JPS6241538B2 - - Google Patents

Info

Publication number
JPS6241538B2
JPS6241538B2 JP55015976A JP1597680A JPS6241538B2 JP S6241538 B2 JPS6241538 B2 JP S6241538B2 JP 55015976 A JP55015976 A JP 55015976A JP 1597680 A JP1597680 A JP 1597680A JP S6241538 B2 JPS6241538 B2 JP S6241538B2
Authority
JP
Japan
Prior art keywords
rubber
polymerization
parts
resin
modified styrenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55015976A
Other languages
Japanese (ja)
Other versions
JPS56115351A (en
Inventor
Ichiro Ootsuka
Mitsuyoshi Nakamura
Katsuhiko Ito
Kazuo Sugazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1597680A priority Critical patent/JPS56115351A/en
Publication of JPS56115351A publication Critical patent/JPS56115351A/en
Publication of JPS6241538B2 publication Critical patent/JPS6241538B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高い光沢と優れた外観をもつ成形物を
与えるポリフエニレンエーテル系樹脂組成物に関
する。 ポリフエニレンエーテルとゴム変性ポリスチレ
ン系樹脂とからなるポリフエニレン系樹脂組成物
は、耐衝撃性、耐熱性の優れた樹脂組成物として
よく知られている。 しかしポリフエニレンエーテル系樹脂組成物は
その成形物の光沢が低いため、その改良技術が
種々提案されている。例えば特公昭51―28659号
には粒子の平均の最高粒径が約2μである分散し
た粒子の弾性体相を有するポリフエニレンエーテ
ル系樹脂組成物が記載されている。 これらの従来技術の組成物は高い光沢をもつも
のの、詳細に観察すると、真珠様の外観を呈する
という技術的欠点がある。すなわち従来技術の組
成物から得た成形物の平らな面に螢光灯を写して
みるとその輪廓がぼけるとともにわずかな虹色を
生じ、真珠のような外観を与えるという外観不良
現象を有しており、実用上の商品価値を損うので
この改良が要請されていた。 本発明はこの外観不良現象を改良した高い光沢
を与えるポリフエニレンエーテル系樹脂組成物を
提供する事を目的とするものである。 本発明者はこの課題を達成するために、ポリフ
エニレンエーテル系樹脂組成物の構成要素である
ゴム変性スチレン系樹脂において、ゴム状弾性体
として特定の構造を有するポリブタジエンを使用
し、組成物中の軟質成分に特定の構造を付与する
ことが有効である事を見出し、本発明を完成し
た。 本発明の目的を達成するには、ポリフエニレン
エーテル系樹脂組成物において、構成成分である
ゴム変性スチレン系樹脂の原料として使用するゴ
ム状弾性体であるポリブタジエンの構造、上記ゴ
ム状弾性体にスチレンなどの単量体がグラフト重
合して生じたゴム状粒子(以下軟質成分粒子とい
う。)の粒径及び次式に定義するR R=g―g/r (記号については後述する。の値をそれぞれ特
定する事が必要であり、これらの要件のどの一つ
がかけても本発明の目的は達成できない。以下更
に詳しく説明する。 本発明のポリフエニレンエーテル(A)は、一般式
The present invention relates to a polyphenylene ether resin composition that provides molded products with high gloss and excellent appearance. A polyphenylene resin composition composed of polyphenylene ether and a rubber-modified polystyrene resin is well known as a resin composition having excellent impact resistance and heat resistance. However, polyphenylene ether resin compositions have low gloss in molded products, and various improvements have been proposed. For example, Japanese Patent Publication No. 51-28659 describes a polyphenylene ether resin composition having an elastic phase of dispersed particles having an average maximum particle size of about 2 microns. Although these prior art compositions have a high luster, they have the technical drawback of exhibiting a pearl-like appearance upon close inspection. That is, when a fluorescent light is projected onto the flat surface of a molded product made from the composition of the prior art, the outline becomes blurred and a slight iridescent color appears, giving it a pearl-like appearance. This improvement was requested because the practical value of the product was impaired. The object of the present invention is to provide a polyphenylene ether resin composition that improves this phenomenon of poor appearance and provides high gloss. In order to achieve this objective, the present inventor used polybutadiene having a specific structure as a rubber-like elastic body in a rubber-modified styrene resin that is a component of a polyphenylene ether resin composition, and The present invention was completed based on the discovery that it is effective to impart a specific structure to the soft component of To achieve the object of the present invention, in the polyphenylene ether resin composition, the structure of polybutadiene, which is a rubbery elastic body used as a raw material for the rubber-modified styrene resin, which is a constituent component, and the structure of polybutadiene, which is a rubbery elastic body, The particle size of rubber particles (hereinafter referred to as soft component particles) produced by graft polymerization of monomers such as styrene and R R = g 1 - g 2 /r defined by the following formula (the symbols will be described later). It is necessary to specify each of the values of but

【式】(但し R1,R2,R3,R4は炭素数3以下の同一または異
なるアルキル基を示し、Q1,Q2,Q3,Q4は水素
又は炭素数3以下の同一または異なるアルキル基
を示す。m及びnは0または自然数を表わしm=
n=0の場合を除く。) で表される重合体である。ポリフエニレンエーテ
ルの例としてはポリ(2,6―ジメチル―1,4
―フエニレンエーテル)、ポリ(2,6―ジエチ
ル―1,4―フエニレンエーテル)等が挙げられ
る。このものは公知の方法、例えば特公昭36―
1869号に記載された方法により、相当するアルキ
ルフエノールを酸化重合して容易に製造される。
ポリフエニレンエーテルの好ましい重合度(即ち
上記一般式におけるm+n)は、数平均重合度が
50―400の範囲である。数平均重合度が50以下で
は樹脂組成物の機械的特性特に剛性が低下するの
で好ましくなく、400以上では成形加工性が著し
く低下するので好ましくない。 本発明で使用するモノビニル芳香族単量体とは
スチレン単独、あるいはスチレンと共重合し得る
他のビニル単量体とスチレンとの混合物である。
スチレンと共重合し得る他のビニル単量体として
は、例えばアクリロニトリル、メチルメタクリレ
ート、α―メチルスチレン、核置換モノブロムス
チレン等が挙げられる。これらの単量体の比率は
通常全単量体のうち30重量%以下、好ましくは10
重量%以下である。 本発明に使用するゴム状弾性体は、1,2―ビ
ニル結合10〜25モル%、1,4―シス結合25〜45
モル%、1,4―トランス結合30〜65モル%によ
り規定されるミクロ構造を有し、且つ30〜60セン
チストークスの溶液粘度を有していることが必須
要件である。 この範囲外のゴム状弾性体、例えば1,4―シ
ス結合が90モル%以上の高シスポリブタジエン、
溶液粘度が60センチストークスを超えるポリブタ
ジエン、溶液粘度が30センチストークス未満のポ
リブタジエン、スチレン―ブタジエン共重合体ゴ
ム(SBR)等を用いたのでは、得られる樹脂組成
物の光沢、外観、耐衝撃性が本発明の構成要件で
あるポリブタジエンを用いた樹脂組成物に比較し
て著しく劣つているからである。 すなわち、1,2―ビニル結合が10モル%未満
の場合は組成物の外観が悪く、25モル%を超える
と組成物の耐衝撃性が低下する。1,4―シス結
合が25モル%未満では耐衝撃性が低下し、45モル
%を超えると外観が悪化する。また溶液粘度が30
センチストークス未満では耐衝撃性が低下し、60
センチストークスを超えると外観が悪化する。 本発明に云う溶液粘度は、ゴム状弾性体5gを
スチレン45gに溶解した溶液について、30℃に於
いてウベローデ型粘度計にて測定した溶液粘度で
ある。 本発明に云うポリブタジエンのミクロ構造は次
の様にして定めたものである。すなわちポリブタ
ジエンを二硫化炭素に溶解し、その溶液の赤外吸
収スペクトルを測定し、スペクトルの967cm-1
1,4―トランス結合、911cm-1の1,2―ビニ
ル結合、736cm-1の1,4―シス結合に基づく吸
収により、モレロ法〔D.Morero等Chim.Ind.,
41758(1959)〕により定めたものである。 本発明に使用するポリブタジエンは公知の方
法、例えば特開昭53―130793号等に示される様
に、有機リチウム系触媒を用いて、1,3―ブタ
ジエンを重合して製造される。 本発明のゴム変性スチレン系樹脂を製造する方
法としては任意の公知の重合方法例えば乳化重合
法、塊状重合法、塊状―懸濁2段重合法等を用い
る事ができる。好ましくはゴム状弾性体の存在下
にスチレン等を重合させる塊状重合法又は塊状―
懸濁2段重合法が適用される。例として塊状―懸
濁二段重合法について説明する。 まず、上記したポリブタジエンをスチレンに添
加し、60〜80℃に加熱し溶解する。この溶解はで
きるだけ均一である事が好ましい。次に90〜120
℃で撹拌下にスチレンの重合率が10〜40%になる
まで塊状重合を行う。この工程を「予備重合工
程」と呼ぶこととする。予備重合工程においてゴ
ム状弾性体は撹拌の作用を受けて粒子状に分散さ
れる。 予備重合工程終了後、第3リン酸カルシウム等
を懸濁剤として含む水相に懸濁し、懸濁重合を行
う。この予備重合後の工程を「主重合工程」と呼
ぶこととする。要すれば主重合工程に引き続き、
単量体の少くなつた後に更に加熱を続ける「後加
熱工程」を行なつてもよい。 この様にして得たスラリーを脱水し、ビーズを
分取し乾燥する。重合が完全に終つたとき、ゴム
変性スチレン系樹脂中にはスチレン系重合体の硬
い相の中に軟質成分が粒子として分散しており、
この軟質成分の粒子はスチレンとグラフト共重合
したゴム状弾性体とこれに封じこめられたスチレ
ン系重合体とからなつている。 本発明の目的を達するには上記軟質成分粒子の
平均粒径が0.1〜1.0μの範囲にある事が必要であ
る。平均粒径が0.1μ未満では樹脂組成物の耐衝
撃性が劣り、平均粒径が1.0μを超える場合は光
沢が劣る。ここで平均粒径とは、樹脂の超薄切片
法による電子顕微鏡写真を撮影し、写真中の軟質
成分粒子200〜500個の粒子径を測定し、次式によ
り重量平均したものである。 重量平均径=ΣnD4/ΣnD3 但しnは粒子径Dの軟質成分粒子の個数であ
る。本発明で規定する平均粒径の範囲は予備重合
工程の撹拌条件を適切に定める事により達成でき
る。すなわち、撹拌翼の撹拌数を大きくすれば平
均粒径は小さくなり、撹拌数を小さくすれば平均
粒径は大になるので、適切な撹拌数を撰択する事
により所望の平均粒径を達成できる。 本発明の目的を達成するためには、次式で定義
するRが0.5<R<5.0である事が必要である。 R=g―g/r ここに、g1はゴム変性スチレン系樹脂を窒素中
で300℃5時間加熱した後のメチルエチルケトン
不溶分含有率(重量百分率)であり、ゴム状弾性
体に封じ込められたモノビニル芳香族重合体まで
含めた軟質成分の含有率を意味する。g2はゴム変
性スチレン系樹脂のメチルエチルケトン不溶分含
有率(重量百分率)であり、モノビニル芳香族重
合体の封入がない軟質成分の含有率を示す。rは
ゴム変性スチレン系樹脂中のゴム状弾性体の重量
百分率を示す。 従つてRは、ゴム状弾性体に封じ込められたモ
ノビニル芳香族重合体のゴム状弾性体に対する割
合を示す尺度と考えられる。 Rが0.5以下でも、5.0以上でも、いずれも組成
物の外観が悪くなる。Rが0.7乃至2.0のとき特に
組成物の外観が良く好ましい。 本発明に云うRは上記に定義した通りに求めら
れるが定義中のメチルエチルケトン不溶分含有率
とはメチルエチルケトンに不溶な物質の重量百分
率であり、次の様にして求める。すなわち、ゴム
変性スチレン系樹脂2.0gをメチルエチルケトン
50mlに投入し、還流下に5時間放置する。冷却後
不溶分を遠心分離し、傾斜により溶液を除き、乾
燥し、不溶分を秤量する。不溶分をxgとすると
メチルエチルケトン不溶分含有率は次式で求めら
れる。 メチルエチルケトン不溶分含有率=x/2.0×100 本発明で規定するRの範囲は、公知の方法で重
合物を製造する際に、それぞれの製法における重
合温度、使用開始剤等の操作条件を適切に定める
ことにより達成できる。普通には、これは後加熱
工程において適切な温度を撰ぶ事、ならびに/も
しくは架橋助剤たとえば過酸化物の添加によつて
調整される。すなわち、後加熱工程をより高温に
すればRは小さくなるし、またこの工程で有機過
酸化物を添加する場合、その分解量が多いほどR
が小さくなる。または主重合工程における重合温
度及び開始剤の分解量によつてもRを調整でき
る。すなわち、重合温度を低くし、かつ開始剤の
分解量が多いほどRは大きくなる。 尚このRは軟質成分中に封じ込まれたゴムに化
学的に結合していないモノビニル芳香族重合体の
量と相関があると考えられ、樹脂組成物を成形す
るときのゴム粒子の挙動がこのRによつて変るた
め、外観も変るものと推定される。 本発明の樹脂組成物を製造する方法は任意の公
知の製造方法を用いる事ができる。通常は押出機
によりポリフエニレンエーテルとゴム変性スチレ
ン系樹脂とを混合して樹脂組成物を製造する。 本発明の組成物においてポリフエニレンエーテ
ルとゴム変性スチレン系樹脂との割合はポリフエ
ニレンエーテルが約20から80重量%であり、ゴム
変性スチレン系樹脂が相補的に約80から20重量%
である割合が望ましい。ポリフエニレンエーテル
が20重量%以下では樹脂組成物の耐熱性が劣り、
80重量%以上では成形加工性が劣るからである。 本発明の樹脂組成物の外観向上(真珠模様の防
止)は従来技術によるものに較べて歴然とした差
があり、光沢が顕著に改良されている。本発明の
樹脂組成物はポリフエニレンエーテル系樹脂組成
物が本来もつている高い耐衝撃性、耐熱性に加え
るに高い光沢、優れた外観を有しているので、電
気機器等の産業分野で著しく利用価値が高い。 具体的にはテレビ、ヘアドライヤー等のハウジ
ングに好適に使用できる。 以下実施例により具体的に説明する。 なお特記しない限り「部」数は重量部を示す。 実施例 1 A ポリフエニレンエーテルの製造 特開昭50―97695号の実施例1に準じてポリ
(2,6―ジメチル―1,4―フエニレンエーテ
ル)を合成した。100部のトルエンに0.41部の臭
化第二銅および10.9部のジ―n―ブチルアミンを
添加し、撹拌して触媒溶液を製造した。この触媒
溶液に空気を吹き込みながら、70部の2,6―キ
シレノールを100部のトルエンに溶解した溶液を
15分間で添加した。反応系を30℃に保ち、3時間
撹拌及び空気の吹き込みを継続した。反応終了后
50%酢酸溶液3部を添加し触媒を分解した。ポリ
マー溶液相を遠心分離しメタノールを添加してポ
リマーを沈澱させ、ポリマーを別し乾燥した。
得たポリマーの数平均重合度は200であつた。 B ゴム変性スチレン系樹脂の製造 撹拌付重合槽に アサプレン700X(ポリブタジエン、旭化成社
製) 7部 スチレン 93部 ターシヤリドデシルメルカプタン 0.05部 (ここにアサプレン700Xは1,2―ビニル結
合17モル%、1,4―シス結合38モル%、1,4
―トランス結合45モル%のミクロ構造を有し、溶
液粘度は45センチストークスである。) を仕込み、撹拌下に75℃で2時間加熱し、均一溶
液とした。その後撹拌数を270r.p.m.として昇温
し、110℃で7時間予備重合を行ない、スチレン
重合率を30%とした。そして他の撹拌付重合槽に
下記の水相を用意し、上記予備重合で得た重合混
合物を加え粒子状に分散させた。 水 150部 第3リン酸カルシウム 3部 ドデシルベンゼンスルホン酸ソーダ 0.02部 この懸濁液に更にベンゾイルパーオキサイド
0.30部、ジクミルパーオキサイド0.02部を添加
し、85℃で8時間主重合を行ない、その後130℃
で2時間後加熱を行なつた。得た懸濁粒子を別
し、乾燥した。このゴム変性スチレン系樹脂中に
分散された軟質成分の粒子の平均粒径は0.70μで
あり、Rは1.1であつた。 C ポリフエニレンエーテル系樹脂組成物の製造 押出機にて下記配合物を押出し、ペレツト化し
樹脂組成物を得た。 Aで製造したポリ(2,6―ジメチル―1,4
―フエニレンエーテル) 45 部 Bで製造したゴム変性ポリスチレン樹脂 55 〃 ポリエチレン 1.5〃 トリデシルホスフアイト 0.5〃 エチレンビスステアリルアミド 0.3〃 二酸化チタン 2 〃 D 評価 Cで得たペレツトを用いて、射出成形によりそ
れぞれ耐衝撃性と光沢の測定用の試験片をつく
り、以下の測定を行なつた。結果を表1にまとめ
た。 (1) 耐衝撃性の測定 50m/m×50m/m×2.5m/mの角板に1/4イ
ンチRの撃芯をあて、上部より一定荷重を落下さ
せ、試験片の50%が破壊するエネルギーをもつて
表わす。 破壊エネルギー(Kg―cm) =荷重落下高さ(cm)×荷重(Kg) (2) 光沢の測定 140m/m×80m/m×4m/mの角板につい
て、JISK8741の方法によつて光沢を測定した。 (3) 外観の測定 上記(2)の角板を使用し、次の基準により肉眼判
定した。 評価1……真珠様の外観不良が全くなく、螢光灯
を写したとき螢光灯の輪廓がぼけない。 2……上記現象が若干認められる。 3……上記現象が明らかに認められる。 比較例 1〜6 原料であるゴム状弾性体予備重合工程の撹拌数
を表1の通り変えた以外は実施例1に従つて、樹
脂組成物を得た。これらのペレツトは前記と同じ
く射出成形して試験片をつくり、耐衝撃性、光
沢、外観を測定した。 比較例1,2,3は外観が悪く、比較例4,6
は耐衝撃性が低く、比較例5は外観、耐衝撃性と
もに悪く、いずれも本発明の樹脂組成物の性能に
及ばない。
[Formula] (However, R 1 , R 2 , R 3 , R 4 are the same or different alkyl groups having 3 or less carbon atoms, and Q 1 , Q 2 , Q 3 , Q 4 are hydrogen or the same alkyl groups having 3 or less carbon atoms. or represents a different alkyl group.m and n represent 0 or a natural number; m=
Except when n=0. ) It is a polymer represented by An example of polyphenylene ether is poly(2,6-dimethyl-1,4
-phenylene ether), poly(2,6-diethyl-1,4-phenylene ether), and the like. This can be done using known methods, such as the
It is easily produced by oxidative polymerization of the corresponding alkylphenol according to the method described in No. 1869.
The preferred degree of polymerization of polyphenylene ether (i.e., m+n in the above general formula) is such that the number average degree of polymerization is
The range is 50-400. If the number average degree of polymerization is less than 50, the mechanical properties, particularly the rigidity, of the resin composition will deteriorate, which is undesirable, and if it exceeds 400, the moldability will markedly deteriorate, which is undesirable. The monovinyl aromatic monomer used in the present invention is styrene alone or a mixture of styrene and other vinyl monomers that can be copolymerized with styrene.
Examples of other vinyl monomers that can be copolymerized with styrene include acrylonitrile, methyl methacrylate, α-methylstyrene, and nuclear-substituted monobromstyrene. The proportion of these monomers is usually 30% by weight or less, preferably 10% by weight of the total monomers.
% by weight or less. The rubber-like elastic body used in the present invention has 10 to 25 mol% of 1,2-vinyl bonds and 25 to 45 mol% of 1,4-cis bonds.
The essential requirements are a microstructure defined by mol %, 30-65 mol % 1,4-trans bonds, and a solution viscosity of 30-60 centistokes. Rubber-like elastic materials outside this range, such as high-cis polybutadiene with 1,4-cis bonds of 90 mol% or more,
When using polybutadiene with a solution viscosity of more than 60 centistokes, polybutadiene with a solution viscosity of less than 30 centistokes, styrene-butadiene copolymer rubber (SBR), etc., the resulting resin composition has poor gloss, appearance, and impact resistance. This is because it is significantly inferior to a resin composition using polybutadiene, which is a constituent element of the present invention. That is, if the 1,2-vinyl bond content is less than 10 mol%, the appearance of the composition will be poor, and if it exceeds 25 mol%, the impact resistance of the composition will decrease. If the content of 1,4-cis bonds is less than 25 mol%, impact resistance decreases, and if it exceeds 45 mol%, the appearance deteriorates. Also, the solution viscosity is 30
Impact resistance decreases below 60 centistokes.
If centistokes are exceeded, the appearance deteriorates. The solution viscosity referred to in the present invention is the solution viscosity measured using an Ubbelohde viscometer at 30° C. for a solution prepared by dissolving 5 g of rubbery elastic material in 45 g of styrene. The microstructure of polybutadiene referred to in the present invention is determined as follows. That is , polybutadiene is dissolved in carbon disulfide, and the infrared absorption spectrum of the solution is measured . , 4-cis bonds, the Morello method [D.Morero et al. Chim.Ind.,
41758 (1959)]. The polybutadiene used in the present invention is produced by polymerizing 1,3-butadiene using an organolithium catalyst using a known method, for example, as disclosed in JP-A-53-130793. As a method for producing the rubber-modified styrenic resin of the present invention, any known polymerization method such as emulsion polymerization, bulk polymerization, bulk-suspension two-stage polymerization, etc. can be used. Preferably, a bulk polymerization method or bulk polymerization method in which styrene or the like is polymerized in the presence of a rubber-like elastic material.
A suspension two-stage polymerization method is applied. As an example, a two-stage bulk-suspension polymerization method will be explained. First, the polybutadiene described above is added to styrene and heated to 60 to 80°C to dissolve it. It is preferable that this dissolution be as uniform as possible. then 90-120
Bulk polymerization is carried out at °C with stirring until the polymerization rate of styrene is 10-40%. This step will be referred to as a "preliminary polymerization step." In the prepolymerization step, the rubber-like elastic body is dispersed into particles under the action of stirring. After the prepolymerization step is completed, it is suspended in an aqueous phase containing tertiary calcium phosphate or the like as a suspending agent, and suspension polymerization is performed. The step after this preliminary polymerization will be referred to as the "main polymerization step." If necessary, following the main polymerization step,
A "post-heating step" may be performed in which heating is continued after the amount of monomer is reduced. The slurry thus obtained is dehydrated, and the beads are collected and dried. When polymerization is completely completed, the soft component is dispersed as particles in the hard phase of the styrene polymer in the rubber-modified styrenic resin.
The particles of the soft component are composed of a rubber-like elastic material graft-copolymerized with styrene and a styrenic polymer encapsulated therein. In order to achieve the object of the present invention, it is necessary that the average particle diameter of the soft component particles be in the range of 0.1 to 1.0 μ. If the average particle size is less than 0.1μ, the resin composition will have poor impact resistance, and if the average particle size exceeds 1.0μ, the resin composition will have poor gloss. Here, the average particle size is the one obtained by taking an electron microscope photograph of the resin using an ultra-thin section method, measuring the particle diameters of 200 to 500 soft component particles in the photograph, and averaging them by weight according to the following formula. Weight average diameter=ΣnD 4 /ΣnD 3 where n is the number of soft component particles having particle diameter D. The average particle diameter range specified in the present invention can be achieved by appropriately determining the stirring conditions in the prepolymerization step. In other words, increasing the number of stirrings by the stirring blade will reduce the average particle size, and decreasing the number of stirrings will increase the average particle size, so by selecting an appropriate number of stirrings, the desired average particle size can be achieved. can. In order to achieve the object of the present invention, it is necessary that R defined by the following formula satisfy 0.5<R<5.0. R=g 1 - g 2 /r where g 1 is the methyl ethyl ketone insoluble content (weight percentage) after heating the rubber-modified styrenic resin in nitrogen at 300°C for 5 hours, and it is contained in the rubber-like elastic body. This means the content of soft components including monovinyl aromatic polymers. g 2 is the methyl ethyl ketone insoluble content (weight percentage) of the rubber-modified styrene resin, and indicates the content of soft components without inclusion of monovinyl aromatic polymer. r indicates the weight percentage of the rubber-like elastic body in the rubber-modified styrene resin. Therefore, R is considered to be a measure indicating the ratio of the monovinyl aromatic polymer encapsulated in the rubbery elastic body to the rubbery elastic body. If R is less than 0.5 or more than 5.0, the appearance of the composition will deteriorate. When R is 0.7 to 2.0, the appearance of the composition is particularly good, which is preferable. R referred to in the present invention is determined as defined above, and the methyl ethyl ketone insoluble content in the definition is the weight percentage of the substance insoluble in methyl ethyl ketone, and is determined as follows. In other words, 2.0g of rubber-modified styrenic resin is mixed with methyl ethyl ketone.
Pour into 50ml and leave under reflux for 5 hours. After cooling, the insoluble matter is centrifuged, the solution is removed by slanting, the solution is dried, and the insoluble matter is weighed. When the insoluble content is xg, the methyl ethyl ketone insoluble content is determined by the following formula. Methyl ethyl ketone insoluble matter content = x / 2.0 × 100 The range of R specified in the present invention is determined by adjusting the operating conditions such as polymerization temperature and initiator used in each production method when producing a polymer by a known method. This can be achieved by properly determining. Usually this is adjusted by selecting a suitable temperature in the after-heating step and/or by adding crosslinking aids such as peroxides. In other words, the higher the temperature in the post-heating step, the smaller R will be, and when an organic peroxide is added in this step, the larger the amount of organic peroxide decomposed, the smaller R will be.
becomes smaller. Alternatively, R can also be adjusted by the polymerization temperature and decomposition amount of the initiator in the main polymerization step. That is, the lower the polymerization temperature and the greater the amount of decomposition of the initiator, the greater R becomes. This R is thought to be correlated with the amount of monovinyl aromatic polymer that is not chemically bonded to the rubber encapsulated in the soft component, and the behavior of the rubber particles when molding the resin composition is affected by this R. Since it changes depending on R, it is presumed that the appearance also changes. Any known production method can be used to produce the resin composition of the present invention. Usually, a resin composition is produced by mixing polyphenylene ether and rubber-modified styrene resin using an extruder. In the composition of the present invention, the proportion of polyphenylene ether and rubber-modified styrenic resin is about 20 to 80% by weight of polyphenylene ether, and about 80 to 20% by weight of rubber-modified styrenic resin.
It is desirable that the ratio is . If polyphenylene ether is less than 20% by weight, the heat resistance of the resin composition will be poor;
This is because if the amount exceeds 80% by weight, the molding processability will be poor. The appearance improvement (prevention of pearl pattern) of the resin composition of the present invention is clearly different from that of the prior art, and the gloss is significantly improved. The resin composition of the present invention has not only the high impact resistance and heat resistance inherent to polyphenylene ether resin compositions, but also high gloss and excellent appearance, so it is used in industrial fields such as electrical equipment. It has extremely high utility value. Specifically, it can be suitably used for housings of televisions, hair dryers, etc. This will be explained in detail below using Examples. Note that unless otherwise specified, "parts" indicate parts by weight. Example 1 A. Production of polyphenylene ether Poly(2,6-dimethyl-1,4-phenylene ether) was synthesized according to Example 1 of JP-A-50-97695. 0.41 parts of cupric bromide and 10.9 parts of di-n-butylamine were added to 100 parts of toluene and stirred to prepare a catalyst solution. While blowing air into this catalyst solution, a solution of 70 parts of 2,6-xylenol dissolved in 100 parts of toluene was added.
Added over 15 minutes. The reaction system was maintained at 30° C., and stirring and air blowing were continued for 3 hours. After the reaction
Three parts of 50% acetic acid solution was added to decompose the catalyst. The polymer solution phase was centrifuged, methanol was added to precipitate the polymer, and the polymer was separated and dried.
The number average degree of polymerization of the obtained polymer was 200. B Production of rubber-modified styrenic resin Asaprene 700X (polybutadiene, manufactured by Asahi Kasei Corporation) in a stirred polymerization tank 7 parts styrene 93 parts tertiary dodecyl mercaptan 0.05 parts (Here, Asaprene 700X contains 17 mol% of 1,2-vinyl bonds, 1 ,4-cis bond 38 mol%, 1,4
- It has a microstructure of 45 mol% trans bonds and a solution viscosity of 45 centistokes. ) and heated at 75°C for 2 hours with stirring to form a homogeneous solution. Thereafter, the stirring speed was increased to 270 rpm, and preliminary polymerization was carried out at 110° C. for 7 hours, resulting in a styrene polymerization rate of 30%. Then, the following aqueous phase was prepared in another polymerization tank with stirring, and the polymerization mixture obtained in the above prepolymerization was added and dispersed in the form of particles. Water 150 parts Tertiary calcium phosphate 3 parts Sodium dodecylbenzenesulfonate 0.02 parts Add benzoyl peroxide to this suspension.
0.30 parts and 0.02 parts of dicumyl peroxide were added, main polymerization was carried out at 85°C for 8 hours, and then at 130°C.
Heating was carried out after 2 hours. The obtained suspended particles were separated and dried. The average particle size of the particles of the soft component dispersed in this rubber-modified styrene resin was 0.70μ, and R was 1.1. C. Production of polyphenylene ether resin composition The following compound was extruded using an extruder and pelletized to obtain a resin composition. Poly(2,6-dimethyl-1,4
- Phenylene ether) 45 Rubber-modified polystyrene resin produced in Part B 55 Polyethylene 1.5 Tridecyl phosphite 0.5 Ethylene bisstearylamide 0.3 Titanium dioxide 2 D Evaluation Using the pellets obtained in C, injection molding Test pieces were prepared for measuring impact resistance and gloss, respectively, and the following measurements were performed. The results are summarized in Table 1. (1) Impact resistance measurement A 1/4 inch R striking center was applied to a square plate measuring 50m/m x 50m/m x 2.5m/m, a constant load was dropped from the top, and 50% of the test piece was destroyed. It is expressed by the energy of Fracture energy (Kg-cm) = Height of falling load (cm) x Load (Kg) (2) Gloss measurement A square plate of 140 m/m x 80 m/m x 4 m/m was polished using the JISK8741 method. It was measured. (3) Measurement of appearance Using the square plate described in (2) above, visual judgment was made according to the following criteria. Rating 1: There is no pearl-like appearance defect, and when the fluorescent light is photographed, the outline of the fluorescent light is not blurred. 2...The above phenomenon is slightly observed. 3...The above phenomenon is clearly observed. Comparative Examples 1 to 6 Resin compositions were obtained in accordance with Example 1, except that the stirring number in the rubber-like elastic material prepolymerization step as a raw material was changed as shown in Table 1. These pellets were injection molded in the same manner as above to make test pieces, and impact resistance, gloss, and appearance were measured. Comparative Examples 1, 2, and 3 have poor appearance, while Comparative Examples 4 and 6
had low impact resistance, and Comparative Example 5 had poor appearance and impact resistance, both of which were inferior in performance to the resin composition of the present invention.

【表】 実施例 2 E 実施例1のAに記載したポリフエニレンエー
テルの製造に準じ、2,6―キシレノール70部
に代えて2,6―キシレノール60部2,3,6
―トリメチルフエノール10部の混合物を用いて
2,6キシレノールと2,3,6―トリメチル
フエノールとの共重合体であるポリフエニレン
エーテルを製造した。 F 実施例1のBに記載したゴム変性スチレン系
樹脂の製造に準じ、スチレン93部に代えてスチ
レン78部核置換モノブロムスチレン15部の混合
物を用いてゴム変性スチレン系樹脂を製造し
た。 G 実施例1のCに記載した樹脂組成物の製造に
準じ、下記配合物を用いて、樹脂組成物のペレ
ツトを得た。 Eで製造したポリフエニレンエーテル 50部 Fで製造したゴム変性スチレン系樹脂 50〃 ポリエチレン 1.0〃 トリデシルホスフアイト 0.70〃 エチレンビスステアリルアミド 0.20部 二酸化チタン 3.0〃 H Gで得たペレツトを用いて、実施例1のDに
記載したと同様の測定を行なつた。結果を表2
に示す。 比較例 7 予備重合工程の撹拌数を表2の通り変えた以外
は実施例2に従つて樹脂組成物ペレツトを得た。 このペレツトを前記と同じく射出成形して試験
片をつくり、耐衝撃性、光沢、外観を測定した。 軟質成分の粒径が本発明の範囲外である比較例
7は光沢が悪い。
[Table] Example 2 E According to the production of polyphenylene ether described in A of Example 1, 60 parts of 2,6-xylenol was used instead of 70 parts of 2,6-xylenol 2,3,6
- Polyphenylene ether, which is a copolymer of 2,6 xylenol and 2,3,6-trimethylphenol, was produced using a mixture of 10 parts of trimethylphenol. F A rubber-modified styrenic resin was produced in accordance with the production of a rubber-modified styrenic resin described in Example 1, B, using a mixture of 78 parts of styrene and 15 parts of nuclear-substituted monobrom styrene in place of 93 parts of styrene. G According to the production of the resin composition described in C of Example 1, pellets of the resin composition were obtained using the following formulation. Polyphenylene ether manufactured in E 50 parts Rubber-modified styrenic resin manufactured in F 50〃 Polyethylene 1.0〃 Tridecyl phosphite 0.70〃 Ethylene bisstearylamide 0.20 parts Titanium dioxide 3.0〃 H Using the pellets obtained in G, Measurements similar to those described in Example 1 D were performed. Table 2 shows the results.
Shown below. Comparative Example 7 Resin composition pellets were obtained in accordance with Example 2, except that the number of stirrings in the prepolymerization step was changed as shown in Table 2. These pellets were injection molded in the same manner as above to make test pieces, and impact resistance, gloss, and appearance were measured. Comparative Example 7, in which the particle size of the soft component was outside the range of the present invention, had poor gloss.

【表】【table】

【表】 実施例 3,4 主重合工程及び後加熱工程の条件を表3の通り
変えた以外は実施例1に従つて樹脂組成物ペレツ
トを得た、これらのペレツトを実施例1と同じ
く、射出成形して試験片をつくり耐衝撃性、光
沢、外観を測定した。 比較例 8,9 主重合工程及び後加熱工程の条件を表3の通り
変えた以外は実施例1に従つてRが本発明の範囲
外である樹脂組成物を製造した。結果を表3に示
す。比較例8,9ともに外観が悪い。
[Table] Examples 3 and 4 Resin composition pellets were obtained according to Example 1 except that the conditions of the main polymerization step and post-heating step were changed as shown in Table 3.These pellets were treated in the same manner as in Example 1. Test pieces were made by injection molding, and impact resistance, gloss, and appearance were measured. Comparative Examples 8 and 9 A resin composition having R outside the range of the present invention was produced in accordance with Example 1, except that the conditions of the main polymerization step and the post-heating step were changed as shown in Table 3. The results are shown in Table 3. Both Comparative Examples 8 and 9 had poor appearance.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)数平均重合度が50〜400であるポリフエニ
レンエーテルと(B)ゴム変性スチレン系樹脂からな
る組成物において、 ゴム変性スチレン系樹脂(B)がモノビニル芳香族
単量体85〜99重量部にゴム状弾性体1〜15重量部
を溶解し重合して得られる樹脂であつて、 (a) ゴム状弾性体が1,2―ビニル結合10〜50モ
ル%、1,4―シス結合25〜45モル%、1,4
―トランス結合30〜65モル%のミクロ構造を有
し、且つ30〜60センチストークスの溶液粘度を
有するポリブタジエンであり、 (b) 該樹脂(B)中に分散された軟質成分粒子(上記
ゴム状弾性体がモノビニル芳香族単量体とグラ
フト重合して生じたゴム状粒子)が0.1〜1μ
の平均粒径を有し、 (c) 次式に定義するRが0.5<R<5.0である R=g―g/r (但し、g1はゴム変性スチレン系樹脂を窒素
中で300℃、5時間加熱した後のメチルエチル
ケトン不溶分含有率であり、g2は加熱前のゴム
変性スチレン系樹脂のメチルエチルケトン不溶
分含有率である。また、rはゴム変性スチレン
系樹脂中のゴム状弾性体の重量百分率であ
る。) ことを特徴とする樹脂組成物。
[Claims] 1. A composition comprising (A) a polyphenylene ether having a number average degree of polymerization of 50 to 400 and (B) a rubber-modified styrenic resin, wherein the rubber-modified styrenic resin (B) has a monovinyl aromatic A resin obtained by dissolving and polymerizing 1 to 15 parts by weight of a rubbery elastic material in 85 to 99 parts by weight of a group monomer, wherein (a) the rubbery elastic material contains 10 to 50 moles of 1,2-vinyl bonds; %, 1,4-cis bond 25-45 mol%, 1,4
- a polybutadiene having a microstructure of 30 to 65 mol % trans bonds and a solution viscosity of 30 to 60 centistokes; (b) soft component particles (the rubber-like Rubber-like particles produced by graft polymerization of an elastic body with a monovinyl aromatic monomer) are 0.1 to 1μ
(c) R defined by the following formula is 0.5 < R < 5.0 R = g 1 - g 2 /r (where g 1 is 300 g ℃, is the methyl ethyl ketone insoluble content after heating for 5 hours, g2 is the methyl ethyl ketone insoluble content in the rubber modified styrenic resin before heating, and r is the rubber-like elasticity in the rubber modified styrenic resin. body weight percentage).
JP1597680A 1980-02-14 1980-02-14 Polyphenylene ether resin composition having excellent appearance Granted JPS56115351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1597680A JPS56115351A (en) 1980-02-14 1980-02-14 Polyphenylene ether resin composition having excellent appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1597680A JPS56115351A (en) 1980-02-14 1980-02-14 Polyphenylene ether resin composition having excellent appearance

Publications (2)

Publication Number Publication Date
JPS56115351A JPS56115351A (en) 1981-09-10
JPS6241538B2 true JPS6241538B2 (en) 1987-09-03

Family

ID=11903723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1597680A Granted JPS56115351A (en) 1980-02-14 1980-02-14 Polyphenylene ether resin composition having excellent appearance

Country Status (1)

Country Link
JP (1) JPS56115351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036933U (en) * 1989-06-09 1991-01-23

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571733A (en) * 1980-06-06 1982-01-06 Asahi Chem Ind Co Ltd Injection-molded form of polyphenylene ether resin having good appearance
JPS59207958A (en) * 1983-05-13 1984-11-26 Mitsui Toatsu Chem Inc Phenylene ether resin composition having high flow property
JPS59207957A (en) * 1983-05-13 1984-11-26 Mitsui Toatsu Chem Inc Phenylene ether resin composition having high impact resistance and high flow property
JPS59232140A (en) * 1983-06-15 1984-12-26 Nippon Erasutomaa Kk Thermoplastic resin composition
JP5436517B2 (en) * 2011-08-01 2014-03-05 日本エイアンドエル株式会社 Graft copolymer and thermoplastic resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998858A (en) * 1973-01-13 1974-09-18
JPS5058189A (en) * 1973-09-19 1975-05-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998858A (en) * 1973-01-13 1974-09-18
JPS5058189A (en) * 1973-09-19 1975-05-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036933U (en) * 1989-06-09 1991-01-23

Also Published As

Publication number Publication date
JPS56115351A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
JPH0468326B2 (en)
JP3603294B2 (en) Polybutadiene rubber and impact-resistant aromatic vinyl resin composition
US5206299A (en) Core-shell polymer, resin composition and molded articles thereof
JPS60192754A (en) Thermoplastic resin composition
JPS6241538B2 (en)
JPH0133485B2 (en)
JPS6150488B2 (en)
KR101724800B1 (en) MBS based impact modifier, method for preparing them, and PVC composition
JPS6111965B2 (en)
JPS6351460B2 (en)
JPS61148213A (en) Impact-resistant polystyrene based resin and production thereof
JPH0480049B2 (en)
JPS6128540A (en) Polymer composition and manufacture
JPH05132605A (en) Rubber-modified polystyrene composition
JP2003020377A (en) Composite resin composition
JPS63221145A (en) Rubber-modified polystyrene resin composition
JPS6223782B2 (en)
JP4313447B2 (en) Styrenic resin composition
JP3978272B2 (en) Damping thermoplastic resin composition
JPH0414688B2 (en)
JPH0768319B2 (en) Styrene resin
KR100583524B1 (en) High Impact Polystyrene Resin with Good Falling Dart Impact Prepared by Continuous Mass Polymerization process
JPH0433818B2 (en)
JPS60166338A (en) Rubber-modified styrenic resin composition having improved appearance, impact strength and heat resistance
JPS6011517A (en) Monovinyl aromatic resin composition