JPH03187259A - Cmos semiconductor integrated circuit device - Google Patents

Cmos semiconductor integrated circuit device

Info

Publication number
JPH03187259A
JPH03187259A JP1326829A JP32682989A JPH03187259A JP H03187259 A JPH03187259 A JP H03187259A JP 1326829 A JP1326829 A JP 1326829A JP 32682989 A JP32682989 A JP 32682989A JP H03187259 A JPH03187259 A JP H03187259A
Authority
JP
Japan
Prior art keywords
well
conductivity type
substrate
semiconductor substrate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1326829A
Other languages
Japanese (ja)
Other versions
JP3038744B2 (en
Inventor
Akira Tamakoshi
晃 玉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1326829A priority Critical patent/JP3038744B2/en
Publication of JPH03187259A publication Critical patent/JPH03187259A/en
Application granted granted Critical
Publication of JP3038744B2 publication Critical patent/JP3038744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enhance latch-up resistance by forming a latch-up countermeasure well around a diffusion layer directly connected with I/O pad on a substrate having low impurity concentration without contacting with other wells. CONSTITUTION:A p-well 3 is formed on the surface region of a p<->-type semiconductor substrate 1 and an n-channel transistor Qn1 is formed on the surface thereof. An n-well 2a is formed on the surface region of the p<->-type semiconductor substrate 1, and a p-channel transistor Qp1 is formed on the surface thereof. n<+>-type diffusion layers 4a-4f are connected directly with I/O pads 10a-10d. An n-well 2b is formed around the n<+>-type diffusion layers 4a-4f in the surface region of the p<->-type semiconductor substrate 1 without contacting with other wells. At this time, no p-well is formed around the n-well 2b. Consequently, a depletion layer extends farther into the substrate 1 from the n-well 2b thus enhancing electron absorbing capability of the substrate 1. By such arrangement, latch-up resistance is enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、CMOS型半導体集積回路装置に関し、特に
、p−型半導体基板の表面領域内にpウェルとnウェル
とが形成されている、いわゆるツインウェル構造のCM
OS型半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CMOS type semiconductor integrated circuit device, and in particular, to a CMOS type semiconductor integrated circuit device, in which a p-well and an n-well are formed in a surface region of a p-type semiconductor substrate. CM with so-called twin well structure
The present invention relates to an OS type semiconductor integrated circuit device.

[従来の技術] 半導体集積回路装置の高密度化に伴いチャネル長が短く
なされてきているが、この傾向に対応してトランジスタ
のしきい値電圧を所定の値に設定するために、p−型(
またはn−型)半導体基板にpウェルとnウェルとを形
成する、いわゆるツインウェル構造のCMOSが多用さ
れるようになってきた。
[Prior Art] As semiconductor integrated circuit devices become more densely packed, channel lengths are becoming shorter. (
CMOS having a so-called twin-well structure, in which a p-well and an n-well are formed on a semiconductor substrate (or n-type), has come into widespread use.

第4図は、この種従来のCMO3型O3回路、装置の入
力パッド付近の平面図であり、第5図は、そのV−V線
断面図である。
FIG. 4 is a plan view of this type of conventional CMO3 type O3 circuit and device near the input pad, and FIG. 5 is a sectional view taken along the line V-V.

第4図、第5図において、1はp−型半導体基板、2a
、2bはnウェル、3はp型不純物がドープされて基板
lより不純物濃度が高くなされたpウェル、4a〜4f
はn 4−型拡散層、5a、5bはp11型拡散、6は
フィールド酸化膜、7はゲート酸化膜、8はポリシリコ
ンからなるゲート電極、9は眉間絶縁膜、10a〜10
dはアルミニウム膜からなる配線層であって、10aは
VCO配線層、10bはGND配線層、10cは信号配
線層、10dは入力パッド、11はアルミニウム配線層
(10a〜10d)とn+型またはp+型型数散層のコ
ンタクト、12はアルミニウム配線層(10b、10c
)とゲート電極8とのコンタクトである。
In FIGS. 4 and 5, 1 is a p-type semiconductor substrate, 2a
, 2b is an n-well, 3 is a p-well doped with p-type impurities and has a higher impurity concentration than the substrate l, 4a to 4f
is an n 4-type diffusion layer, 5a and 5b are p11 type diffusion layers, 6 is a field oxide film, 7 is a gate oxide film, 8 is a gate electrode made of polysilicon, 9 is an insulating film between the eyebrows, 10a to 10
d is a wiring layer made of aluminum film, 10a is a VCO wiring layer, 10b is a GND wiring layer, 10c is a signal wiring layer, 10d is an input pad, 11 is an aluminum wiring layer (10a to 10d) and n+ type or p+ 12 are aluminum wiring layers (10b, 10c)
) and the gate electrode 8.

nウェル2aは、n+型型数散層4aコンタクト11を
介してVC6配線層10aと接続され、その電位は電源
電位に設定されている。nウェル2a内には、p11型
拡散5a、5bが形成されており、これらの拡散層とゲ
ート電極8によりpチャネルMOS)ランジスタQpl
が構成されている。
The n-well 2a is connected to the VC6 wiring layer 10a via the n+ type scattered layer 4a contact 11, and its potential is set to the power supply potential. In the n-well 2a, p11 type diffusions 5a and 5b are formed, and these diffusion layers and the gate electrode 8 form a p-channel MOS transistor Qpl.
is configured.

pウェル3内には、n+型型数散層4b4cが形成され
ており、これらの拡散層とゲー)ti8によりnチャネ
ルMOS)ランジスタQnlが構成されている。トラン
ジスタQnlとトランジスタQplとは、インバータを
構成するためにドレインどうしが接続されている。pウ
ェル3の他の部分には、n1型拡散層4e、4fが形成
されており、これらの拡散層とゲート電極8によりnチ
ャネルMOSトランジスタQn2が構成されている。n
+型型数散層4f保護抵抗を構成する拡散抵抗層であっ
て、この拡散抵抗層の一端はコンタクト11を介して入
力バッド10dと接続されている。トランジスタQ n
 2は静電破壊対策用のバンチスルートランジスタであ
って、拡散抵抗(4f)とともに入力保護回路を構成し
ている。
In the p-well 3, an n+ type scattering layer 4b4c is formed, and an n-channel MOS transistor Qnl is formed by these diffusion layers and the gate electrode ti8. The drains of the transistor Qnl and the transistor Qpl are connected to each other to form an inverter. In other parts of p-well 3, n1 type diffusion layers 4e and 4f are formed, and these diffusion layers and gate electrode 8 constitute an n-channel MOS transistor Qn2. n
The + type scattering layer 4f is a diffused resistance layer constituting a protection resistor, and one end of this diffused resistance layer is connected to the input pad 10d via a contact 11. Transistor Q n
Numeral 2 is a bunch-through transistor for preventing electrostatic discharge damage, and together with a diffused resistor (4f), constitutes an input protection circuit.

nウェル2bは、n1型拡敢層4d、コンタクト11を
介してvcc配線層10aと接続されている。このウェ
ルは、入力ビンに過大電圧が印加されたときに入力保護
回路から基板に注入される少数キャリア(を子〉を吸収
して、ラッチアップ現象が起きないようにするために設
けられている。
The n-well 2b is connected to the vcc wiring layer 10a via an n1 type expansion layer 4d and a contact 11. This well is provided to absorb minority carriers that are injected into the board from the input protection circuit when excessive voltage is applied to the input bin, and to prevent latch-up from occurring. .

[発明が解決しようとする課題] 入力ビンによるラッチアップは、入力ビンに負電圧が印
加された際に、入力保護抵抗を構成するn+型型数散層
4fり基板中に注入される電子数が増加し、これが内M
!i7路を構成するためのnウェル2aまで到達するこ
とにより誘起される。即ち、nウェル2aに吸収される
電子数が増加すると、このウェルの電位が降下し、p+
型型数散層5anウェル2a間に順バイアスがかかり、
その結果、p“型拡散層5a−nウェル2a−p−型半
導体基板1により構成される寄生のバーチカルpnpト
ランジスタがオンする。このとき、nウェル2aより基
板1に注入される正孔により、nウェル2aの回りの基
板の電位が上昇し、近接するGND配線10bと接続さ
れたn+型型数散層4Cp−型半導体基板(pウェル3
)1との間に順バイアスがかかる。そのため、n+型拡
散層4cmp−型半導体基板1−nウェル2aにより構
成される寄生ラテラルnpn)ランジスタがオンに転じ
、両寄生トランジスタによって正帰還ループが形成され
ラッチアップに至る。
[Problems to be Solved by the Invention] Latch-up due to the input bin is caused by the number of electrons injected into the n+ type scattered layer 4F substrate that constitutes the input protection resistor when a negative voltage is applied to the input bin. increases, and this is the inner M
! It is induced by reaching the n-well 2a for forming the i7 path. That is, when the number of electrons absorbed in the n-well 2a increases, the potential of this well decreases, and the p+
A forward bias is applied between the type scattering layer 5an well 2a,
As a result, a parasitic vertical pnp transistor constituted by the p-type diffusion layer 5a, the n-well 2a, and the p-type semiconductor substrate 1 is turned on. At this time, the holes injected into the substrate 1 from the n-well 2a cause The potential of the substrate around the n-well 2a rises, and the n+ type scattered layer 4Cp- type semiconductor substrate (p-well 3
)1, a forward bias is applied. Therefore, the parasitic lateral npn) transistor formed by the n+ type diffusion layer 4cmp- type semiconductor substrate 1-n well 2a is turned on, and a positive feedback loop is formed by both parasitic transistors, leading to latch-up.

前述した従来のCMO8型O8回路装置では、半導体基
板1に注入された電子を吸収させるためにnウェル2b
を設けているが、このウェルは基板より不純物濃度の高
いpウェル3に囲まれているため、nウェル2bからp
−型半導体基板1へ伸びる空乏層が狭められ、電子の吸
収能力が弱められている。
In the conventional CMO8 type O8 circuit device described above, the n-well 2b is used to absorb electrons injected into the semiconductor substrate 1.
However, since this well is surrounded by the p-well 3, which has a higher impurity concentration than the substrate, the p-well 2b is
The depletion layer extending toward the − type semiconductor substrate 1 is narrowed, and its ability to absorb electrons is weakened.

また、従来の集積回路装置では、n+型型数散層4f高
不純物濃度のpウェル3と接しているので、n+型型数
散層4fpウェル3間の耐圧は低下し基板中へ注入され
る電子数が増加する。
In addition, in the conventional integrated circuit device, since the n+ type scattered layer 4f is in contact with the p well 3 with high impurity concentration, the withstand voltage between the n+ type scattered layer 4f and the p well 3 decreases, and the impurity is implanted into the substrate. The number of electrons increases.

以上のことから、従来のCMO9型O9回路装置のラッ
チアップ耐性は低く、入力ビンへの異常入力電圧により
簡単にラッチアップが引き起こされた。
From the above, the latch-up resistance of the conventional CMO9 type O9 circuit device is low, and latch-up is easily caused by an abnormal input voltage to the input bin.

[課題を解決するための手段] この発明のCMO8型半導体集積回路装置は、■p−型
半導体基板の表面領域内に形成された、その表面にnチ
ャネルMO3)−ランジスタが形成されているnウェル
と、■前記p−型半導体基板の表面領域内に形成された
、その表面にpチャネルMOSトランジスタが形成され
ているnウェルと、■入・出力パッドに直接接続された
n+型拡散屑と、■前記n+型拡散層を囲むように、か
つ他のウェルと接触することなく前記p−型半導体基板
の表面領域内に形成されたnウェルと、を備えている。
[Means for Solving the Problems] The CMO8 type semiconductor integrated circuit device of the present invention is provided with: (1) an n-channel MO3)-transistor formed in the surface region of a p-type semiconductor substrate, on the surface of which an n-channel MO3)-transistor is formed; (1) an n-well formed in the surface region of the p-type semiconductor substrate on which a p-channel MOS transistor is formed; and (2) n+-type diffusion waste directly connected to the input/output pad. , (2) an n-well formed in the surface region of the p--type semiconductor substrate so as to surround the n+-type diffusion layer and not in contact with other wells.

[実施例] 次に、本発明の実施例について1図面を参照して説明す
る。
[Example] Next, an example of the present invention will be described with reference to one drawing.

第1図は、本発明の一実施例を示す入力パッド付近の平
面図であり、第2図は、その■−■線断面図である。第
1図、第2図において、第4図、第5図の従来例の部分
と共通する部分には同一の参照番号が付されているので
、重複した説明は省略する。
FIG. 1 is a plan view of the vicinity of an input pad showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■. In FIGS. 1 and 2, parts common to those in the conventional example shown in FIGS. 4 and 5 are denoted by the same reference numerals, and thus redundant explanation will be omitted.

この実施例では、入力保護回路を構成する拡散抵抗(4
f〉およびパンチスルートランジスタQn2が、不純物
濃度が1015個/−程度と極めて低くなされたp−型
半導体基板1上に直接形成されており、また、この入力
保護回路を囲むように形成された、ラッチアップ対策用
のnウェル2bも、この基板の表面領域内に他のウェル
と接触することなく配置されている。これに対し、内部
回路を構成するトランジスタQplとトランジスタQn
lとは、従来通りそれぞれnウェル2aおよびnウェル
2aに隣接する基板より高不純物濃度(1016〜10
17個/crA)のnウェル3内に形成されている。
In this example, the diffused resistor (4
f〉 and the punch-through transistor Qn2 are formed directly on the p-type semiconductor substrate 1 having an extremely low impurity concentration of about 1015/-, and are formed so as to surround this input protection circuit. The n-well 2b for preventing latch-up is also arranged within the surface area of this substrate without contacting other wells. On the other hand, transistor Qpl and transistor Qn that constitute the internal circuit
1 is a higher impurity concentration (1016 to 10
17 pieces/crA) are formed in the n-well 3.

このように構成された本実施例においては、ラッチアッ
プ対策用のnウェル2bの周囲に隣接してnウェルは形
成されないため、nウェル2bから基板中に空乏層が大
きく延び、基板中の電子の吸収能力が向上してラッチア
ップ耐性は大幅に改善されている。また、トランジスタ
Qp1.Qn1をウェル内に形成し、バンチスルートラ
ンジスタを基板上に直接形成したことにより、内部回路
を構成するトランジスタには従来通りのしきい値電圧を
維持させたまま、入力保護回路部の基板に対する耐圧を
向上させ、n4型拡散層4fからの基板への電子の注入
をより起こりにくくすることができるので、ラッチアッ
プ耐性をさらに改善することができる。
In this embodiment configured as described above, since an n-well is not formed adjacent to the n-well 2b for latch-up prevention, a depletion layer largely extends from the n-well 2b into the substrate, and electrons in the substrate are absorption capacity has been improved and latch-up resistance has been significantly improved. Further, the transistor Qp1. By forming Qn1 in a well and forming bunch-through transistors directly on the substrate, the withstand voltage of the input protection circuit against the substrate can be increased while maintaining the conventional threshold voltage of the transistors that make up the internal circuit. Since the injection of electrons from the n4 type diffusion layer 4f into the substrate can be made more difficult to occur, the latch-up resistance can be further improved.

第3図は、本発明の他の実施例を示すnチャネルの出力
トランジスタ付近の平面図である0本実施例においては
、出力トランジスタは、そのしきい値電圧を内部回路用
トランジスタのそれと同等の値にするために、pウェル
3a内に構成されている。出力トランジスタのソース領
域を構成するn+型型数散層4h、コンタクト11を介
してVcc配線層10aと接続され、また、出力トラン
ジスタのドレイン領域を構成するn+型型数散層4g、
コンタクト11を介して信号配線層10cと接続され、
そしてこの配線層を介して出力パッドに接続されている
。また、ゲート電極8は、コンタクト12を介して内部
信号を受ける信号配線層10cと接続されている。nウ
ェル3aの外側には、nウェル3が設けられており、該
ウェル上には内部回路を構成するトランジスタが形成さ
れている。そして、これら2つのnウェル間にはいずれ
のnウェルとも接触しない、ラッチアップ対策用のnウ
ェル2cが形成さている。nウェル2Cは、n+型型数
散層41コンタクト11を介してVCC配線層10aと
接続されている。
FIG. 3 is a plan view of the vicinity of an n-channel output transistor showing another embodiment of the present invention. In this embodiment, the output transistor has a threshold voltage equivalent to that of the internal circuit transistor. It is configured in the p-well 3a in order to make it a value. An n+ type scattered layer 4h constituting the source region of the output transistor, an n+ type scattered layer 4g connected to the Vcc wiring layer 10a through the contact 11, and constituting the drain region of the output transistor;
connected to the signal wiring layer 10c via the contact 11;
And it is connected to the output pad via this wiring layer. Furthermore, the gate electrode 8 is connected via a contact 12 to a signal wiring layer 10c that receives internal signals. An n-well 3 is provided outside the n-well 3a, and a transistor forming an internal circuit is formed on the well. Further, an n-well 2c for preventing latch-up is formed between these two n-wells and does not contact any of the n-wells. The n-well 2C is connected to the VCC wiring layer 10a via the n+ type scattering layer 41 contact 11.

この実施例でも、nウェル2Cからの空乏層は基板内へ
大きく延びるから、出力ビンに負電圧が印加されてn+
型型数散層4gら電子が基板へ注入されても、これをn
ウェル2C内に吸収することができ、ラッチアップを有
効に防止することができる。
In this embodiment as well, the depletion layer from the n-well 2C extends largely into the substrate, so a negative voltage is applied to the output bin and the n+
Even if electrons are injected into the substrate from the type scattering layer 4g, they are
It can be absorbed into the well 2C, and latch-up can be effectively prevented.

[発明の効果j 以上説明したように、本発明は、入・出力パッドと直接
接続された拡散層を囲むように形成されたラッチアップ
対策用のウェルが、他のウェルと接触することなく低不
純物濃度の基板内に形成さているので、本発明によれば
、ラッチアップ対策用のウェルからの空乏層を基板内に
大きく延ばすことができる。したがって、本発明によれ
ば、入・出力ビンに接続された拡散層から基板へ少数キ
ャリアが注入されても、これをラッチアップ対策用のウ
ーエル内に殆ど吸収することができるので、ラッチアッ
プを大きく抑制することができる。
[Effects of the Invention j As explained above, the present invention has the advantage that the latch-up countermeasure well formed to surround the diffusion layer directly connected to the input/output pad can be formed at a low temperature without coming into contact with other wells. Since the depletion layer is formed in the substrate having an impurity concentration, according to the present invention, the depletion layer from the well for preventing latch-up can be largely extended into the substrate. Therefore, according to the present invention, even if minority carriers are injected into the substrate from the diffusion layer connected to the input/output bin, most of these carriers can be absorbed into the latch-up prevention well, thereby preventing latch-up. can be significantly suppressed.

また、入・出力保護回路を低不純物濃度の基板上に直接
形成しているので、入・出力ピンに接続される拡散層の
基板に対する耐圧は向上し、この拡散層からの基板への
少数キャリアの注入は減少してラッチアップはさらに抑
制される。
In addition, since the input/output protection circuit is formed directly on the substrate with low impurity concentration, the withstand voltage of the diffusion layer connected to the input/output pins with respect to the substrate is improved, and the minority carriers from this diffusion layer to the substrate are injection is reduced and latch-up is further suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す平面図、第2図は、
その■−■線の断面図、第3図は、本発明の他の実施例
を示す平面図、第4図は、従来例の平面図、第5図は、
そのV−V線の断面図である。 1・・・p−型半導体基板、 2a〜2C・・・n型ウ
ェル、 3.3a・・・pウェル、 4a〜41・・・
n“型拡散層、 5a、5b・・・p+型型数散層6・
・・フィールド酸化膜、 7・・・ゲート酸化膜、8・
・・ゲート電極、 9・・・層間絶縁膜、 10a・・
・VCC配線層、 10b−GND配線層、 10c・
・・信号配線層、 10d・・・入力パッド、 11.
12・・・コンタクト。
FIG. 1 is a plan view showing an embodiment of the present invention, and FIG. 2 is a plan view showing an embodiment of the present invention.
3 is a plan view showing another embodiment of the present invention, FIG. 4 is a plan view of the conventional example, and FIG. 5 is a sectional view taken along the line ■-■.
It is a sectional view taken along the line V-V. 1...p-type semiconductor substrate, 2a-2C...n-type well, 3.3a...p-well, 4a-41...
n" type diffusion layer, 5a, 5b...p+ type diffusion layer 6.
...Field oxide film, 7...Gate oxide film, 8.
...Gate electrode, 9...Interlayer insulating film, 10a...
・VCC wiring layer, 10b-GND wiring layer, 10c・
...Signal wiring layer, 10d...Input pad, 11.
12...Contact.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板の表面領域内に該半導体基
板より高不純物濃度に形成された、その表面に第2導電
型チャネルMOSトランジスタが形成されている第1導
電型ウェルと、 前記第1導電型半導体基板の表面領域内に形成された、
その表面に第1導電型チャネルMOSトランジスタが形
成されている第2導電型ウェルと、入・出力パッドと直
接接続された第2導電型拡散層と、 前記第2導電型拡散層と前記第1導電型ウェルおよび前
記第2導電型ウェルとの間に、これらのウェルと接する
ことなく前記第1導電型半導体基板の表面領域内に形成
された第2導電型ウェルと、を具備したCMOS型半導
体集積回路装置。
(1) a first conductivity type well formed in a surface region of a first conductivity type semiconductor substrate with a higher impurity concentration than the semiconductor substrate, and on whose surface a second conductivity type channel MOS transistor is formed; 1 formed within a surface region of a conductivity type semiconductor substrate,
a second conductivity type well on whose surface a first conductivity type channel MOS transistor is formed; a second conductivity type diffusion layer directly connected to the input/output pad; and the second conductivity type diffusion layer and the first conductivity type well. A CMOS type semiconductor comprising a conductivity type well and a second conductivity type well formed in a surface region of the first conductivity type semiconductor substrate without contacting these wells. Integrated circuit device.
(2)入・出力パッドと直接接続された前記第2導電型
拡散層が前記第1導電型半導体基板上に直接形成されて
いる第1項記載のCMOS型半導体集積回路装置。
(2) The CMOS type semiconductor integrated circuit device according to item 1, wherein the second conductivity type diffusion layer directly connected to the input/output pad is formed directly on the first conductivity type semiconductor substrate.
JP1326829A 1989-12-15 1989-12-15 CMOS type semiconductor integrated circuit device Expired - Lifetime JP3038744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326829A JP3038744B2 (en) 1989-12-15 1989-12-15 CMOS type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326829A JP3038744B2 (en) 1989-12-15 1989-12-15 CMOS type semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH03187259A true JPH03187259A (en) 1991-08-15
JP3038744B2 JP3038744B2 (en) 2000-05-08

Family

ID=18192183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326829A Expired - Lifetime JP3038744B2 (en) 1989-12-15 1989-12-15 CMOS type semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP3038744B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990781A (en) * 1997-03-18 1999-11-23 Rohm Co., Ltd. Chip type resistor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990781A (en) * 1997-03-18 1999-11-23 Rohm Co., Ltd. Chip type resistor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3038744B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US5218222A (en) Output ESD protection circuit
JP3058203U (en) Fully protected CMOS on-chip ESD protection circuit without latch-up
US6208010B1 (en) Semiconductor memory device
US5615073A (en) Electrostatic discharge protection apparatus
US6740958B2 (en) Semiconductor memory device
KR100431066B1 (en) Semiconductor device having electro-static discharge circuit
US7355252B2 (en) Electrostatic discharge protection device and method of fabricating the same
US7956418B2 (en) ESD protection devices
JPH09191080A (en) Electrostatic discharge structure of semiconductor device
US4607274A (en) Complementary MOS field effect transistor integrated circuit with protection function
KR100222078B1 (en) An electrostatic discharge protecting circuit formed in a minimized area
US5072271A (en) Protection circuit for use in semiconductor integrated circuit device
JPS61111576A (en) Semiconductor device
US20020130332A1 (en) Layout method of latch-up prevention circuit of a semiconductor device
KR100613819B1 (en) Silicon-on-insulator latch-up pulse-radiation detector
JP3447372B2 (en) Semiconductor device
US6084272A (en) Electrostatic discharge protective circuit for semiconductor device
KR20020015199A (en) Electrostatic discharge protection device in a semiconductor device
KR0131373B1 (en) Semiconductor device data output buffer
JP3191209B2 (en) Electrostatic breakdown prevention device
JPH03187259A (en) Cmos semiconductor integrated circuit device
JPH044755B2 (en)
KR100770451B1 (en) Structure for electrostatic discharge in micro chip
US20030197997A1 (en) Electro-static discharge protection device for integrated circuit inputs
KR100379330B1 (en) Electrostatic discharge(esd) structure