JPH0318647B2 - - Google Patents

Info

Publication number
JPH0318647B2
JPH0318647B2 JP58118099A JP11809983A JPH0318647B2 JP H0318647 B2 JPH0318647 B2 JP H0318647B2 JP 58118099 A JP58118099 A JP 58118099A JP 11809983 A JP11809983 A JP 11809983A JP H0318647 B2 JPH0318647 B2 JP H0318647B2
Authority
JP
Japan
Prior art keywords
resin composition
polymerization
soft component
monovinyl aromatic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58118099A
Other languages
Japanese (ja)
Other versions
JPS6011517A (en
Inventor
Shinichi Nakamura
Hideo Tejima
Toshinobu Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP11809983A priority Critical patent/JPS6011517A/en
Publication of JPS6011517A publication Critical patent/JPS6011517A/en
Publication of JPH0318647B2 publication Critical patent/JPH0318647B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はモノビニル芳香族系樹脂組成物に関
し、詳しくは耐衝撃性に優れ、しかも優れた光沢
や外観を有するモノビニル芳香族系樹脂組成物に
関する。 従来、真珠模様等がなく外観の優れたポリスチ
レン系樹脂組成物として、ローシスポリブタジエ
ンゴムの存在下にスチレンを重合させた組成物が
知られている(特開昭56−72010号)が、耐衝撃
性が十分でない。 また、光沢に優れた耐衝撃性のポリスチレン系
樹脂組成物として、ハイシスポリブタジエンゴム
の存在下にスチレンを重合させた組成物が知られ
ている(特開昭52−86444号、同54−141838
号、同57−143313号)。しかしながら、に示
された組成物は真珠様の外観を呈するという欠点
があり、しかも衝撃強度も十分とはいえない。ま
た、およびに示された組成物は耐衝撃性と光
沢のバランスが悪いという欠点がある。 本発明者らは、上記従来の欠点を解消すべく鋭
意研究を重ねた。その結果、本発明者らはハイシ
スポリブタジエンゴムを溶解重合するに際し、生
成する軟質成分粒子の面積平均径の他に、グラフ
ト率、架橋度を特定範囲に調整することにより、
優れた耐衝撃性を有し、しかも優れた光沢や外観
を有するモノビニル芳香族系樹脂組成物が得られ
ることを見出し、本発明を完成するに到つたもの
である。 すなわち本発明は、モノビニル芳香族単量体88
〜98重量%に、1,4−シス結合を78モル%以
上、1,2−ビニル結合を20モル%以下含有し、
かつ25℃、5%スチレン溶液における溶液粘度が
20〜200センチストークスであるハイシスポリブ
タジエンゴム12〜2重量%を溶解し重合して得ら
れる樹脂組成物において、前記樹脂組成物中に、
前記ハイシスポリブタジエンゴムが前記モノビニ
ル芳香族単量体とグラフト重合して生じたゴム状
の軟質成分粒子が分散しており、かつ前記軟質成
分粒子が0.5〜1.5μの面積平均径、24〜35%のグ
ラフト率、40〜55%の架橋度を有するものである
ことを特徴とするモノビニル芳香族系樹脂組成物
を提供するものである。 本発明において用いるモノビニル芳香族単量体
としてはスチレン単独のみならず、スチレンと共
重合し得る他のビニル系単量体とスチレンとの混
合物がある。ここでスチレンと共重合し得る他の
ビニル系単量体としては、例えばアクリロニトリ
ル、メチルメタクリレート、α−メチルスチレ
ン、核置換モノブロムスチレン等が挙げられる。
これらのビニル系単量体の混合比は通常、全単量
体の30重量%以下であり、好ましくは10重量%以
下である。 次に、ハイシスポリブタジエンゴムは例えば、
有機アルミニウム化合物とコバルトまたはニツケ
ル化合物を含んでなる触媒を用いて1,3−ブタ
ジエンを重合して製造することができる。ここで
ハイシスポリブタジエンゴムは少なくとも1,4
−シス結合および1,2−ビニル結合を含有する
ものであつて、1,4−シス結合含量は通常78モ
ル%以上、好ましくは80〜97モル%である。1,
4−シス結合含量が78モル%未満であると得られ
る樹脂組成物の衝撃強度が低下するので好ましく
ない。また、1,2−ビニル結合含量は通常20モ
ル%以下、好ましくは1〜10モル%である。ここ
で1,2−ビニル結合含量が20モル%を超えると
得られる樹脂組成物の衝撃強度が低下するので好
ましくない。さらに、このハイシスポリブタジエ
ンゴムは1,4−トランス結合を含有するものが
好ましく、この1,4−トランス結合含量は通常
2モル%以下である。なお、このハイシスポリブ
タジエンゴムのミクロ構造は、その赤外吸収スペ
クトルを測定し、モレロ法等を用いることにより
決定することができる。また、このハイシスポリ
ブタジエンゴムは25℃、5%スチレン溶液におけ
る溶液粘度が通常20〜200センチストークス、好
ましくは30〜150センチストークスのものがよい。
この溶液粘度が20センチストークス未満である
と、得られる樹脂組成物の衝撃強度が低下するの
で好ましくない。また、200センチストークスを
超えると、得られる樹脂組成物の光沢が低下する
ので好ましくない。 上記モノビニル芳香族単量体とハイシスポリブ
タジエンゴムの配合量は、前者が通常88〜98重量
%、好ましくは90〜96重量%であり、後者が通常
12〜2重量%、好ましくは10〜5重量%である。
ここで後者の配合量が2重量%未満であると、得
られる樹脂組成物の衝撃強度が低下し、また12重
量%を超えると、溶解重合法では軟質成分粒子の
均一な分散が困難となるので好ましくない。 本発明は上記モノビニル芳香族単量体88〜98重
量%にハイシスポリブタジエンゴム12〜2重量%
を溶解し重合して得られる軟質成分粒子が分散し
た樹脂組成物において、該軟質成分粒子の面積平
均径、グラフト率および架橋度を特定範囲に調整
したことを特徴とするものである。なお、ここで
軟質成分粒子とはポリブタジエンゴムが芳香族単
量体とグラフト重合して生じたゴム状粒子を指称
するものである。 本発明における軟質成分粒子の面積平均径は通
常0.5〜1.5μ、好ましくは0.7〜1.3μである。軟質
成分粒子の面積平均径が0.5μ未満であると、得ら
れる樹脂組成物の衝撃強度が低下するので好まし
くない。また、1.5μを超えると、得られる樹脂組
成物の光沢が低下するので好ましくない。なお、
面積平均径は樹脂の超薄切片法による電子顕微鏡
写真を撮影し、写真中の軟質成分粒子200〜500個
の粒子径を測定し、次式により面積平均したもの
である。 面積平均径(μ)=ΣnD3/ΣnD2 (但し、nは粒子径Dの軟質成分の粒子の個数
を示す。) 次に、本発明における軟質成分のグラフト率は
通常24〜35%、好ましくは26〜34%である。軟質
成分のグラフト率が24%未満であると、得られる
樹脂組成物の衝撃強度が低下するので好ましくな
い。また、35%を超えると、得られる樹脂組成物
の光沢が低下するので好ましくない。なお、グラ
フト率はパルスNMRでソリツドエコー信号を測
定し、ブタジエンおよびスチレンのシグナル強度
をそれぞれの含量として下式より求めた。 グラフト率(%)=グラフトゲル中のスチレン含量/
グラフトゲル中の(スチレン+ブタジエン)含量×100 (但し、グラフトゲルはメチルエチルケトン/
アセトン=1/1溶媒不溶分である。) また、本発明における軟質成分の架橋度は通常
40〜55%、好ましくは43〜50%である。軟質成分
の架橋度が40%未満であると、得られる樹脂組成
物の外観が不良となるので好ましくない。また、
軟質成分の架橋度が55%を超えると、得られる樹
脂組成物の衝撃強度が低下するので好ましくな
い。なお、架橋度はグラフトゲル(メチルエチル
ケトン/アセトン=1/1溶媒不溶分)のパルス
NMRを測定し、そのスピンエコー信号の減衰率
から求めた。 このような特徴を有する本発明の樹脂組成物は
上記の特徴が満足されるように配慮されているな
らば、既知の任意の重合方法を適用して製造する
ことができる。このような既知の重合方法として
は、例えば乳化重合法、塊状重合法、塊状−懸濁
2段重合法等があるが、これらの中でもゴム状弾
性体の存在下にスチレンを重合せしめる塊状重合
法または塊状−懸濁2段重合法が好ましい。以
下、塊状−懸濁2段重合法による本発明の樹脂組
成物の製造例を示す。 まず、ポリブタジエンをスチレンに添加し、必
要に応じて加熱し溶解する。この溶解は可及的に
均一に行なうことが好ましい。次に、アルキルメ
ルカプタン等の分子量調節剤および必要に応じて
用いるジアシルパーオキサイド、ジアルキルパー
オキサイド等の重合触媒の存在下において、90〜
150℃で撹拌下にスチレンの重合率が10〜40%に
なるまで塊状重合により予備重合を行なう。この
予備重合工程において軟質成分は撹拌により粒子
状に分散される。 上記の予備重合工程終了後、第3リン酸カルシ
ウム、ポリビニルアルコール等を懸濁剤として含
む水相に懸濁し、懸濁重合を行なう。通常、重合
率が100%近くになるまで重合(主重合)を行な
う。なお、必要に応じてこの主重合工程の後、さ
らに加熱を続けてもよい。 次に、得られたスラリーを脱水し、ビーズを分
取して乾燥した後、常法によりペレツト化して樹
脂組成物を製造する。なお、重合を行なうに際し
ては、上記の如く通常使用される重合開始剤、分
子量調節剤、酸化防止剤などの添加剤を使用する
ことができる。 重合が終了した組成物中には、スチレン系重合
体の硬い相の中に軟質成分が粒子として分散して
いる。 なお、軟質成分粒子の面積平均径、グラフト率
および架橋度の調整は主として予備重合工程で行
なうが、これらの因子と重合条件との関係は次の
とおりである。 まず、軟質成分粒子の面積平均径は、撹拌回転
数を上げることにより、あるいは触媒量を増すこ
とにより小さくなり、分子量調節剤を増すことに
より大きくなる。 次に、軟質成分のグラフト率は、撹拌回転数を
上げることにより低下し、触媒量を増すことまた
は分子量調節剤を増すこと、あるいは重合温度を
高めることにより増大する。 さらに、軟質成分の架橋度は、触媒量を増すこ
とまたは重合温度を高めることにより増大し、分
子量調節剤を増すことにより低下する。 したがつて、上記の関係を考慮して操作するこ
とにより軟質成分粒子の調整を行なうことができ
る。 本発明によれば、軟質成分粒子の面積平均径、
グラフト率、架橋度を特定範囲に調整することに
より、アイゾツト衝撃強度が11.5Kg・cm/cm以上
という耐衝撃性に優れたモノビニル芳香族系樹脂
組成物を得ることができる。さらに本発明によれ
ば、80%以上という優れた光沢を有し、しかも真
珠模様等のない優れた外観を有するモノビニル芳
香族系樹脂組成物を得ることができる。 したがつて本発明のモノビニル芳香族系樹脂組
成物はテレビ、ラジオ等の電気機器のハウジン
グ、台所用品、各種容器などの成形材料として有
効に利用することができる。 次に、本発明を実施例により説明する。 実施例1〜9および比較例1〜6 内容積4の撹拌機付重合槽に第1表に示すよ
うに所定量のスチレンおよびハイシスポリブタジ
エンゴムを仕込み、さらに分子量調節剤としてn
−ドデシルメルカプタン、触媒として1,1−ジ
−t−ブチルパーオキシ−3,3,5−トリメチ
ルシクロヘキサンを用い、回転数500r.p.m.の撹
拌下において、100℃で6時間、重合率40%とな
るまで予備重合を行なつた。 上記予備重合終了後、重合物を内容積10の撹
拌機付重合槽の水相中に加え分散させた。次い
で、これに懸濁安定剤として第3リン酸カルシウ
ムおよびドデシルベンゼンスルホン酸ソーダ、重
合開始剤として1,1−ジ−t−ブチルパーオキ
シ−3,3,5−トリメチルシクロヘキサンおよ
びジクミルパーオキサイドを添加し、140℃で5
時間懸濁重合(主重合)を行なつた。 得られた粒状重合物を濾別、乾燥して樹脂組成
物を得た。得られた樹脂組成物の物性の測定結果
を第1表に示す。
The present invention relates to a monovinyl aromatic resin composition, and more particularly to a monovinyl aromatic resin composition that has excellent impact resistance, as well as excellent gloss and appearance. Conventionally, a composition in which styrene is polymerized in the presence of low-cis polybutadiene rubber has been known as a polystyrene-based resin composition that has no pearl patterns and has an excellent appearance (Japanese Patent Application Laid-open No. 72010/1989). Impact resistance is not sufficient. In addition, as a polystyrene resin composition with excellent gloss and impact resistance, a composition in which styrene is polymerized in the presence of high-cis polybutadiene rubber is known (Japanese Patent Application Laid-open Nos. 52-86444 and 54-141838).
No. 57-143313). However, the composition shown in 2 has the drawback of exhibiting a pearl-like appearance, and furthermore, its impact strength is not sufficient. Furthermore, the compositions shown in and have the disadvantage of having poor balance between impact resistance and gloss. The present inventors have conducted extensive research in order to eliminate the above-mentioned conventional drawbacks. As a result, the present inventors found that when dissolving and polymerizing high-cis polybutadiene rubber, in addition to the area average diameter of the soft component particles produced, by adjusting the grafting ratio and degree of crosslinking to a specific range,
It was discovered that a monovinyl aromatic resin composition having excellent impact resistance, as well as excellent gloss and appearance can be obtained, and the present invention was completed. That is, the present invention provides monovinyl aromatic monomer 88
~98% by weight, containing 78 mol% or more of 1,4-cis bonds and 20 mol% or less of 1,2-vinyl bonds,
And the solution viscosity in 5% styrene solution at 25℃ is
In a resin composition obtained by dissolving and polymerizing 12 to 2% by weight of high-cis polybutadiene rubber having a molecular weight of 20 to 200 centistokes, in the resin composition,
Rubber-like soft component particles produced by graft polymerization of the high-cis polybutadiene rubber with the monovinyl aromatic monomer are dispersed, and the soft component particles have an area average diameter of 0.5 to 1.5μ, 24 to 35 % and a degree of crosslinking of 40 to 55%. The monovinyl aromatic monomer used in the present invention includes not only styrene alone but also a mixture of styrene and other vinyl monomers that can be copolymerized with styrene. Examples of other vinyl monomers that can be copolymerized with styrene include acrylonitrile, methyl methacrylate, α-methylstyrene, and nuclear-substituted monobromstyrene.
The mixing ratio of these vinyl monomers is usually 30% by weight or less, preferably 10% by weight or less of the total monomers. Next, high-cis polybutadiene rubber is, for example,
It can be produced by polymerizing 1,3-butadiene using a catalyst containing an organoaluminium compound and a cobalt or nickel compound. Here, the high-cis polybutadiene rubber is at least 1,4
-cis bonds and 1,2-vinyl bonds, and the 1,4-cis bond content is usually 78 mol% or more, preferably 80 to 97 mol%. 1,
If the 4-cis bond content is less than 78 mol%, the resulting resin composition will have a lower impact strength, which is not preferable. Further, the 1,2-vinyl bond content is usually 20 mol% or less, preferably 1 to 10 mol%. If the 1,2-vinyl bond content exceeds 20 mol%, the impact strength of the resulting resin composition will decrease, which is not preferable. Furthermore, this high-cis polybutadiene rubber preferably contains 1,4-trans bonds, and the 1,4-trans bond content is usually 2 mol% or less. The microstructure of this high-cis polybutadiene rubber can be determined by measuring its infrared absorption spectrum and using the Morello method or the like. The high-cis polybutadiene rubber preferably has a solution viscosity of usually 20 to 200 centistokes, preferably 30 to 150 centistokes, in a 5% styrene solution at 25°C.
If the solution viscosity is less than 20 centistokes, the resulting resin composition will have a lower impact strength, which is not preferred. Moreover, if it exceeds 200 centistokes, the gloss of the resulting resin composition will decrease, which is not preferable. The blending amount of the monovinyl aromatic monomer and high-cis polybutadiene rubber is usually 88 to 98% by weight, preferably 90 to 96% by weight, and the latter is usually 88 to 98% by weight, preferably 90 to 96% by weight.
12-2% by weight, preferably 10-5% by weight.
If the latter content is less than 2% by weight, the impact strength of the resulting resin composition will decrease, and if it exceeds 12% by weight, it will be difficult to uniformly disperse the soft component particles using the solution polymerization method. So I don't like it. The present invention uses 88 to 98 weight % of the above monovinyl aromatic monomer and 12 to 2 weight % of high-cis polybutadiene rubber.
In the resin composition in which soft component particles obtained by dissolving and polymerizing are dispersed, the area average diameter, grafting ratio, and degree of crosslinking of the soft component particles are adjusted to specific ranges. Note that the soft component particles herein refer to rubber particles produced by graft polymerization of polybutadiene rubber with an aromatic monomer. The area average diameter of the soft component particles in the present invention is usually 0.5 to 1.5μ, preferably 0.7 to 1.3μ. If the area average diameter of the soft component particles is less than 0.5 μm, the impact strength of the resulting resin composition will decrease, which is not preferable. Moreover, if it exceeds 1.5μ, the gloss of the resulting resin composition will decrease, which is not preferable. In addition,
The area average diameter is determined by taking an electron micrograph of the resin using an ultrathin section method, measuring the particle diameters of 200 to 500 soft component particles in the photograph, and averaging the area according to the following formula. Area average diameter (μ) = ΣnD 3 /ΣnD 2 (However, n indicates the number of particles of the soft component having a particle size D.) Next, the grafting rate of the soft component in the present invention is usually 24 to 35%, preferably is 26-34%. If the grafting ratio of the soft component is less than 24%, the impact strength of the resulting resin composition will decrease, which is not preferable. Moreover, if it exceeds 35%, the gloss of the resulting resin composition will decrease, which is not preferable. The grafting rate was determined by measuring solid echo signals using pulsed NMR, and using the signal intensities of butadiene and styrene as their respective contents using the formula below. Grafting rate (%) = Styrene content in graft gel/
(Styrene + butadiene) content in the graft gel x 100 (However, the graft gel contains methyl ethyl ketone/
Acetone = 1/1 solvent insoluble matter. ) Furthermore, the degree of crosslinking of the soft component in the present invention is usually
40-55%, preferably 43-50%. If the degree of crosslinking of the soft component is less than 40%, the resulting resin composition will have a poor appearance, which is not preferred. Also,
If the degree of crosslinking of the soft component exceeds 55%, it is not preferable because the impact strength of the resulting resin composition decreases. The degree of crosslinking is determined by the pulse of the graft gel (methyl ethyl ketone/acetone = 1/1 solvent insoluble portion).
NMR was measured and it was determined from the attenuation rate of the spin echo signal. The resin composition of the present invention having such characteristics can be produced by applying any known polymerization method as long as the above characteristics are satisfied. Such known polymerization methods include, for example, emulsion polymerization, bulk polymerization, bulk-suspension two-stage polymerization, etc. Among these, bulk polymerization, in which styrene is polymerized in the presence of a rubber-like elastic body, is used. Alternatively, a bulk-suspension two-stage polymerization method is preferred. An example of producing the resin composition of the present invention by the bulk-suspension two-stage polymerization method will be shown below. First, polybutadiene is added to styrene and, if necessary, heated and dissolved. It is preferable to perform this dissolution as uniformly as possible. Next, in the presence of a molecular weight regulator such as alkyl mercaptan and a polymerization catalyst such as diacyl peroxide or dialkyl peroxide used as necessary, 90 to
Prepolymerization is carried out by bulk polymerization at 150° C. with stirring until the polymerization rate of styrene reaches 10 to 40%. In this prepolymerization step, the soft component is dispersed into particles by stirring. After completing the above prepolymerization step, suspension polymerization is carried out by suspending in an aqueous phase containing tertiary calcium phosphate, polyvinyl alcohol, etc. as a suspending agent. Usually, polymerization (main polymerization) is carried out until the polymerization rate approaches 100%. Note that, if necessary, heating may be continued after this main polymerization step. Next, the resulting slurry is dehydrated, the beads are separated and dried, and then pelletized by a conventional method to produce a resin composition. In addition, when carrying out the polymerization, commonly used additives such as a polymerization initiator, a molecular weight regulator, and an antioxidant can be used as described above. In the composition after polymerization, the soft component is dispersed as particles in the hard phase of the styrene polymer. The area average diameter, grafting ratio, and degree of crosslinking of the soft component particles are mainly adjusted in the prepolymerization step, and the relationship between these factors and polymerization conditions is as follows. First, the area average diameter of the soft component particles becomes smaller by increasing the stirring rotation speed or by increasing the amount of catalyst, and becomes larger by increasing the molecular weight regulator. Next, the grafting rate of the soft component is decreased by increasing the stirring rotation speed, and increased by increasing the amount of catalyst, molecular weight regulator, or polymerization temperature. Furthermore, the degree of crosslinking of the soft component is increased by increasing the amount of catalyst or by increasing the polymerization temperature, and decreased by increasing the molecular weight regulator. Therefore, the soft component particles can be adjusted by operating in consideration of the above relationship. According to the present invention, the area average diameter of the soft component particles,
By adjusting the grafting rate and degree of crosslinking within specific ranges, it is possible to obtain a monovinyl aromatic resin composition having excellent impact resistance, with an Izot impact strength of 11.5 Kg·cm/cm or more. Further, according to the present invention, it is possible to obtain a monovinyl aromatic resin composition that has an excellent gloss of 80% or more and an excellent appearance without pearl patterns or the like. Therefore, the monovinyl aromatic resin composition of the present invention can be effectively used as a molding material for housings of electrical equipment such as televisions and radios, kitchen utensils, various containers, etc. Next, the present invention will be explained by examples. Examples 1 to 9 and Comparative Examples 1 to 6 A predetermined amount of styrene and high-cis polybutadiene rubber as shown in Table 1 were charged into a polymerization tank with an internal volume of 4 and equipped with a stirrer, and n was added as a molecular weight regulator.
Using -dodecyl mercaptan and 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane as a catalyst, the polymerization rate was 40% at 100°C for 6 hours under stirring at a rotation speed of 500 rpm. Prepolymerization was carried out until the After the preliminary polymerization was completed, the polymer was added to the aqueous phase of a polymerization tank with an internal volume of 10 and was dispersed. Next, tertiary calcium phosphate and sodium dodecylbenzenesulfonate were added as suspension stabilizers, and 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane and dicumyl peroxide were added as polymerization initiators. 5 at 140℃
Time suspension polymerization (main polymerization) was performed. The obtained granular polymer was filtered and dried to obtain a resin composition. Table 1 shows the measurement results of the physical properties of the obtained resin composition.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 モノビニル芳香族単量体88〜98重量%に、
1,4−シス結合を78モル%以上、1,2−ビニ
ル結合を20モル%以下含有し、かつ25℃、5%ス
チレン溶液における溶液粘度が20〜200センチス
トークスであるハイシスポリブタジエンゴム12〜
2重量%を溶解し重合して得られる樹脂組成物に
おいて、前記樹脂組成物中に、前記ハイシスポリ
ブタジエンゴムが前記モノビニル芳香族単量体と
グラフト重合して生じたゴム状の軟質成分粒子が
分散しており、かつ前記軟質成分粒子が0.5〜
1.5μの面積平均径、24〜35%のグラフト率、40〜
55%の架橋度を有するものであることを特徴とす
るモノビニル芳香族系樹脂組成物。
1 88 to 98% by weight of monovinyl aromatic monomer,
High-cis polybutadiene rubber 12 containing 78 mol% or more of 1,4-cis bonds and 20 mol% or less of 1,2-vinyl bonds, and having a solution viscosity of 20 to 200 centistokes in a 5% styrene solution at 25°C ~
In the resin composition obtained by dissolving and polymerizing 2% by weight, the resin composition contains rubber-like soft component particles produced by graft polymerization of the high-cis polybutadiene rubber with the monovinyl aromatic monomer. dispersed, and the soft component particles have a particle size of 0.5 to
Area average diameter of 1.5μ, grafting rate of 24~35%, 40~
A monovinyl aromatic resin composition having a degree of crosslinking of 55%.
JP11809983A 1983-07-01 1983-07-01 Monovinyl aromatic resin composition Granted JPS6011517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11809983A JPS6011517A (en) 1983-07-01 1983-07-01 Monovinyl aromatic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11809983A JPS6011517A (en) 1983-07-01 1983-07-01 Monovinyl aromatic resin composition

Publications (2)

Publication Number Publication Date
JPS6011517A JPS6011517A (en) 1985-01-21
JPH0318647B2 true JPH0318647B2 (en) 1991-03-13

Family

ID=14727975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11809983A Granted JPS6011517A (en) 1983-07-01 1983-07-01 Monovinyl aromatic resin composition

Country Status (1)

Country Link
JP (1) JPS6011517A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686559B2 (en) * 1984-09-27 1994-11-02 出光石油化学株式会社 Fluorocarbon resistant sheet material
JPH0686561B2 (en) * 1985-09-30 1994-11-02 出光石油化学株式会社 Monovinyl aromatic resin composition
JPH0686560B2 (en) * 1985-09-30 1994-11-02 出光石油化学株式会社 Method for producing monovinyl aromatic resin composition
JPS6366215A (en) * 1986-09-05 1988-03-24 Ube Ind Ltd Impact-resistant polystyrene based resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141838A (en) * 1978-04-25 1979-11-05 Mitsui Toatsu Chem Inc Styrene resin composition
JPS57143313A (en) * 1981-03-02 1982-09-04 Ube Ind Ltd Preparation of impact-resistant polystyrene resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141838A (en) * 1978-04-25 1979-11-05 Mitsui Toatsu Chem Inc Styrene resin composition
JPS57143313A (en) * 1981-03-02 1982-09-04 Ube Ind Ltd Preparation of impact-resistant polystyrene resin

Also Published As

Publication number Publication date
JPS6011517A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
AU733887B2 (en) High gloss high impact monovinylidene aromatic polymers
US6248807B1 (en) Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
JPS61203158A (en) Abs composition and manufacture
US5091470A (en) Molding resin
KR960000567B1 (en) Rubber-reinforced monovinylidene aromatic polymer resins and a method for their preparation
JPS6348317A (en) High-impact polystyrene resin and its production
CN111386290B (en) Process for producing graft copolymer and thermoplastic resin molded article
US3855355A (en) Process for preparing graft copolymers in aqueous emulsion
JPH0318647B2 (en)
KR100513658B1 (en) Perparation of thermoplastic resin composition having excellent thermal stability and power properties
JPS6111965B2 (en)
JPH0318646B2 (en)
KR102212039B1 (en) Method for preparing conjuagated diene based polymer and method for preparing graft copolymer comprising the same
JP2637176B2 (en) Rubber-modified styrenic resin
JPH05132605A (en) Rubber-modified polystyrene composition
JPS6150488B2 (en)
US20030008973A1 (en) Method for the preparation of core-shell morphologies from polybutadiene-polystyrene graft copolymers
JPS6223782B2 (en)
KR100663054B1 (en) Bimodal rubbers and rubber modified high impact monovinylidene aromatic polymers produced therefrom
JP2655689B2 (en) Rubber-modified styrenic resin
KR100453875B1 (en) Method of Preparing the New Grafted Copolymer Having High Rubber Contents and High Performance
JPH0660273B2 (en) Rubber modified polystyrene resin composition
KR910009866B1 (en) A method of preparing for the excellent impact retardant graft polymer
JPH0480049B2 (en)
JPS58168650A (en) Thermoplastic resin composition