JPS6150488B2 - - Google Patents

Info

Publication number
JPS6150488B2
JPS6150488B2 JP14707979A JP14707979A JPS6150488B2 JP S6150488 B2 JPS6150488 B2 JP S6150488B2 JP 14707979 A JP14707979 A JP 14707979A JP 14707979 A JP14707979 A JP 14707979A JP S6150488 B2 JPS6150488 B2 JP S6150488B2
Authority
JP
Japan
Prior art keywords
composition
rubber
polymerization
mol
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14707979A
Other languages
Japanese (ja)
Other versions
JPS5672010A (en
Inventor
Ichiro Ootsuka
Mitsuyoshi Nakamura
Masao Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP14707979A priority Critical patent/JPS5672010A/en
Publication of JPS5672010A publication Critical patent/JPS5672010A/en
Publication of JPS6150488B2 publication Critical patent/JPS6150488B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い光沢と優れた外観をもつ耐衝撃
性ゴム変性スチレン系樹脂組成物に関する。従
来、高い光沢をもち且つ耐衝撃性のスチレン系樹
脂組成物として1,4―シス結合の含有量の多い
ポリブタジエンの存在下にスチレンを重合して得
た組成物等が知られている。例えば特開昭52―
86444等である。 しかし、これ等の従来技術の組成物はたしかに
高い光沢をもつものの詳細に観察すると、真珠様
の外観を呈するという技術的欠点がある。すなわ
ち従来技術の組成物は、その成形物の平らな面に
螢光灯等を写してみるとその輪廓がぼけるととも
にわずかな虹色を生じ、真珠のような外観を与え
るという外観不良現象を有しており、この改良が
要請されていた。 本発明はこの外観不良現象を改良した高い光沢
をもつゴム変性スチレン系樹脂を提供する事を目
的とするものである。 本発明者は、この課題を達成するために、ゴム
変性スチレン系樹脂組成物においてゴム状弾性体
として特定の構造を有するポリブタジエンを使用
し、組成物中の軟質成分に特定の構造を付与する
事が有効である事を見出し本発明を完成した。 本発明の目的を達成するには、ゴム変性スチレ
ン系樹脂において、特許請求の範囲に記載する通
り、ゴム状弾性体であるポリブタジエンの構造、
上記ゴム状弾性体にスチレンなどの単量体がグラ
フト重合して生じたゴム状粒子(以下軟質成分粒
子という。)の粒径及び次式に定義するR R=g−g/r (記号については後述する。)の値をそれぞれ
特定することが必要であり、これらの要件のどの
一つが欠けても本発明の目的は達成できない。以
下更に詳しく説明する。 本発明の樹脂組成物を製造する方法は、前記の
特徴が満足されるように配慮されているかぎり、
任意の公知の重合方法例えば乳化重合法、塊状重
合法、塊状―懸濁2段重合法等を用いる事ができ
るが、好ましくはゴム状弾性体の存在下にスチレ
ンを重合せしめる塊状重合法又は塊状―懸濁2段
重合法が適用される。例として塊状―懸濁2段量
体合法について説明する。 まず、本発明のポリブタジエンをスチレンに添
加し、60〜80℃に加熱し溶解する。この溶解はで
きるだけ均一である事が好ましい。次に90〜120
℃で撹拌下にスチレンの重合率が10〜40%になる
まで塊状重合を行う。この工程を「予備重合工
程」と呼ぶこととし、予備重合工程においてゴム
状弾性体は撹拌の作用を受けて粒子状に分散され
る。 予備重合工程終了後、第3リン酸カルシウム等
を懸濁剤として含む水相に懸濁し、懸濁重合を行
なう。通常、重合率が100%近くなるまで重合を
行う。 この予備重合後の工程を「主重合工程」と呼ぶ
こととする。要すれば主重合工程に引き続き、単
量体の少くなつた後に更に加熱を続ける「後加熱
工程」を行なつてもよい。 このようにして得たスラリーを脱水し、ビーズ
を分取し、乾燥し、さらに押出工程でペレツト化
する。重合が完全に終つたとき、組成物中にはス
チレン系重合体の硬い相の中に軟質成分が粒子と
して分散しており、この軟質成分はスチレンとグ
ラフト共重合したゴム状弾性体とこれに封じこめ
られたスチレン系重合体とからなつている。 本発明の目的を達するには、上記軟質成分の平
均粒径が0.5〜1.5μの範囲にある事が必要であ
る。 平均粒径が0.5μ未満では樹脂組成物の耐衝撃
性が劣り、平均粒径が1.5μを超える場合は光沢
が劣る。こゝで平均粒径とは、樹脂の超薄切片法
による電子顕微鏡写真を撮影し、写真中の軟質成
分粒子200〜500個の粒子径を測定し、次式により
重量平均したものである。 重量平均径=ΣnD4/ΣnD3 但しnは粒子径Dの軟質成分の粒子の個数であ
る。 本発明で規定する平均粒径の範囲は予備重合工
程の撹拌条件を適切に定める事により達成でき
る。すなわち、撹拌翼の撹拌数を大きくすれば平
均粒径は小さくなり、撹拌数を小さくすれれば平
均粒径は大になるので、適切な撹拌数を撰択する
ことにより所望の平均粒径を達成できる。 本発明の目的を達成するためには、次式で定義
するRが0.5<R<5.0である事が必要である。 R=g−g/r ここに、g1は組成物を窒素中で300℃5時間加
熱した后のメチルエチルケトン(MEK)不溶分
含有率(重量百分率)であり、ゴム状弾性体に封
じ込められたモノビニル芳香族重合体まで含めた
軟質成分の含有率を意味する。g2は組成物のメチ
ルエチルケトン(MEK)不溶分含有率(重量百
分率)であり、モノビニル芳香族重合体の封入が
ない軟質成分の含有率を意味する。rは組成物の
ゴム状弾性体重量百分率である。従つてRは、ゴ
ム状弾性体に封じ込められたモノビニル芳香族重
合体のゴム状弾性体に対する割合を示す尺度と考
えられる。Rが0.5以下でも5.0以上でも、いずれ
も組成物の外観が悪くなる。Rが0.7と2.0の間に
あるとき特に組成物の外観が良く好ましい。 本発明に云うRは上記に定義した通りに求めら
れるが定義中のMEK不溶分含有率とはメチルエ
チルケトンに不溶な物質の重量百分率であり次の
様にして求める。すなわち樹脂組成物2.0gを
MEK50mlに投入し、還流下に5時間放置する。
冷却后不溶分を遠心分離し、傾斜により溶液を除
き、乾燥し、不溶分を秤量する。不溶分の重量を
xgとするとMEK不溶分含有率は次式で求められ
る。 MEK不溶分含有率=x/2.0×100 本発明で規定するRの範囲は、公知の方法で重
合物を製造する際に、それぞれの製法における重
合温度、使用開始剤等の操業条件を定める事によ
り達成できる。普通には、これは後加熱工程にお
いて適切な温度を撰ぶ事、ならびに/もしくは架
橋助剤たとえば過酸化物の添加によつて調整され
る。 即ち後加熱工程をより高温にすればRは小さく
なるし、またこの工程で有機過酸化物を添加する
場合、その分解量が多いほどRが小さくなる。ま
たは主重合工程における重合温度及び開始剤の分
解量によつてもRを調整できる。即ち重合温度を
低くしかつ開始剤の分解量が多いほどRは大きく
なる。 尚このRは軟質成分中に封じ込まれたゴムに化
学的に結合していないモノビニル芳香族重合体の
量と相関があると考えられ、樹脂組成物を成形す
るときのゴム粒子の挙動がこのRによつて変るた
め、外観も変るものと推定される。 本発明に使用するゴム状弾性体は、1,2―ビ
ニル結合10〜25モル%、1,4―シス結合25〜45
モル%、1,4―トランス結合30〜65モル%によ
り規定されるミクロ構造を有し、かつ30〜60セン
チストークスの溶液粘度を有していることが必須
要件である。 この範囲外のゴム状弾性体、例えばシス1,4
―結合が90モル%以上の高シスポリブタジエン、
溶液粘度が60センチストークスを超えるポリブタ
ジエン、溶液粘度が30センチストークス未満のポ
リブタジエン、スチレン―ブタジエン共重合体ゴ
ム(SBR)等を用いたのでは、得られる樹脂組成
物の光沢、外観、耐衝撃性が本発明の構成要件で
あるポリブタジエンを用いた樹脂組成物に比較し
て著しく劣つているからである。 すなわち1,2―ビニル結合が10モル%未満の
場合は組成物の外観が悪く、25モル%を超えると
組成物の耐衝撃性が低下する。1,4―シス結合
が25モル%未満では耐衝撃性が低下し、45モル%
を超えると外観が悪化する。また溶液粘度が30セ
ンチストークス未満では耐衝撃性が低下し、60セ
ンチストークスを超えると外観が悪化する。 本発明に云う溶液粘度は次の様にして測定した
ものである。 すなわちゴム状重合体2.5gをスチレン47.5g
に溶解し、30℃に於てウベローデ型粘度計にて測
定した溶液粘度である。 本発明に云うポリブタジエンのミクロ構造は次
の様にして定めたものである。すなわちポリブタ
ジエンを二硫化炭素に溶解し、その溶液の赤外吸
収スペクトルを測定し、スペクトルの967cm-1
1,4―トランス結合、911cm-1の1,2―ビニ
ル結合、736cm-1の1,4―シス結合に基づく吸
収により、モレロ法〔D.Morero等Chim.e Ind.,
41,758(1959)〕により定めたものである。 本発明に使用するポリブタジエンは公知の方
法、例えば特開昭53―130793等に示される様に有
機リチウム系触媒を用いて、1,3―ブタジエン
を重合して製造される。 本発明で使用するモノビニル芳香族単量体とは
スチレン単独、あるいはスチレンと共重合し得る
他のビニル系単量体とスチレンとの混合物であ
る。スチレンと共重合し得る他のビニル系単量体
としては、例えばアクリロニトリル、メチルメタ
クリレート、α―メチルスチレン、核置換モノブ
ロムスチレン等が挙げられる。これらの単量体の
比率は通常全単量体のうち30重量%以下、好まし
くは10重量%以下である。 本発明の樹脂組成物の外観(真珠模様の防止)
は、従来技術によるものに較べて歴然とした差が
あり、光沢が顕著に改良されている。本発明の樹
脂組成物は高い光沢及び高い耐衝撃性を兼ね備え
ているので、電気機器、雑貨等の産業分野で著し
く使用価値が高い。 具体的にはテレビ、ラジオ、クリーナー等のハ
ウジング、台所用品、種々の容器等に好適に使用
できる。 以下実施例により具体的に説明する。 なお特記しない限り「部」数は重量部を表す。 実施例 1 A 樹脂組成物の製造 内容積120の撹拌付重合槽に アサプレン700x(旭化成社製) 7部 スチレン 93部 ターシヤリドデシルメルカプタン 0.5部 (ここにアサプレン700xは1,2―ビニル結
合17モル%、1,4―シス結合38モル%、1,4
―トランス結合45モル%のミクロ構造を有し、溶
液粘度は45センチストークスである。) を仕込み、撹拌下に65℃で5時間加熱し、均一溶
液とした。その后、撹拌数を250rpmとして昇温
し、110℃で7時間予備重合を行いスチレン重合
率を30%とした。そして内容積300の撹拌機付
重合槽に下記の水相を用意し、上記予備重合で得
た重合混合物を加え粒子状に分散させた。 水 150部 第3リン酸カルシウム 3部 ドデシルベンゼンスルホン酸ソーダ 0.02部 この懸濁液に更にベンゾイルパーオキサイド
0.20部、ジクミルパーオキサイド0.02部を添加
し、90℃で5時間、その后130℃で2時間主重合
を行なつた。 得られた懸濁粒子を別し、乾燥し、懸濁粒子
100部に対して酸化防止剤としてイルガノツクス
1076を0.3部加え押出機で押出してペレツト化し
た。 この樹脂組成物中に分散された軟質成分粒子の
平均粒径は1.0μであり、Rは1.1であつた。 B 評 価 このペレツトを用い、射出成形によりそれぞれ
耐衝撃性と光沢の測定用の試験片をつくり、以下
の測定をした。 結果を表―1にまとめた。 (1) 耐衝撃性の測定 50m/m×50m/m×2.5m/mの角板に1/4
インチRの撃芯をあて上部より一定荷重を落下
させ、試験片の50%が破壊するエネルギーをも
つて表わす。 破壊エネルギー(Kg・cm)=荷重落下 高さ(cm)×荷重(Kg) (2) 光沢の測定 140m/m×80m/m×4m/mの角板につ
いて、JISK8741の方法によつてグロスを測定
した。 (3) 外観の測定 上記(2)の角板を使用し、次の基準により肉眼
判定した。 評 点 1…真珠様の外観不良が全くなく、螢光灯を写
したとき螢光灯の輪廓がぼけない。 2…上記現象がほとんどない。又は若干認めら
れる。 3…上記現象が明らかに認められる。 比較例 1〜6 原料であるゴム状弾性体と予備重合工程の撹拌
数を表1の通り変えた以外は実施例1に従つて、
樹脂組成物を得た。これらのペレツトは前記と同
じく射出成形して試験片をつくり、耐衝撃性、光
沢、外観を測定した。 比較例1,2,3は外観が悪く、比較例4,6
は耐衝撃性が低く、比較例5は外観、耐衝撃性と
もに悪く、いずれも本発明の樹脂組成物の性能に
及ばない。
The present invention relates to impact-resistant rubber-modified styrenic resin compositions with high gloss and excellent appearance. Conventionally, compositions obtained by polymerizing styrene in the presence of polybutadiene with a high content of 1,4-cis bonds have been known as styrenic resin compositions having high gloss and impact resistance. For example, Japanese Patent Application Publication No. 1973-
86444 etc. However, although these prior art compositions do have a high luster, they have a technical drawback in that they exhibit a pearl-like appearance when closely observed. In other words, the compositions of the prior art have an appearance defect phenomenon in which when a fluorescent light or the like is projected onto the flat surface of the molded product, the outline becomes blurred and a slight rainbow color appears, giving it a pearl-like appearance. This improvement was requested. The object of the present invention is to provide a rubber-modified styrenic resin with high gloss that improves this phenomenon of poor appearance. In order to achieve this objective, the present inventor used polybutadiene having a specific structure as a rubber-like elastic body in a rubber-modified styrenic resin composition, and imparted a specific structure to the soft component in the composition. They discovered that this is effective and completed the present invention. In order to achieve the object of the present invention, in the rubber-modified styrenic resin, as described in the claims, the structure of polybutadiene, which is a rubber-like elastic body,
The particle size of rubber particles (hereinafter referred to as soft component particles) produced by graft polymerization of a monomer such as styrene to the rubber-like elastic body and R R = g 1 - g 2 /r ( The symbols will be described later.) It is necessary to specify the values of each of them, and the object of the present invention cannot be achieved if any one of these requirements is missing. This will be explained in more detail below. The method for producing the resin composition of the present invention includes the following steps, as long as the above-mentioned characteristics are satisfied:
Any known polymerization method can be used, such as emulsion polymerization, bulk polymerization, bulk-suspension two-stage polymerization, etc., but preferably bulk polymerization or bulk polymerization in which styrene is polymerized in the presence of a rubber-like elastomer is preferred. - Suspension two-stage polymerization method is applied. As an example, the bulk-suspension two-stage mass method will be explained. First, the polybutadiene of the present invention is added to styrene and heated to 60 to 80°C to dissolve it. It is preferable that this dissolution be as uniform as possible. then 90-120
Bulk polymerization is carried out at °C with stirring until the polymerization rate of styrene is 10-40%. This step will be referred to as a "prepolymerization step," and in the prepolymerization step, the rubber-like elastic body is dispersed into particles under the action of stirring. After the preliminary polymerization step is completed, the mixture is suspended in an aqueous phase containing tertiary calcium phosphate or the like as a suspending agent to carry out suspension polymerization. Usually, polymerization is carried out until the polymerization rate approaches 100%. The step after this preliminary polymerization will be referred to as the "main polymerization step." If necessary, a "post-heating step" may be carried out following the main polymerization step, in which heating is continued after the amount of monomer is reduced. The slurry thus obtained is dehydrated, the beads are separated, dried, and pelletized in an extrusion process. When the polymerization is completely completed, the soft component is dispersed as particles in the hard phase of the styrene polymer in the composition, and this soft component is combined with the rubber-like elastic body graft-copolymerized with styrene. It is made up of encapsulated styrenic polymer. In order to achieve the object of the present invention, it is necessary that the average particle size of the soft component be in the range of 0.5 to 1.5 microns. If the average particle size is less than 0.5μ, the resin composition will have poor impact resistance, and if the average particle size exceeds 1.5μ, the resin composition will have poor gloss. Here, the average particle diameter is the one obtained by taking an electron micrograph of the resin using an ultrathin section method, measuring the particle diameters of 200 to 500 soft component particles in the photograph, and averaging them by weight according to the following formula. Weight average diameter=ΣnD 4 /ΣnD 3 where n is the number of particles of the soft component having a particle diameter D. The average particle diameter range specified in the present invention can be achieved by appropriately determining the stirring conditions in the prepolymerization step. In other words, increasing the number of stirrings by the stirring blade will reduce the average particle size, and decreasing the number of stirrings will increase the average particle size, so by selecting an appropriate number of stirrings, the desired average particle size can be achieved. It can be achieved. In order to achieve the object of the present invention, it is necessary that R defined by the following formula satisfy 0.5<R<5.0. R=g 1 −g 2 /r where g 1 is the methyl ethyl ketone (MEK) insoluble content (weight percentage) after heating the composition in nitrogen at 300° C. for 5 hours, and it is encapsulated in a rubber-like elastic body. This means the content of soft components including monovinyl aromatic polymers. g 2 is the methyl ethyl ketone (MEK) insoluble content (weight percentage) of the composition, meaning the content of soft components without encapsulation of monovinyl aromatic polymers. r is the rubbery elastic weight percentage of the composition. Therefore, R is considered to be a measure indicating the ratio of the monovinyl aromatic polymer encapsulated in the rubbery elastic body to the rubbery elastic body. Whether R is 0.5 or less or 5.0 or more, the appearance of the composition deteriorates. When R is between 0.7 and 2.0, the appearance of the composition is particularly good, which is preferable. R referred to in the present invention is determined as defined above, and the MEK insoluble content in the definition is the weight percentage of the substance insoluble in methyl ethyl ketone, and is determined as follows. In other words, 2.0g of the resin composition
Pour into 50ml of MEK and leave under reflux for 5 hours.
After cooling, the insoluble matter is centrifuged, the solution is removed by decanting, the solution is dried, and the insoluble matter is weighed. Weight of insoluble matter
If xg, the MEK insoluble content is determined by the following formula. MEK insoluble matter content = x/2.0×100 The range of R specified in the present invention is determined by adjusting the operating conditions such as polymerization temperature and initiator used in each production method when producing a polymer by a known method. This can be achieved by establishing the following. Usually this is adjusted by selecting a suitable temperature in the after-heating step and/or by adding crosslinking aids such as peroxides. That is, the higher the temperature in the post-heating step, the smaller R will be, and when an organic peroxide is added in this step, the larger the amount of organic peroxide decomposed, the smaller R will be. Alternatively, R can also be adjusted by the polymerization temperature and decomposition amount of the initiator in the main polymerization step. That is, the lower the polymerization temperature and the greater the amount of decomposition of the initiator, the greater R becomes. This R is thought to be correlated with the amount of monovinyl aromatic polymer that is not chemically bonded to the rubber encapsulated in the soft component, and the behavior of the rubber particles when molding the resin composition is affected by this R. Since it changes depending on R, it is presumed that the appearance also changes. The rubber-like elastic body used in the present invention has 10 to 25 mol% of 1,2-vinyl bonds and 25 to 45 mol% of 1,4-cis bonds.
The essential requirements are a microstructure defined by mole percent, 30 to 65 mole percent 1,4-trans bonds, and a solution viscosity of 30 to 60 centistokes. Rubber-like elastic bodies outside this range, such as cis 1,4
- High cis polybutadiene with a bond of 90 mol% or more,
When using polybutadiene with a solution viscosity of more than 60 centistokes, polybutadiene with a solution viscosity of less than 30 centistokes, styrene-butadiene copolymer rubber (SBR), etc., the resulting resin composition has poor gloss, appearance, and impact resistance. This is because it is significantly inferior to a resin composition using polybutadiene, which is a constituent element of the present invention. That is, if the 1,2-vinyl bond content is less than 10 mol%, the appearance of the composition will be poor, and if it exceeds 25 mol%, the impact resistance of the composition will decrease. If the content of 1,4-cis bonds is less than 25 mol%, the impact resistance will decrease;
Exceeding this will deteriorate the appearance. Furthermore, if the solution viscosity is less than 30 centistokes, the impact resistance will decrease, and if it exceeds 60 centistokes, the appearance will deteriorate. The solution viscosity referred to in the present invention was measured as follows. In other words, 2.5g of rubbery polymer and 47.5g of styrene.
This is the solution viscosity measured using an Ubbelohde viscometer at 30°C. The microstructure of polybutadiene referred to in the present invention is determined as follows. That is , polybutadiene is dissolved in carbon disulfide, and the infrared absorption spectrum of the solution is measured . , 4-cis bonds, the Morello method [D.Morero et al. Chim.e Ind.,
41 , 758 (1959)]. The polybutadiene used in the present invention is produced by polymerizing 1,3-butadiene using a known method, for example, using an organolithium catalyst as disclosed in JP-A-53-130793. The monovinyl aromatic monomer used in the present invention is styrene alone or a mixture of styrene and another vinyl monomer that can be copolymerized with styrene. Examples of other vinyl monomers that can be copolymerized with styrene include acrylonitrile, methyl methacrylate, α-methylstyrene, and nuclear-substituted monobromstyrene. The proportion of these monomers is usually 30% by weight or less, preferably 10% by weight or less of the total monomers. Appearance of the resin composition of the present invention (prevention of pearl pattern)
There is a clear difference compared to the prior art, and the gloss is significantly improved. Since the resin composition of the present invention has both high gloss and high impact resistance, it has extremely high utility value in industrial fields such as electrical equipment and miscellaneous goods. Specifically, it can be suitably used for housings for televisions, radios, cleaners, etc., kitchen utensils, various containers, etc. This will be explained in detail below using examples. Note that unless otherwise specified, "parts" represent parts by weight. Example 1 A Manufacture of resin composition In a polymerization tank with internal volume 120 with stirring, Asaprene 700x (manufactured by Asahi Kasei Corporation) 7 parts styrene 93 parts tertiary dodecyl mercaptan 0.5 parts (Here, Asaprene 700x contains 17 moles of 1,2-vinyl bond) %, 1,4-cis bond 38 mol%, 1,4
- It has a microstructure of 45 mol% trans bonds and a solution viscosity of 45 centistokes. ) and heated at 65°C for 5 hours with stirring to form a homogeneous solution. After that, the temperature was raised at a stirring speed of 250 rpm, and preliminary polymerization was carried out at 110° C. for 7 hours to give a styrene polymerization rate of 30%. Then, the following aqueous phase was prepared in a polymerization tank with an internal volume of 300 and equipped with a stirrer, and the polymerization mixture obtained in the above prepolymerization was added and dispersed in the form of particles. Water 150 parts Tertiary calcium phosphate 3 parts Sodium dodecylbenzenesulfonate 0.02 parts Add benzoyl peroxide to this suspension.
0.20 part of dicumyl peroxide and 0.02 part of dicumyl peroxide were added thereto, and main polymerization was carried out at 90°C for 5 hours and then at 130°C for 2 hours. The obtained suspended particles are separated, dried, and the suspended particles
Irganox as an antioxidant per 100 parts
0.3 part of 1076 was added and extruded using an extruder to form pellets. The average particle size of the soft component particles dispersed in this resin composition was 1.0 μm, and R was 1.1. B Evaluation Using this pellet, test pieces for measuring impact resistance and gloss were made by injection molding, and the following measurements were made. The results are summarized in Table-1. (1) Impact resistance measurement 1/4 on a square plate of 50m/m x 50m/m x 2.5m/m
It is expressed as the energy required to destroy 50% of the test piece when a constant load is dropped from above using a striking center of inch radius. Fracture energy (Kg・cm) = Load drop Height (cm) x Load (Kg) (2) Gloss measurement A square plate of 140 m/m x 80 m/m x 4 m/m was glossed using the JISK8741 method. It was measured. (3) Measurement of appearance Using the square plate described in (2) above, visual judgment was made according to the following criteria. Rating: 1...There is no pearl-like appearance defect, and when the fluorescent light is photographed, the outline of the fluorescent light is not blurred. 2...The above phenomenon is almost absent. Or slightly recognized. 3...The above phenomenon is clearly observed. Comparative Examples 1 to 6 According to Example 1, except that the raw material rubber-like elastic body and the stirring number in the prepolymerization step were changed as shown in Table 1.
A resin composition was obtained. These pellets were injection molded in the same manner as above to make test pieces, and impact resistance, gloss, and appearance were measured. Comparative Examples 1, 2, and 3 have poor appearance, while Comparative Examples 4 and 6
had low impact resistance, and Comparative Example 5 had poor appearance and impact resistance, both of which were inferior in performance to the resin composition of the present invention.

【表】【table】

【表】 実施例 2〜4 原料である単量体及び予備重合工程の撹拌数を
表―2の通り変えた以外は実施例1に従つて樹脂
組成物ペレツトを得た。 これらのペレツトをつくり、耐衝撃性、光沢、
外観を測定した。 比較例 7,8 予備重合工程の撹拌数を表―2の通り変えた以
外は実施例2に従つて樹脂組成物ペレツトを得
た。 これらのペレツトを前記と同じく射出成形して
試験片をつくり、耐衝撃性、光沢、外観を測定し
た。 比較例7は光沢が悪く、比較例8は耐衝撃性が
悪い。共に軟質成分の粒径が本発明の範囲外であ
る。
[Table] Examples 2 to 4 Resin composition pellets were obtained in accordance with Example 1, except that the monomers as raw materials and the stirring number in the prepolymerization step were changed as shown in Table 2. These pellets are made with impact resistance, gloss,
The appearance was measured. Comparative Examples 7 and 8 Resin composition pellets were obtained in accordance with Example 2, except that the number of stirrings in the prepolymerization step was changed as shown in Table 2. These pellets were injection molded in the same manner as above to prepare test pieces, and impact resistance, gloss, and appearance were measured. Comparative Example 7 had poor gloss, and Comparative Example 8 had poor impact resistance. In both cases, the particle size of the soft component is outside the scope of the present invention.

【表】 実施例 5,6 主重合工程及び后加熱工程の条件を表―3の通
り変えた以外は実施例1に従つて樹脂組成物ペレ
ツトを得た。 これらのペレツトを前記と同じく、射出成形し
て試験片をつくり耐衝撃性、光沢、外観を測定し
た。 比較例 9,10 実施例5と同様にして、Rが本発明範囲外であ
る樹脂組成物を製造した。結果を表―3に示す。
比較例9,10ともに外観が悪い。
[Table] Examples 5 and 6 Resin composition pellets were obtained according to Example 1 except that the conditions of the main polymerization step and the post-heating step were changed as shown in Table 3. These pellets were injection molded into test pieces in the same manner as above, and impact resistance, gloss, and appearance were measured. Comparative Examples 9 and 10 In the same manner as in Example 5, a resin composition in which R was outside the range of the present invention was produced. The results are shown in Table-3.
Both Comparative Examples 9 and 10 had poor appearance.

【表】【table】

Claims (1)

【特許請求の範囲】 1 モノビニル芳香族単量体90〜99重量部にゴム
状弾性体1〜10重量部を溶解して重合して得られ
る樹脂組成物において、 (a) ゴム状弾性体が1,2―ビニル結合10〜25モ
ル%、1,4―シス結合25〜45モル%、1,4
―トランス結合30〜65モル%のミクロ構造を有
し且つ30〜60センチストークスの溶液粘度を有
し、 (b) 組成物中に分散された軟質成分粒子(上記ゴ
ム状弾性体がモノビニル芳香族単量体とグラフ
ト重合して生じたゴム状粒子)が0.5〜1.5μの
平均粒径を有し、 (c) 次式に定義するRが0.5<R<5.0であるこ
と、 R=g−g/r (但し、g1:組成物を窒素中で300℃5時間加
熱した後のメチルエチルケトンの不
溶分含有率 g2:組成物のメチルエチルケトン不溶分
含有率 r:組成物中のゴム状弾性体重量百分率 である。) を特徴とする樹脂組成物。
[Scope of Claims] 1. A resin composition obtained by dissolving 1 to 10 parts by weight of a rubbery elastic material in 90 to 99 parts by weight of a monovinyl aromatic monomer and polymerizing the mixture, wherein (a) the rubbery elastic material is 1,2-vinyl bond 10-25 mol%, 1,4-cis bond 25-45 mol%, 1,4
- having a microstructure of 30 to 65 mol% trans bonds and a solution viscosity of 30 to 60 centistokes; (b) soft component particles dispersed in the composition (the rubbery elastomer is a monovinyl aromatic rubber-like particles produced by graft polymerization with a monomer) have an average particle size of 0.5 to 1.5μ, (c) R defined by the following formula satisfies 0.5<R<5.0, R=g 1 -g2 /r (However, g1 : Insoluble content of methyl ethyl ketone after heating the composition in nitrogen at 300°C for 5 hours g2 : Insoluble content of methyl ethyl ketone in the composition r: Rubber-like content in the composition (elastic weight percentage).
JP14707979A 1979-11-15 1979-11-15 Styrene type resin composition having excellent appearance Granted JPS5672010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14707979A JPS5672010A (en) 1979-11-15 1979-11-15 Styrene type resin composition having excellent appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14707979A JPS5672010A (en) 1979-11-15 1979-11-15 Styrene type resin composition having excellent appearance

Publications (2)

Publication Number Publication Date
JPS5672010A JPS5672010A (en) 1981-06-16
JPS6150488B2 true JPS6150488B2 (en) 1986-11-05

Family

ID=15421988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14707979A Granted JPS5672010A (en) 1979-11-15 1979-11-15 Styrene type resin composition having excellent appearance

Country Status (1)

Country Link
JP (1) JPS5672010A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613590B2 (en) * 1983-03-31 1994-02-23 三井東圧化学株式会社 Method for producing rubber-modified styrene / acrylonitrile copolymer resin composition
JPS59182814A (en) * 1983-04-01 1984-10-17 Idemitsu Petrochem Co Ltd Monovinyl aromatic resin composition
JPH0613635B2 (en) * 1983-04-06 1994-02-23 三井東圧化学株式会社 Method for producing polycarbonate resin composition
JPH0686565B2 (en) * 1983-04-18 1994-11-02 三井東圧化学株式会社 Method for producing matte polycarbonate resin composition
JPS59217712A (en) * 1983-05-26 1984-12-07 Nippon Erasutomaa Kk Impact-resistant styrene resin
JPS60130613A (en) * 1983-12-16 1985-07-12 Asahi Chem Ind Co Ltd Rubber-modified aromatic monovinyl polymer resin composition
JPS60233116A (en) * 1984-05-04 1985-11-19 Asahi Chem Ind Co Ltd Rubber-reinforced aromatic monovinyl resin composition

Also Published As

Publication number Publication date
JPS5672010A (en) 1981-06-16

Similar Documents

Publication Publication Date Title
EP2404941B1 (en) Method of manufacturing rubbery polymer and rubber reinforced thermoplastic resin composition using the same
JP2009540045A (en) Acrylate-aromatic vinyl-unsaturated nitrile graft copolymer excellent in impact strength, colorability, and weather resistance, and thermoplastic resin composition containing the same
JPH0468326B2 (en)
JP2020530053A (en) Thermoplastic resin composition and molded article produced from this
KR20220094482A (en) Thermoplastic resin composition and article produced therefrom
JPS60192754A (en) Thermoplastic resin composition
JPS6150488B2 (en)
JPH0133485B2 (en)
JPS6241538B2 (en)
JPS6111965B2 (en)
US5175213A (en) Styrene-based resin composition
EP4006062B1 (en) Acrylic copolymer coagulant and method for preparing graft copolymer using the same
JPS6223782B2 (en)
JPS61148213A (en) Impact-resistant polystyrene based resin and production thereof
JPH0480049B2 (en)
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
JPH0417230B2 (en)
JP2003020377A (en) Composite resin composition
JP3978272B2 (en) Damping thermoplastic resin composition
JPH05132605A (en) Rubber-modified polystyrene composition
JP4313447B2 (en) Styrenic resin composition
JPH0414688B2 (en)
JP4195144B2 (en) Rubber-modified aromatic vinyl polymer composition and process for producing the same
JPS5842216B2 (en) Manufacturing method of impact-resistant resin
KR100429062B1 (en) Thermoplastic Resin Composition With Good Transparent and Impact Strength and Method for Preparing the Same