008-03-27 Jfe Chemical Corp Mesocarbon microsphere graphitized product and method for producing the same, negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
JP2014122909A (en) * 2008-10-06 2014-07-03 Dow Global Technologies Llc Chromatography of polyolefin polymers

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020639A1 (en) * 2001-08-31 2003-03-13 Cabot Corporation Material for chromatography_and method for manufacturing the material
US6787029B2 (en) 2001-08-31 2004-09-07 Cabot Corporation Material for chromatography
JP2005501790A (en) * 2001-08-31 2005-01-20 キャボット コーポレイション Chromatographic material and method for producing the material
US7008534B2 (en) 2001-08-31 2006-03-07 Cabot Corporation Material for chromatography
US7195713B2 (en) 2001-08-31 2007-03-27 Cabot Corporation Material for chromatography
JP2010001213A (en) * 2001-08-31 2010-01-07 Cabot Corp Material for chromatography, and method for production of the material
US7951297B2 (en) 2001-08-31 2011-05-31 Cabot Corporation Material for chromatography
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
JP2008069016A (en) * 2006-09-12 2008-03-27 Jfe Chemical Corp Mesocarbon microsphere graphitized product and method for producing the same, negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2014122909A (en) * 2008-10-06 2014-07-03 Dow Global Technologies Llc Chromatography of polyolefin polymers
JP2013155110A (en) * 2011-10-21 2013-08-15 Showa Denko Kk Graphite material, carbon material for battery electrode, and battery
US9368796B2 (en) 2011-10-21 2016-06-14 Show A Denko K.K. Graphite material, carbon material for battery electrode, and battery

Also Published As

Publication number Publication date
JP2646383B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US7008534B2 (en) Material for chromatography
US7666380B2 (en) Imprinted mesoporous carbons and a method of manufacture thereof
JPH03187908A (en) Production of spherical carbon material
US4439349A (en) Mesoporous carbons
TWI684568B (en) High-performance spherical activated carbon, its preparation method and use
CN112547008A (en) Carbon microsphere for adsorbing dioxin
JPH02122828A (en) Manufacture of adsorbent
CN108946722B (en) Preparation method of spherical active carbon with controllable pore diameter, product and application thereof
JP3642532B2 (en) Production method of high-performance activated carbon
JPS6141842B2 (en)
EP0276563B1 (en) Carbonaceous granular heat insulator and process for preparing the same
JP2902032B2 (en) Spherical porous carbon particles and method for producing the same
US5447624A (en) Packings for liquid chromatography and process for producing the same
JPH03106443A (en) Globular porous carbon particle and preparation thereof
JP2799187B2 (en) Porous graphitic carbon granules and support materials for chromatography using the same
JP2646374B2 (en) Method for producing carbonaceous adsorbent
CN108996503B (en) Activation method of spherical activated carbon, product and application thereof
JPH0445445B2 (en)
JPH04182308A (en) Production of activated carbon
WO1989005691A1 (en) Hydrophobic carbon molecular sieves
EP0015115A1 (en) Process for making partially pyrolyzed polymer particles
JPH04169844A (en) Filler for liquid chromatography and manufacture thereof
CN117899816A (en) Preparation method and application of porous biochar for efficiently adsorbing perfluorinated compounds in water
JP3678433B2 (en) Method for producing mesocarbon microbeads
JPH11106209A (en) Active carbon and its production