KR910009866B1 - A method of preparing for the excellent impact retardant graft polymer - Google Patents

A method of preparing for the excellent impact retardant graft polymer Download PDF

Info

Publication number
KR910009866B1
KR910009866B1 KR1019890001125A KR890001125A KR910009866B1 KR 910009866 B1 KR910009866 B1 KR 910009866B1 KR 1019890001125 A KR1019890001125 A KR 1019890001125A KR 890001125 A KR890001125 A KR 890001125A KR 910009866 B1 KR910009866 B1 KR 910009866B1
Authority
KR
South Korea
Prior art keywords
weight
graft
impact resistance
components
graft copolymer
Prior art date
Application number
KR1019890001125A
Other languages
Korean (ko)
Other versions
KR900011850A (en
Inventor
김영민
김동렬
조형진
이찬홍
Original Assignee
주식회사 럭키
허신구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 럭키, 허신구 filed Critical 주식회사 럭키
Priority to KR1019890001125A priority Critical patent/KR910009866B1/en
Publication of KR900011850A publication Critical patent/KR900011850A/en
Application granted granted Critical
Publication of KR910009866B1 publication Critical patent/KR910009866B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

The graft copolymer having excellent impact resistance is prepd. by graft-copolymerization of 20-60 wt. pts. of the rubber latex of 70-85% gel contents, 30-50 swelling index and 0.3-0.5 micron of ave. diameter; 30-60 wt. pts. of monovinylidene aromatic compound; 8- 25 wt. pts. of cyanoalkene based cpd.; the emulsifier; the chain transfering agent; and the initiator. Pref. in the process, the mixt. of the monomers, initiator and the chain transfering agent is continuously introduced.

Description

내충격성이 우수한 그라프트 중합체의 제조방법Method for preparing graft polymer having excellent impact resistance

본 발명은 단독으로 또는 열가소성 수지와의 혼합물로 사용할 수 있는 내충격성이 우수한 그라프트 중합체의 제조방법에 관한 것이다. 폴리스티렌, 스티렌-아크릴로니트릴 공중합체, 폴리메틸메타아크릴레이트 등의 열가소성 수지에 디엔계 고무성분 즉, 폴리부타디엔, 스티렌-부타디엔 공중합체, 아크릴로니트릴-부타디엔 공중합체 등을 도입시켜 내충격성을 증진시키는 것은 이미 잘 알려져 있다. 또한 이들 고무 성분의 입경이 최종 조성물의 내충격성과 가공성에 지대한 영향을 미친다는 사실도 잘 알려져 있으며, 고무성분의 직경이 크면 클수록 내충격성이 우수하다는 것도 이미 공지된 사실이다.The present invention relates to a method for producing a graft polymer having excellent impact resistance that can be used alone or in a mixture with a thermoplastic resin. Improved impact resistance by introducing a diene rubber component, such as polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, or the like into thermoplastic resins such as polystyrene, styrene-acrylonitrile copolymer, and polymethyl methacrylate. It is already well known to make. It is also well known that the particle diameter of these rubber components has a great influence on the impact resistance and processability of the final composition, and it is already known that the larger the diameter of the rubber component is, the better the impact resistance is.

일반적인 유화중합법으로 대구경(大球涇)의 고무 입자를 제조하는데에는 50∼60시간 이상의 상당히 긴 중합시간이 필요하다. 따라서, 이러한 점을 해결하기 위해서 소구경의 고무입자를 짧은 시간내에 제조하여 이를 응집하는 방법이 사용되어지고 있으며, 응집시키는 방법으로는 산에 의한 방법, 전단력에 의한 방법, 염에 의한 방법, 고분자 응집제를 이용한 방법, 냉동법, 용제 첨가법 등이 있다. 이들 응집법중에는 재현성이 없으며, 고무입자 분포를 잘 조절할 수 없는 것들도 있다. 응집이 되지 않는 소구경의 고무입자가 많이 남아 있으면 최종 조성물의 내충격성과 가공성이 저하된다. 본 발명에서는 이미 잘 알려져 있는 산과 전단력에 의한 응집법(영국특허 제 976,214호)을 사용하여 응집이 되지 않는 소구경의 고무 라텍스가 최소화 되도록 조절된 대구경의 고무 라텍스를 제조하여 이를 그라프트 중합에 사용하였다.To prepare large-diameter rubber particles by general emulsion polymerization method, considerably longer polymerization time of 50 to 60 hours is required. Therefore, in order to solve this problem, a method of preparing small diameter rubber particles within a short time and agglomerating them has been used.Agglomeration methods include an acid method, a shear force method, a salt method, and a polymer. And a method using a flocculant, a freezing method and a solvent addition method. Some of these flocculation methods are not reproducible, and some of them cannot control rubber particle distribution well. If a large number of small-diameter rubber particles that are not aggregated remain, the impact resistance and workability of the final composition are lowered. In the present invention, a large diameter rubber latex, which is controlled to minimize a small diameter rubber latex that is not aggregated, is prepared using a well-known acid and shearing flocculation method (UK Patent No. 976,214), and used for graft polymerization. .

고무 입자의 겔 함량과 팽윤지수는 그라프트 중합체의 내충격성과 유동성에 영향을 주며, 그라프트 중합체가 높은 그라프트율을 얻기 위해서는 높은 팽윤지수를 가진 고무입자의 사용이 유리하다. 그라프트율이 높은 그라프트 중합체는 내충격성과 열안정성이 우수하지만 그라프트율이 너무 높으면 매트릭스내 고무 성분들끼리의 응집으로 인해 이러한 물성이 저하되는 경우도 있다.The gel content and swelling index of the rubber particles affect the impact resistance and flowability of the graft polymer, and it is advantageous to use rubber particles having a high swelling index in order to obtain a high graft rate of the graft polymer. The graft polymer having a high graft ratio is excellent in impact resistance and thermal stability, but when the graft ratio is too high, such physical properties may be degraded due to aggregation of rubber components in the matrix.

본 발명의 목적은 비교적 낮은 겔 함량과 높은 팽윤지수를 가지는 고무 라텍스를 산과 전단력에 의한 응집법을 통해 대구경의 고무 라텍스를 만들어 짧은 시간 내에 그라프트율을 증가시키는 새로운 그라프트 중합법을 사용하여 내충격성이 우수한 열가소성 수지를 제조하는 방법을 제공하는데 있다.An object of the present invention is to provide a rubber latex having a relatively low gel content and a high swelling index to produce a large diameter rubber latex through agglomeration by acid and shear force, thereby using a new graft polymerization method which increases the graft rate within a short time. It is to provide a method for producing a thermoplastic resin.

본 발명에 대해 보다 자세하게 설명하면 같다If the present invention will be described in more detail

통상적인 유화중합법에 의해 0.07∼0.15μ의 소구경 고무 라텍스를 반응 전환율 85% 이상으로 하여 제조할때 고무 라텍스의 겔 함량은 90∼95%가 되며, 팽윤지수는 14∼10정도가 된다. 그러나, 본 발명은 내충격성이 우수한 그라프트공중합체를 얻기 위해 겔함량이 70∼85%, 팽윤지수가 30∼50인 0.07∼0.15μ의 소구경 고무 라텍스를 사용하였으며, 다음과 같이 제조하였다.When a small-diameter rubber latex of 0.07 to 0.15 mu is prepared with a reaction conversion of 85% or more by a conventional emulsion polymerization method, the gel content of the rubber latex is 90 to 95%, and the swelling index is about 14 to 10. However, in the present invention, a small-diameter rubber latex having a gel content of 70 to 85% and a swelling index of 30 to 50 was used to obtain a graft copolymer having excellent impact resistance.

1,3-부타디엔 100중량부에 유화제로서 올레인산칼륨 3.3중량부, 개시제인 과황산칼륨 0.3부, 연쇄이동제로서 n-도데실메르캅탄 0.2부, 물 150부를 반응조에 넣고 반응 내부온도를 55℃로 올려 반응을 진행시켰다. 전환율이 30%에 도달되면 3급 도데실메르캅탄을 0.1중량부 더 첨가하고, 반응온도를 60℃로 올린다. 그 후 전환율이 85%에 이르면 디에틸히드록시아민을 투여하여 반응을 중단시키고, 미반응 단량체를 회수하여 평균입경이 0.085μ이며, 겔 함량이 83%이고, 팽윤지수가 35인 소구경 고무 라텍스 A-1을 얻었다. 초기 반응 온도를 같게 하고, 전환율 30%일때 3급 도데실메르캅탄을 0.1중량부 첨가하고, 반응온도틀 60℃로 올린 후, 전환율 60%일때 다시 3급 도데실메르캅탄 0.1중량부를 첨가하고, 반응온도를 65℃로 올려 전환율 85%에서 반응을 중단시켜 소구경 고무 라텍스 A-2를 얻었다. 또한 초기 반응온도를 같게 하고, 3급 도데실메르캅탄 0.1중량부를 전환율 40%에서 투여하고, 반응온도를 60℃로 올려 중합하여 0.085μ의 평균입경과 92%의 겔 함량과 18의 팽윤지수를 가지는 소구경 고무 라텍스 A-3를 얻었다. 겔 함량과 팽윤지수는 폴리부타디엔 고무 1g을 톨루엔 100ml에 넣고 실온에서 방치시킨 후, 팽윤된 고무의 무게와 겔의 무게를 달아서 이를 측정한다. 본 발명에서 정의된 팽윤지수와 겔 함량은 다음과 같다.To 100 parts by weight of 1,3-butadiene, 3.3 parts by weight of potassium oleate as an emulsifier, 0.3 parts of potassium persulfate as an initiator, 0.2 parts of n-dodecyl mercaptan as a chain transfer agent, and 150 parts of water were added to a reactor, and the reaction internal temperature was increased to 55 ° C. The reaction was carried out. When the conversion rate reaches 30%, 0.1 part by weight of tertiary dodecyl mercaptan is added, and the reaction temperature is raised to 60 ° C. After the conversion reached 85%, the reaction was stopped by administration of diethylhydroxyamine, and the unreacted monomer was recovered to obtain a small diameter rubber latex having an average particle diameter of 0.085μ, a gel content of 83%, and a swelling index of 35. A-1 was obtained. The initial reaction temperature was the same, and 0.1 parts by weight of tertiary dodecyl mercaptan was added at a conversion rate of 30%, and the reaction temperature was raised to 60 ° C. Then, 0.1 parts by weight of tertiary dodecyl mercaptan was added again at a conversion rate of 60%. The reaction temperature was raised to 65 ° C. to stop the reaction at a conversion rate of 85% to obtain a small diameter rubber latex A-2. In addition, the initial reaction temperature was the same, 0.1 parts by weight of tertiary dodecyl mercaptan was administered at a conversion rate of 40%, and the reaction temperature was raised to 60 ° C to polymerize to obtain an average particle diameter of 0.085 μ, a gel content of 92%, and an swelling index of 18. Eggplant obtained small-diameter rubber latex A-3. The gel content and swelling index were measured by putting 1 g of polybutadiene rubber in 100 ml of toluene and leaving it at room temperature, then weighing the swelled rubber and the weight of the gel. The swelling index and the gel content defined in the present invention are as follows.

Figure kpo00001
Figure kpo00001

3가지의 소구경 고무 라텍스의 특성을 표 1에 나타내었으며, 입자경의 측정은 말번(Malvern)사의 오토사이저 IIc(Autosizer IIc)를 이용하였다.The characteristics of the three small-diameter rubber latex are shown in Table 1, and the particle size was measured by using Malvern's Autosizer IIc.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

표 1의 소구경 고무 라텍스를 사용하여 산에 의한 방법(초산 이용)과 전단력에 의한 방법(Homogenizer 이용법)으로 대구경의 고무 라텍스를 제조하였다. 일반적으로 응집을 지배하는 요소로는 유화제의 양, pH, 온도, 고형분의 양 등이 있으며, 이러한 요소들을 잘 조절하면 원하는 크기의 대구경 고무 라텍스를 얻을 수 있다. 본 발명에서 사용된 대구경의 고무 라텍스 B-1, B-2, B-3 및 B-4는 표 2와 같은 조건으로 소구경 고무 라텍스를 응집하였다.The large-diameter rubber latex was prepared using the small-diameter rubber latex of Table 1 by the acid method (using acetic acid) and the shearing method (Homogenizer method). In general, the factors governing the aggregation is the amount of emulsifier, pH, temperature, the amount of solids, and the like, and when controlled well, large diameter rubber latex of desired size can be obtained. The large-diameter rubber latexes B-1, B-2, B-3 and B-4 used in the present invention aggregated the small-diameter rubber latex under the conditions shown in Table 2.

[표 2]TABLE 2

Figure kpo00003
Figure kpo00003

1) 라텍스(고형분양) 100중량부 당 유화제인 로진산칼륨의 중량부1) Weight part of potassium rosinate as emulsifier per 100 parts by weight of latex (solid content)

2) 입도분포의 수치는 μ2) The particle size distribution is μ

본 발명에서의 그라프트 중합은 표 2의 응집된 대구경 고무라텍스(B-1,B-2,B-3)를 사용하고, 그라프트율을 조절하기 위해 반응조성물들의 투입 양과 방법들을 조절하였다. 그라프트 중합체내 고무 함량을 높여 짧은 시간내에 그라프트 반응을 행하고, 이를 스티렌-아크릴로니트릴 공중합체 수지와 혼합하여 사용하였다. 이는 생산측면에서 유리하다고 할 수 있다.The graft polymerization in the present invention uses the aggregated large-diameter rubber latex (B-1, B-2, B-3) shown in Table 2, and the amounts and methods of the reaction compositions were adjusted to control the graft rate. The rubber content in the graft polymer was increased to perform the graft reaction within a short time, and the mixture was used in combination with the styrene-acrylonitrile copolymer resin. This can be said to be advantageous in terms of production.

즉, 본 발명은 겔 함량이 70∼85%, 팽윤지수 30∼50, 평균입경 0.3∼0.5μ인 고무 라텍스 20∼60중량부, 모노비닐리덴 방향족 화합물 30∼60중량부, 시아노알켄계 화합물 8∼25중량부, 유화제, 연쇄이동제, 개시제로 구성된 조성물을 제조하는 중합법에서 상기 성분들을 투입하여 중합시킴을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법에 관한 것이다.That is, in the present invention, 20 to 60 parts by weight of a rubber latex having a gel content of 70 to 85%, an swelling index of 30 to 50, an average particle diameter of 0.3 to 0.5μ, a 30 to 60 parts by weight of a monovinylidene aromatic compound, and a cyanoalkene compound 8 It relates to a method for producing a graft copolymer having excellent impact resistance, characterized in that the polymerization by preparing the composition consisting of ~ 25 parts by weight, emulsifier, chain transfer agent, initiator.

본 발명을 상세히 설명하면 다음과 같다.The present invention is described in detail as follows.

그라프트 중합은 모든 성분들을 일괄 투입하여 중합하는 1단계식 중합법과 분할하여 투입하는 2단계식 중합법을 사용하였다. 또한, 그라프트율을 높이기 위하여 일부의 성분만을 분할 투여하거나, 연속적으로 투여하는 방법도 사용하였다. 고무 라텍스를 20∼60중량부(고형분 양으로), 모노비닐리덴 방향족 화합물을 30∼60중량부, 시아노알켄계 화합물 8∼25중량부 사용하여 유화제로는 로진산칼륨이나 올레인산칼륨을 단독 또는 혼합하여 사용하였으며, 연쇄이동제로서 n-도데실메르캅탄이나 3급 도데실메르캅탄을 개시제로 과황산칼륨이나 큐멘히드로퍼옥시드를 사용하였다. 1단계식 중합법으로 모든 성분들을 일괄 투여하는 방법을 사 용하였으며, 그라프트 중합체내 높은 고무 함량이 되게 하였다. 또한 그라프트율을 높이기 위해 단량체와 개시제, 연쇄이동제의 혼합물을 연속해서 투여하였다. 2단계식 중합법은 반응물을 2단계로 분할하여 중합하는 방법이며, 1단계의 성분은 일괄 투여한 후, 2단계에서 연속적으로 투여하는 방법, 또는 2단계의 성분도 일괄 투여하는 방법을 사용하였다.The graft polymerization used a one-step polymerization method in which all components were added in a batch and a two-step polymerization method in which the components were separately added. In addition, in order to increase the graft rate, only a part of components or a continuous administration was used. 20 to 60 parts by weight of rubber latex (in solid content), 30 to 60 parts by weight of monovinylidene aromatic compound and 8 to 25 parts by weight of cyanoalkene compound are used alone or mixed with potassium rosin or potassium oleate as emulsifier. Potassium persulfate or cumene hydroperoxide was used as an initiator as n-dodecyl mercaptan or tertiary dodecyl mercaptan as a chain transfer agent. The one-step polymerization method used a batch dosing of all components and resulted in a high rubber content in the graft polymer. In addition, in order to increase the graft rate, a mixture of a monomer, an initiator and a chain transfer agent was continuously administered. The two-stage polymerization method is a method of dividing the reactant into two stages and polymerizing. The first stage components are collectively administered, followed by continuous administration in two stages, or the second stage of batch administration.

모든 물성을 일괄 투입하는 1단계식 중합법을 사용하는 경우, 내충격성이 우수한 수지를 얻을 수 있었고 단량체, 개시제, 연쇄이동제의 혼합물을 연속적으로 투여하였을 경우, 그라프트율이 높아지고 수지의 유동성이 좋아졌다. 2단계식의 중합법에서 1단계 성분과 2단계 성분들을 각각 일괄 투입하는 방법과 1단계 성분은 일괄 투입하지만 2단계 성분은 연속적으로 투입하는 방법을 사용하여 이들 그라프트율을 조절하였다.In the case of using the one-stage polymerization method in which all the physical properties were added, a resin having excellent impact resistance was obtained, and when the mixture of the monomer, the initiator, and the chain transfer agent was continuously administered, the graft ratio was increased and the flowability of the resin was improved. In the two-stage polymerization method, the graft ratio was controlled by using a method in which the one-stage components and the two-stage components were added in a batch and the one-stage components were added in a batch but the two-stage components were continuously added.

그라프트율 측정은 다음과 같이 하였다. 먼저 냉각장치를 한 엘렌마이어 플라스크에 그라프트 중합체 분말 2g과 용매로 아세톤 300ml를 넣고 온도를 올려 24시간 교반한다. 이 용액을 초원심분리기를 사용하여 37,000가우스로 2시간 동안 분리한다. 분리된 아세톤 용액을 응축시킨 후, 메탄올에 떨어뜨려 그라프트되지 않은 스티렌-아크릴로니트릴 공중합체(SAN)을 얻어 이를 건조시켜 무게를 측정한다. 그라프트율의 정의는 다음과 같다.The graft ratio was measured as follows. First, 2 g of graft polymer powder and 300 ml of acetone were added to a solvent-cooled Ellenmeyer flask, and the temperature was raised and stirred for 24 hours. This solution is separated for 2 hours at 37,000 gauss using an ultracentrifuge. After condensation of the separated acetone solution, it was dropped in methanol to obtain an grafted styrene-acrylonitrile copolymer (SAN), which was dried and weighed. The graft ratio is defined as follows.

Figure kpo00004
Figure kpo00004

그라프트된 SAN 양은 전체적으로 투입된 단량체의 양에서 그라프트되지 않은 SAN 양을 감한 것이다.The amount of grafted SAN is the amount of ungrafted SAN subtracted from the total amount of monomer injected.

상기와 같이 중합된 그라프트 중합체는 우수한 내충격성의 수지를 얻기 위해 괴상중합법으로 제조된 각기 분자량 분포가 다른 2가지 SAN을 조합 사용하여 매트릭스내 양분화된 분자량 분포를 갖도록 하였으며, SAN 내의 아크릴로니트릴 함량을 높여 사용하였다.The graft polymer polymerized as described above had two SANs having different molecular weight distributions prepared by the bulk polymerization method in order to obtain resins having excellent impact resistance, and had a bipartite molecular weight distribution in the matrix. Was used to raise.

실시예중 “부” 및 “%”는 각각 “중량부” 및 “중량%”를 의미한다.In the Examples, "parts" and "%" mean "parts by weight" and "% by weight", respectively.

[실시예 1∼8]EXAMPLES 1-8

Figure kpo00005
Figure kpo00005

반응조에 상기의 반응물을 넣고 반응초기 온도를 40℃로 하고, 1시간에 걸쳐 반응온도를 70℃로 올린 후, 약 3시간 동안 반응을 계속 진행시킨다. 이렇게 하여 얻어진 중합물의 전환율은 97% 이상이며, 이 라텍스를 50메쉬의 쇠그물로 여과하여 응고물의 생성량을 측정하면 0.2% 이하가 된다. 생성된 중합체 라텍스에 산화방지제를 가한 후, 5% 황산 수용액으로 응고시킨 다음, 세척 및 건조하여 백색분말을 얻는다. 표 3과 같은 특성을 지닌 스티렌-아크릴로니트릴 공중합체(SAN)를 표 4와 같은 조합으로 사용하여 SAN의 분자량 분포와 아크릴로니트릴(AN)함량을 변화시켰다. 합성된 그라프트 중합체에 SAN을 혼합하여 수지내 고무함량을 25%로 하고, 200℃에서 압출 후, 사출성형을 하여 시험편을 만들어 물성을 측정하였다. 이에 대한 결과를 표 4에 나타내었다.The reaction product was added to the reactor and the initial reaction temperature was 40 ° C., the reaction temperature was raised to 70 ° C. over 1 hour, and the reaction was continued for about 3 hours. The conversion of the polymer obtained in this manner is 97% or more, and the amount of coagulated product is 0.2% or less when the latex is filtered through a mesh of 50 mesh. After adding an antioxidant to the resulting polymer latex, it was coagulated with 5% aqueous sulfuric acid solution, washed and dried to obtain a white powder. Styrene-acrylonitrile copolymers (SAN) having the properties shown in Table 3 were used in combinations as shown in Table 4 to change the molecular weight distribution and acrylonitrile (AN) content of SAN. SAN was mixed with the synthesized graft polymer to make the rubber content in the resin 25%, extrusion was carried out at 200 ° C., injection molding was performed, and a test piece was made to measure physical properties. The results are shown in Table 4.

[표 3]TABLE 3

Figure kpo00006
Figure kpo00006

[비교예 1]Comparative Example 1

실시예 1과 같은 처방으로 중합하였으며, 사용된 고무 라텍스는 응집된 고무 라텍스 B-4이다. 생성된 그라프트 중합체에 실시예 4와 같은 조합으로 SAN을 첨가하여 매트릭스내 AN함량이 30% 되도록 하여 물성을 측정하였다. 이에 대한 결과를 표 4에 나타내었다.Polymerized with the same prescription as in Example 1, the rubber latex used was agglomerated rubber latex B-4. SAN was added to the resultant graft polymer in the same combination as in Example 4 so that the AN content in the matrix was 30%. The results are shown in Table 4.

[실시예 9]Example 9

실시예 1의 성분중 단량체인 스티렌과 아크릴로니트릴, 개시제인 큐멘히드로퍼옥시드, 연쇄이동제인 3급 도데실메르캅탄을 제외한 성분들을 반응조에 넣고, 반응온도를 70℃로 한 다음, 단량체, 개시제, 연쇄이동제의 혼합물을 4시간에 걸쳐 투입한다. 실시예 4와 같은 방법으로 SAN을 첨가하여 물성을 측정하였다. 이에 대한 결과를 표 4에 나타내었다.Among the components of Example 1, except for the monomers styrene and acrylonitrile, cumene hydroperoxide as initiator, and tertiary dodecyl mercaptan as a chain transfer agent, were added to the reaction tank, the reaction temperature was set to 70 ° C, and then the monomer, initiator The mixture of chain transfer agent is added over 4 hours. Physical properties were measured by adding SAN in the same manner as in Example 4. The results are shown in Table 4.

[실시예 10]Example 10

[1단계][Stage 1]

Figure kpo00007
Figure kpo00007

반응조에 1단계의 성분들을 일괄 투여한 후, 반응온도를 40℃에서 시작하여 1시간에 걸쳐 70℃로 올린후, 2단계 성분들의 유화액을 3시간에 걸쳐 투입한다. 유화액 투입이 완료되면 반응온도를 80℃로 상승시켜 1시간 동안 더 숙성시키고 반응을 종료시킨다. 이때 사용되어진 고무 라텍스는 응집된 고무 라텍스 B-3이며, 얻어진 중합물의 전환율은 97%이상이 된다. 이와같이 생성된 그라프트 중합체 100중량부에 표 3의 SAN-1을 8.6중량부, SAN-4를 51.4중량부 첨가하여 매트릭스내 AN함량을 30%로 하고, 수지내 고무 함량을 25%로 하여 물성을 측정하였다. 이에 대한 결과를 표 4에 나타내었다.After the batch administration of the components of the first stage to the reactor, the reaction temperature is started at 40 ° C and raised to 70 ° C over 1 hour, and then the emulsion of the second stage components is added over 3 hours. When the addition of the emulsion is completed, the reaction temperature is raised to 80 ° C. and further aged for 1 hour to terminate the reaction. The rubber latex used at this time is agglomerated rubber latex B-3, and the conversion rate of the obtained polymer is 97% or more. 100 parts by weight of the graft polymer thus produced was added 8.6 parts by weight of SAN-1 and 51.4 parts by weight of SAN-4 to 30% of the AN content in the matrix, the rubber content of the resin to 25% Was measured. The results are shown in Table 4.

[실시예 11]Example 11

반응조에 1단계의 성분들을 일괄 투여한 후, 반응온도를 40℃에서 시작하여 1시간에 걸쳐 70℃로 올린다. 이때 2단계의 성분들을 일괄 투여한 후, 3시간 동안 반응시킨다. 사용되어진 응집 고무라텍스는 B-3이며, 희석용 SAN의 첨가량은 실시예 10과 같다. 이에 대한 결과를 표 4에 나타내었다.After batch administration of the components of the first stage to the reactor, the reaction temperature starts at 40 ° C. and is raised to 70 ° C. over 1 hour. At this time, after the batch administration of the components of the second stage, the reaction for 3 hours. The cohesive rubber latex used was B-3, and the amount of dilution SAN added was the same as in Example 10. The results are shown in Table 4.

[실시예 12]Example 12

응집 고무라텍스 B-2를 사용하고, 중합 처방 및 중합방법은 실시예 10과 동일하게 하며, 희석용 SAN의 첨가량도 같게 한다. 이에 대한 결과를 표 4에 나타내었다.Using agglomerated rubber latex B-2, the polymerization formulation and polymerization method were the same as in Example 10, and the addition amount of the dilution SAN was also the same. The results are shown in Table 4.

[표 4]TABLE 4

Figure kpo00008
Figure kpo00008

1) 그라프트 중합체 100을 기준1) Based on Graft Polymer 100

2) 노치아이조드 충격강도 : 1/4″시편, 23℃2) Notch Izod impact strength: 1/4 ″ specimen, 23 ℃

3) 220℃, 10kg3) 220 ℃, 10kg

4) 입사각 60°4) Incident angle 60 °

5) R-스케일5) R-scale

표 4에서 나타난 바와같이, 2중 다분산 형태의 분자량 분포를 가지는 스티렌-아크릴로니트릴 공중합체를 그라프트 공중합체에 혼입함과 동시에 매트릭스 내 아크릴로니트릴 함량을 높여 내충격성 및 유동성이 우수한 열가소성 수지를 얻었다. 또한, 표 4에서 나타난 바와 같이, 겔 함량이 낮고 팽윤지수가 높은 대구경의 고무가 겔 함량이 높으며, 팽윤지수가 낮은 것보다 ABS 또는 ABS형의 수지 제조시 더 우수한 충격강도와 유동지수를 나타내었다. 이것은 팽윤지수가 낮을수록 그라프트율이 떨어져 이들 특성이 감소된 것으로 생각된다. 또한 매트릭스로서 양분화된 분자량 분포를 가지고 아크릴로니트릴 함량이 높은 SAN의 사용이 열가소성 수지의 충격강도를 높이는데 유리하다.As shown in Table 4, a thermoplastic resin having excellent impact resistance and fluidity by incorporating a styrene-acrylonitrile copolymer having a molecular weight distribution in a double polydisperse form into the graft copolymer and increasing the acrylonitrile content in the matrix. Got. In addition, as shown in Table 4, large diameter rubbers with low gel content and high swelling index had higher gel content and showed better impact strength and flow index when manufacturing ABS or ABS type resins than low swelling index. . It is thought that the lower the swelling index, the lower the graft ratio, and thus these characteristics were reduced. In addition, the use of SAN having a high molecular weight distribution and having a high molecular weight distribution as a matrix is advantageous for increasing the impact strength of the thermoplastic resin.

Claims (7)

겔 함량이 70∼85%, 팽윤지수 30∼50, 평균입경 0.3∼0.5μ인 고무 라텍스 20∼60중량부, 모노비닐리덴 방향족 화합물 30∼60중량부, 시아노알켄계 화합물 8∼25중량부, 유화제, 연쇄이동제, 개시제를 투입하여 그라프트중합시킴을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.20 to 60 parts by weight of rubber latex having a gel content of 70 to 85%, swelling index of 30 to 50, average particle diameter of 0.3 to 0.5μ, 30 to 60 parts by weight of monovinylidene aromatic compound, 8 to 25 parts by weight of cyanoalkene compound, Method for producing a graft copolymer excellent in impact resistance, characterized in that the graft polymerization by adding an emulsifier, a chain transfer agent, an initiator. 제1항에 있어서, 단량체 혼합물과 개시제, 연쇄이동제를 연속적으로 투입하는 것을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.The method of producing a graft copolymer having excellent impact resistance according to claim 1, wherein a monomer mixture, an initiator, and a chain transfer agent are continuously added. 제1항에 있어서, 2단계식 중합법으로 1단계의 성분들을 일괄투여하고, 2단계의 성분을 연속적으로 투여하는 것을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.The method of producing a graft copolymer having excellent impact resistance according to claim 1, wherein the components of one step are collectively administered by a two-step polymerization method, and the two steps of components are continuously administered. 제1항에 있어서, 2단계식 중합법으로 1단계의 성분들을 일괄 투여한 후, 반응을 진행시킨 다음, 2단계 성분을 일괄 투여하는 것을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.The method of claim 1, wherein after the batch administration of the components of the first stage by a two-stage polymerization method, the reaction proceeds, and then the two-stage components are collectively administered. . 제1항에 있어서, 2단계식 중합시 1단계로서 고무 함량을 50∼78중량%로 하고, 모노비닐리덴 방향족 화합물 대 시아노알켄계 화합물의 중량%을 80:20∼65:35로 하는 것을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.The rubber content is 50 to 78% by weight and the weight percentage of the monovinylidene aromatic compound to the cyanoalkene compound is 80:20 to 65:35 as one step in the two-stage polymerization. Method for producing a graft copolymer having excellent impact resistance. 제1항에 있어서, 2단계식 중합시 2단계로서 모노비닐리덴 방향족 화합물 대 시아노알켄계 화합물의 중량%를 75:25∼65:34로 하는 것을 특징으로 하는 내충격성이 우수한 그라프트 공중합체의 제조방법.The graft copolymer having excellent impact resistance according to claim 1, wherein the weight ratio of the monovinylidene aromatic compound to the cyanoalkene-based compound is 75:25 to 65:34 as two steps in the two-step polymerization. Manufacturing method. 합성된 그라프트 중합체에 스티렌-아크릴로니트릴 공중합체를 첨가할때, 비교적 낮은 분자량 분포와 비교적 높은 분자량 분포를 가지는 스티렌-아크릴로니트릴 공중합체를 혼합하여 그 중량 평균분자량의 차이가 30,000∼80,000인 양분화된 분자량 분포를 가지며, 공중합체중의 아크릴로니트릴 함량이 27∼30중량%가 되게 하여 내충격성이 우수한 그라프트 공중합체의 제조방법.When the styrene-acrylonitrile copolymer is added to the synthesized graft polymer, the difference in weight average molecular weight is 30,000 to 80,000 by mixing a styrene-acrylonitrile copolymer having a relatively low molecular weight distribution and a relatively high molecular weight distribution. A method for producing a graft copolymer having a bimodal molecular weight distribution and excellent acrylonitrile content of the copolymer in an amount of 27 to 30% by weight.
KR1019890001125A 1989-01-31 1989-01-31 A method of preparing for the excellent impact retardant graft polymer KR910009866B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890001125A KR910009866B1 (en) 1989-01-31 1989-01-31 A method of preparing for the excellent impact retardant graft polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890001125A KR910009866B1 (en) 1989-01-31 1989-01-31 A method of preparing for the excellent impact retardant graft polymer

Publications (2)

Publication Number Publication Date
KR900011850A KR900011850A (en) 1990-08-02
KR910009866B1 true KR910009866B1 (en) 1991-12-03

Family

ID=19283521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890001125A KR910009866B1 (en) 1989-01-31 1989-01-31 A method of preparing for the excellent impact retardant graft polymer

Country Status (1)

Country Link
KR (1) KR910009866B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409599B1 (en) * 2010-08-11 2014-06-27 주식회사 엘지화학 Light resistant thermoplastic resin composition with excellent scratch and heat resistance
US11894575B2 (en) 2018-09-11 2024-02-06 Lg Chem, Ltd. Cross-linked polyolefin separator and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409599B1 (en) * 2010-08-11 2014-06-27 주식회사 엘지화학 Light resistant thermoplastic resin composition with excellent scratch and heat resistance
US11894575B2 (en) 2018-09-11 2024-02-06 Lg Chem, Ltd. Cross-linked polyolefin separator and method for producing same

Also Published As

Publication number Publication date
KR900011850A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
KR100923626B1 (en) Method for preparing thermoplastic resin having superior gloss, impact strength and whiteness
CA2172732C (en) Maleimide-modified high heat abs resins
KR920011031B1 (en) Process for preparing thermoplastic resin composition
CN111386290B (en) Process for producing graft copolymer and thermoplastic resin molded article
EP3686244B1 (en) Heat-resistant resin composition
KR100375814B1 (en) Method for preparing thermoplastic resin composition having excellent impact resistance
CN112041357B (en) Diene rubber latex, method for producing the same, and graft copolymer having core-shell structure comprising the same
KR0179314B1 (en) The preparation of thermoplastic resin composition for high impact strength and high glossness
KR20000055262A (en) Method for preparing thermoplastic resin with good impact resistance and natural color property
KR910009866B1 (en) A method of preparing for the excellent impact retardant graft polymer
KR100358231B1 (en) Manufacturing method of heat resistant thermoplastic resin with excellent impact resistance and thermal stability
KR940004852B1 (en) Preparation of thermoplastic resin composition
KR100452856B1 (en) Thermoplastic resin latex manufacturing method with excellent impact resistance, whiteness and retention gloss
US11214645B2 (en) Method for preparing graft copolymer and thermoplastic resin molded article
KR100518891B1 (en) Thermoplastic Resin Composition with Reduced Cold Stress Whitening
KR20020021863A (en) Process for preparing heat resistant thermoplastic resin having superior weatherability and impact resistance
JPS636106B2 (en)
KR930006082B1 (en) Process for preparing of thermoplastic resin compositions
KR100561339B1 (en) Abs thermoplastic resin composition
KR100453875B1 (en) Method of Preparing the New Grafted Copolymer Having High Rubber Contents and High Performance
KR100455101B1 (en) Method of Preparing SAN-Grafted Copolymer Resin with Excellent Appearance and Whiteness
KR930006000B1 (en) Process for preparing a thermoplastic resin composition having a good gloss
KR100523595B1 (en) Thermoplastic transparent resin composition and process for preparaing thereof
KR20030022947A (en) Method for preparing thermoplastic resin having superior gloss and snow whiteness
KR100775737B1 (en) Good curl-fit thermoplastic resin composition

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081017

Year of fee payment: 18

EXPY Expiration of term