JPH03184334A - Manufacture of multistage recessed-gate fet - Google Patents

Manufacture of multistage recessed-gate fet

Info

Publication number
JPH03184334A
JPH03184334A JP32363689A JP32363689A JPH03184334A JP H03184334 A JPH03184334 A JP H03184334A JP 32363689 A JP32363689 A JP 32363689A JP 32363689 A JP32363689 A JP 32363689A JP H03184334 A JPH03184334 A JP H03184334A
Authority
JP
Japan
Prior art keywords
etching
recess
assists
assist
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32363689A
Other languages
Japanese (ja)
Inventor
Takahide Ishikawa
石川 高英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32363689A priority Critical patent/JPH03184334A/en
Publication of JPH03184334A publication Critical patent/JPH03184334A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture recess grooves in a self-alignment manner with high yield even if multistage recess structure of 3 stages or more is formed by forming assists on the sidewalls of the etched groove formed on a region to be formed with a gate, and repeating recess etching with the assists as etching masks. CONSTITUTION:When an MESFET having a recess structure of a plurality of stages is manufactured, assists 7 are formed on the sidewalls of etched grooves forced on a region to be formed with a gate, and recess etching with the assists 7 as etching masks is repeated to form a multistage recess in a self-alignment manner. For example, after source.drain ohmic electrodes 3 are formed on a GaAs active layer 2, an insulating film 7A made of SiN, SiON, SiO, etc., is laminated on the entire surface, the film 7A is anisotropically etched to form a sidewall assist 7a. Then, with the assist 7a as an etching mask the exposed layer 2 is etched. Further, a similar step is repeated to obtain a multistage recess structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多段リセスゲートFETの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a multi-stage recess gate FET.

〔従来の技術〕[Conventional technology]

第2図(a)〜(Oは従来の多段リセス型FETを2段
リセス、GaAsFETを例にとって示したものである
FIGS. 2(a) to 2(O) show conventional multi-stage recess type FETs with two-stage recesses and a GaAs FET as an example.

図中、1は半絶縁性GaAs基板、2はGaAs能動層
、3はソース・ドレインオーミック電極、4a、4bは
レジスト、5a、5bはそれぞれ1段目リセス、2段目
リセス、6はゲート電極メタルである。
In the figure, 1 is a semi-insulating GaAs substrate, 2 is a GaAs active layer, 3 is a source/drain ohmic electrode, 4a and 4b are resists, 5a and 5b are first and second recesses, respectively, and 6 is a gate electrode. It's metal.

次にその製造方法について説明する。Next, the manufacturing method will be explained.

第2図(a)に示すように、表面に能動層2を有する半
絶縁性GaAs基板1上にソース・ドレインオーミック
電極3を形成した後、該オーミック電極3間に開口部を
持つ第一リセスエッチング用のレジストパターン4aを
形成する。このレジストパターン4aをマスクとしてG
aAs能動層2を、例えばRIE(リアクティブイオン
エツチング)法を用いてCC1t Ft /He混合ガ
ス等のエッチャントでエツチングして第2図(b)のよ
うな構造が得られる。引き続いて、レジスト4aを除去
すると第2図(C)のようになり、1段のリセス構造が
得られる。
As shown in FIG. 2(a), after forming source/drain ohmic electrodes 3 on a semi-insulating GaAs substrate 1 having an active layer 2 on the surface, a first recess having an opening between the ohmic electrodes 3 is formed. A resist pattern 4a for etching is formed. Using this resist pattern 4a as a mask, G
The aAs active layer 2 is etched using an etchant such as CC1t Ft /He mixed gas using, for example, RIE (reactive ion etching) to obtain a structure as shown in FIG. 2(b). Subsequently, when the resist 4a is removed, a one-stage recess structure as shown in FIG. 2(C) is obtained.

次に2段目のリセスエッチング用のレジストパターン4
bを1段目リセス5aの内部に開口部をもつように形成
する(第2図@)、引き続き、GaAsのエツチングを
第2図(b)と同様に行うことにより、第2図(e)に
示すような、例えば5000人深さのリセス構造を得る
Next, resist pattern 4 for second stage recess etching
2(e) by etching GaAs in the same manner as in FIG. 2(b). For example, a recess structure of 5,000 depth as shown in FIG.

次に第2図(f)に示すようにウェハ全面にゲート電極
金属6を、例えば真空蒸着法で、T i / P t/
 A uを積層した後、適当なレジスト除去法、例えば
レジスト剥離液浸漬によりレジスト4bを除去すること
で不要メタルを除去することにより、第2図(g)に示
すような2段リセス構造をもったFETが得られる。
Next, as shown in FIG. 2(f), a gate electrode metal 6 is deposited on the entire surface of the wafer using, for example, a vacuum evaporation method to deposit T i / P t /
After laminating Au, the unnecessary metal is removed by removing the resist 4b using a suitable resist removal method, such as immersion in a resist stripping solution, thereby creating a two-stage recessed structure as shown in FIG. 2(g). A FET is obtained.

そし・てこのようなリセス構造とすることにより、通常
のFETに比ベキャリアの流れを円滑にすることができ
、FETの電力効率η η−(ドレインから取り出されるマイクロ波電力−ゲー
トに入力されるマイクロ波電力)/(ドレインに印加さ
れる直流電圧×ドレイン側に流れる直流電流)を向上す
ることができる。
By using such a recessed structure, the flow of carriers can be made smoother than in a normal FET, and the power efficiency of the FET η η - (microwave power taken out from the drain - input to the gate) Microwave power)/(DC voltage applied to the drain x DC current flowing to the drain side) can be improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の2段リセスFETの製造は以上のように行われて
いたが、第2図(d)において1段目リセス幅は2μm
以下であり、さらに微細化された、例えば1μm幅の2
段目リセスをこの中に正確にマスクアライメントするこ
とは非常に困難であった。
The conventional two-stage recess FET was manufactured as described above, but in Figure 2(d), the first stage recess width was 2 μm.
or less, and even further miniaturized, for example, 2 μm wide
Accurate mask alignment of the step recesses into this was very difficult.

このため、1段目リセスの外側に2段目リセスが形成さ
れてしまう等、著しい製造歩留りの低下を招いていた。
For this reason, a second stage recess is formed outside the first stage recess, resulting in a significant reduction in manufacturing yield.

この発明は上記のような問題点を解消するためになされ
たもので、2段リセス構造はもちろんのこと、キャリア
の流れをよりスムーズにし電力効率を一層向上すべく、
3段以上の多段リセス構造を構成する場合においても、
各リセス溝の形成を自己整合的に歩留り良く製造できる
多段リセスゲートFETの製造方法を得ることを目的と
する。
This invention was made to solve the above-mentioned problems, and in addition to the two-stage recess structure, it also provides smoother flow of carriers and further improves power efficiency.
Even when configuring a multi-stage recess structure of three or more stages,
It is an object of the present invention to provide a method for manufacturing a multi-stage recess gate FET in which each recess groove can be formed in a self-aligned manner with a high yield.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る多段リセスゲー)FETの製造方法は、
2段目、3段目、4段目以降のリセスエッチングのマス
クとして、既存するエツチング溝側面に側壁アシストを
形成し、これをエツチングマスクとして使用することに
より自己整合的に複数のリセスエッチング溝を形成する
ようにしたものである。
The method for manufacturing a multi-stage recess gate (FET) according to the present invention is as follows:
As a mask for recess etching in the second, third, and fourth stages, a side wall assist is formed on the side surface of the existing etching groove, and by using this as an etching mask, multiple recess etching grooves can be formed in a self-aligned manner. It was designed so that it could be formed.

〔作用] この発明においては、エツチングマスク用側壁アシスト
の形成は既に形成されているリセス部側壁にSiN、5
iON、SiO等の絶縁膜を繰り返し形成することによ
り、多段リセス構造を実現する。
[Function] In this invention, the side wall assist for the etching mask is formed by adding SiN, 5
By repeatedly forming insulating films such as iON and SiO, a multi-stage recess structure is realized.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による多段リセスゲ−)FE
Tの製造方法の各工程を示し、第1図(a)〜(j)に
おいて、1は半絶縁性GaAs基板、2はGaps能動
層、3はソース・ドレインオーミック電極、5a、5b
、5dはそれぞれ1段目、2段目、4段目リセス、6は
ゲート電極メタル、7A、7Bは側壁アシスト形成のた
めに全面積層した絶縁膜、7a、7b、7c、7dはそ
れぞれ1段目リセスエッチング用側壁アシスト、同2段
目。
FIG. 1 shows a multi-stage recess game (FE) according to an embodiment of the present invention.
1(a) to (j), 1 is a semi-insulating GaAs substrate, 2 is a Gaps active layer, 3 is a source/drain ohmic electrode, 5a, 5b
, 5d are the first, second and fourth stage recesses, 6 is the gate electrode metal, 7A and 7B are insulating films layered over the entire area to form sidewall assists, and 7a, 7b, 7c and 7d are each one stage. Side wall assist for eye recess etching, 2nd stage.

3段目、4段目リセスエッチング用側壁アシストである
。8はゲート電極形成のためのリフトオフ用レジストで
ある。
This is a side wall assist for third and fourth stage recess etching. 8 is a lift-off resist for forming a gate electrode.

次に製造方法について説明する。Next, the manufacturing method will be explained.

第1図(a)はGaAs能動N2上にソース・ドレイン
オーミック電極3を形成した後、全面に絶縁膜7A、例
えばSiN、5iON、SiO膜をP−CVD法等を用
いて積層したところを示す図である。この状態で、該絶
縁膜7Aを異方性エツチング、例えばRIE(リアクテ
ィブイオンエツチング)法を用いてエツチング処理を行
うと第1図(b)のように、オー5ツタ電極3の側壁に
側壁アシスト7aが形成される。
FIG. 1(a) shows that after forming source/drain ohmic electrodes 3 on GaAs active N2, an insulating film 7A, such as SiN, 5iON, or SiO film, is laminated on the entire surface using the P-CVD method or the like. It is a diagram. In this state, when the insulating film 7A is etched using anisotropic etching, for example, RIE (reactive ion etching), as shown in FIG. An assist 7a is formed.

次にこの側壁アシストをエツチングマスクとして露出し
たGaAs能動N2を適当なエツチング方法、例えばH
gSO4とHtOt水溶液との混合液による湿式エツチ
ングを行い、第1図(C)を得る。次に第1図(d)に
示すように第1図(a)と同様、全面に絶縁膜7Bを形
成した後、第1図〜)のときと同様RIE法などを用い
て側壁アシスト7bを形威する。引き続いて側壁アシス
ト7a、7bをエツチングマスクとして使用し、露出し
ているGaAs能動N2を上述と同様、湿式エツチング
法でエツチングすることにより2段目リセス部5bを得
る。そしてこれらの工程を繰り返すことにより、深さ5
000人の多段リセス構造(第1図(8))を得る。
Next, using this sidewall assist as an etching mask, the exposed GaAs active N2 is etched using an appropriate etching method, such as H
Wet etching is performed using a mixed solution of gSO4 and HtOt aqueous solution to obtain the image shown in FIG. 1(C). Next, as shown in FIG. 1(d), after forming an insulating film 7B on the entire surface as in FIG. 1(a), sidewall assist 7b is formed using RIE method as in FIG. Give form. Subsequently, using the side wall assists 7a and 7b as an etching mask, the exposed GaAs active N2 is etched by the wet etching method as described above, thereby obtaining the second stage recess portion 5b. By repeating these steps, a depth of 5
A multi-stage recess structure (FIG. 1 (8)) of 0.000 mm is obtained.

次にゲート電極形成のためのレジストパターン8を第1
図(ロ)のように形威し、ゲート電極用金属6、例えば
T i / P t / A uを真空蒸着法により全
面積層しく第1図(i)L次にレジストを除去すること
で不要部の金属を除去する(第1図(j))。
Next, a resist pattern 8 for forming a gate electrode is applied to the first resist pattern 8.
The metal 6 for the gate electrode, for example, Ti/Pt/Au, is layered over the entire area by vacuum evaporation as shown in Figure 1(i), and then the resist is removed to eliminate unnecessary resist. (Fig. 1 (j)).

なお、上記実施例ではGaAsMESFETを例にとり
示したが、基板はGaAsである必要はなく、例えばI
nP、InGaAs、Si等でもよい。
In the above embodiments, a GaAs MESFET is used as an example, but the substrate does not have to be GaAs.
It may also be made of nP, InGaAs, Si, or the like.

また、上記実施例では1段目リセスをもソース・ドレイ
ンオーミック電極に側壁アシストを形成し、これをエツ
チングマスクとして形威したが、1段目リセスについて
はソース・ドレイン間に開口部をもつレジストパターン
をエツチングマスクとして用いてもよく、上記と同様の
効果を奏する。
Furthermore, in the above embodiment, a sidewall assist was also formed on the source/drain ohmic electrode in the first stage recess, and this was used as an etching mask. The pattern may also be used as an etching mask, with the same effect as described above.

また、上記実施例ではゲート電極材料としてTi / 
P t / A uを挙げたが、これに限るものではな
く、また、リセスの深さも5000人に限るものでない
ことは言うまでもない。
In addition, in the above embodiment, Ti/
Although Pt/Au is mentioned above, it goes without saying that this is not limited to this, and the depth of the recess is not limited to 5000 people either.

更に、上記実施例ではMESFETについてのみ説明し
たが、HEMTについても適用できることは言うまでも
ない。
Further, in the above embodiments, only MESFETs have been described, but it goes without saying that the invention can also be applied to HEMTs.

第3図は本発明の他の実施例による、多段リセス構造を
持つHEMTの製造方法を示し、図において、11は半
絶縁性GaAs基板、12はGaAs能動層、13はソ
ース・ドレインオーミック電極、15a、15b、15
c、15dはそれぞれ1段目、2段目、3段目、4段目
リセス、16はゲート電極メタル、17A、17Bは側
壁アシストのために全面積層した絶縁膜、17a、17
b、17c、17dはそれぞれ1段目リセスエッチング
用側壁アシスト、同2段目、3段目、4段目リセスエッ
チング用側壁アシストである。18はゲート電極形成の
ためのリフトオフ用レジストである。19はドーピング
GaAfAsエピタキシャル層、20は2次電子ガスで
ある。
FIG. 3 shows a method of manufacturing a HEMT having a multi-stage recess structure according to another embodiment of the present invention, in which 11 is a semi-insulating GaAs substrate, 12 is a GaAs active layer, 13 is a source/drain ohmic electrode, 15a, 15b, 15
c and 15d are the first, second, third and fourth recesses, 16 is the gate electrode metal, 17A and 17B are the insulating films layered over the entire area for sidewall assist, 17a and 17
b, 17c, and 17d are side wall assists for the first stage recess etching, and side wall assists for the second, third, and fourth stage recess etching, respectively. 18 is a lift-off resist for forming a gate electrode. 19 is a doped GaAfAs epitaxial layer, and 20 is a secondary electron gas.

次に製造方法について説明する。Next, the manufacturing method will be explained.

第3図(a)はGaAs能動層12上にソース・ドレイ
ンオーミック電極13を形威した後、全面に例えばSi
N、5iON、SiO膜等の絶縁膜17AをP−CVD
法等を用いて積層したところを示す図である。この状態
で、該絶縁膜17Aを異方性エツチング、例えばRIE
 (リアクティブイオンエツチング)法を用いてエツチ
ング処理を行なうと、第3図(b)のように、オーミッ
ク電極13の側壁に側壁アシスト17aが形威されるこ
とが知られている0次にこの側壁アシストをエツチング
マスクとして、露出したGaAs能動層を適当なエツチ
ング方法、例えばHz S04.H! Oz水溶液との
混合液による湿式エツチングを行ない第3図(C)を得
る。
FIG. 3(a) shows that after forming source/drain ohmic electrodes 13 on the GaAs active layer 12, the entire surface is covered with, for example, Si.
P-CVD insulating film 17A such as N, 5iON, SiO film, etc.
FIG. In this state, the insulating film 17A is subjected to anisotropic etching, for example, RIE.
It is known that when etching is performed using the (reactive ion etching) method, a sidewall assist 17a is formed on the sidewall of the ohmic electrode 13, as shown in FIG. 3(b). Using the sidewall assist as an etching mask, the exposed GaAs active layer is etched using a suitable etching method, such as Hz S04. H! Wet etching is performed using a mixed solution with an Oz aqueous solution to obtain the image shown in FIG. 3(C).

次に第3図(d)に示すように、第3図(a)と同様、
全面に絶縁膜17Bを形威した後、第3図(b)のとき
と同様、RIE法などを用いて側壁アシストを形成する
(第3図(e))、引き続いて側壁アシスト17a、1
7bをエツチングマスクとして使用し、露出しているG
aAs能動層を上述と同様、湿式エツチング法でエツチ
ングすることにより、2段目リセス部15bを得る(第
3図(f))。これらの工程を繰り返すことにより、多
段リセス構造(第3図(8))を得る。このときリセス
エッチングの深さはGaAs能動層12中までとし、例
えば1000人程度形成る。
Next, as shown in FIG. 3(d), similar to FIG. 3(a),
After forming the insulating film 17B on the entire surface, sidewall assists are formed using the RIE method or the like as in the case of FIG. 3(b) (FIG. 3(e)), and then sidewall assists 17a, 1
Use 7b as an etching mask to remove the exposed G.
By etching the aAs active layer using the wet etching method as described above, the second stage recess portion 15b is obtained (FIG. 3(f)). By repeating these steps, a multi-stage recess structure (FIG. 3 (8)) is obtained. At this time, the depth of the recess etching is set to the inside of the GaAs active layer 12, and for example, about 1000 recesses are formed.

次に、ゲート電極形成のためのレジストパターン18を
第3図(ロ)のように形威し、ゲート電極用金属16、
例えばT i / P t / A uを真空蒸着法に
より全面積層しく第3図(i))、次に、レジストを除
去し、不要部の金属を除去することで、目的とする多段
リセス構造のHEMTを得ることができる(第3図(j
))。
Next, a resist pattern 18 for forming a gate electrode is shaped as shown in FIG.
For example, by layering T i / P t / Au over the entire area by vacuum evaporation (Fig. 3 (i)), then removing the resist and removing unnecessary metal, the desired multi-stage recessed structure can be created. HEMT can be obtained (Fig. 3 (j
)).

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る多段リセスゲートFET
の製造方法によれば、多段リセス構造形戒のためエツチ
ングマスクとしてリセス側壁に形成した側壁アシストを
用いるようにしたので、多段リセス構造を自己整合的に
歩留り良く得られる効果がある。
As described above, the multi-stage recess gate FET according to the present invention
According to the manufacturing method, since the sidewall assist formed on the recess sidewall is used as an etching mask for forming the multi-stage recess structure, the multi-stage recess structure can be obtained in a self-aligned manner with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(j)はこの発明の一実施例による多段
リセスゲー)FETの製造方法の工程フロー図、第2図
(a)〜(8)は従来の2段リセス構造をもつFETの
工程フロー図、第3図(a)〜(j)は本発明の他の実
施例による多段リセス構造のHEMTの製造方法の工程
フロー図である。 図において、1.11は半絶縁性GaAs基板、2.1
2はGaAs能動層、3.13はソース・ドレインオー
ミック電極、4a、4bはレジスト、5a、5bはリセ
ス部、6,16はゲート電極メタル、7A、7B、17
A、17Bは側壁アシスト形成のために全面積層した絶
縁膜、7a、7b。 7c、7d、17a、17b、17c、17dは形成さ
れた側壁アシスト、8.18はレジストである。 なお図中同一符号は同−又は相当部分を示す。
FIGS. 1(a) to (j) are process flow diagrams of a method for manufacturing a multi-stage recessed gate FET according to an embodiment of the present invention, and FIGS. 2(a) to (8) are FETs having a conventional two-stage recessed structure. FIGS. 3(a) to 3(j) are process flow diagrams of a method for manufacturing a HEMT with a multi-stage recess structure according to another embodiment of the present invention. In the figure, 1.11 is a semi-insulating GaAs substrate, 2.1
2 is a GaAs active layer, 3.13 is a source/drain ohmic electrode, 4a and 4b are resists, 5a and 5b are recessed portions, 6 and 16 are gate electrode metals, 7A, 7B, 17
A and 17B are insulating films 7a and 7b layered over the entire area to form sidewall assist. 7c, 7d, 17a, 17b, 17c, and 17d are formed side wall assists, and 8.18 is a resist. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の段数をもつリセス構造を採用したMESF
ETの製造方法において、 ゲートを形成すべき領域に設けたエッチング溝の側壁に
アシストを形成し、この側壁アシストをエッチングマス
クとしたリセスエッチングを繰り返すことにより、自己
整合的に多段リセスを形成することを特徴とする多段リ
セスゲートFETの製造方法。
(1) MESF employing a recessed structure with multiple stages
In the ET manufacturing method, an assist is formed on the side wall of an etching groove provided in a region where a gate is to be formed, and multi-stage recesses are formed in a self-aligned manner by repeating recess etching using the side wall assist as an etching mask. A method for manufacturing a multi-stage recessed gate FET, characterized by:
JP32363689A 1989-12-13 1989-12-13 Manufacture of multistage recessed-gate fet Pending JPH03184334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32363689A JPH03184334A (en) 1989-12-13 1989-12-13 Manufacture of multistage recessed-gate fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32363689A JPH03184334A (en) 1989-12-13 1989-12-13 Manufacture of multistage recessed-gate fet

Publications (1)

Publication Number Publication Date
JPH03184334A true JPH03184334A (en) 1991-08-12

Family

ID=18156937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32363689A Pending JPH03184334A (en) 1989-12-13 1989-12-13 Manufacture of multistage recessed-gate fet

Country Status (1)

Country Link
JP (1) JPH03184334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240869A (en) * 1990-10-30 1993-08-31 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a field effect transistor
KR100424184B1 (en) * 2002-01-18 2004-03-25 주식회사 하이닉스반도체 A method for forming gate of semiconductor device
JP2005175007A (en) * 2003-12-08 2005-06-30 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US9209276B2 (en) 2008-03-03 2015-12-08 Fuji Electric Co., Ltd. Trench gate type semiconductor device and method of producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154734A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Etching and device for the same
JPH01138719A (en) * 1987-11-25 1989-05-31 Nec Corp Manufacture of semiconductor device
JPH01260861A (en) * 1988-04-12 1989-10-18 Mitsubishi Electric Corp Field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154734A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Etching and device for the same
JPH01138719A (en) * 1987-11-25 1989-05-31 Nec Corp Manufacture of semiconductor device
JPH01260861A (en) * 1988-04-12 1989-10-18 Mitsubishi Electric Corp Field-effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240869A (en) * 1990-10-30 1993-08-31 Mitsubishi Denki Kabushiki Kaisha Method for fabricating a field effect transistor
KR100424184B1 (en) * 2002-01-18 2004-03-25 주식회사 하이닉스반도체 A method for forming gate of semiconductor device
JP2005175007A (en) * 2003-12-08 2005-06-30 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US9209276B2 (en) 2008-03-03 2015-12-08 Fuji Electric Co., Ltd. Trench gate type semiconductor device and method of producing the same
US9559188B2 (en) 2008-03-03 2017-01-31 Fuji Electric Co., Ltd. Trench gate type semiconductor device and method of producing the same

Similar Documents

Publication Publication Date Title
JP4874461B2 (en) Pseudomorphic high electron mobility transistor
JPH03184334A (en) Manufacture of multistage recessed-gate fet
US5231040A (en) Method of making a field effect transistor
EP0892441B1 (en) Method for manufacturing a field effect transistor with recessed gate
KR0179116B1 (en) Method for manufacturing self-aligned t-type gate
JP3109590B2 (en) Method for manufacturing semiconductor device
JP2002270821A (en) Method of manufacturing field effect semiconductor device
JP2655488B2 (en) Method for manufacturing semiconductor device
EP0394590A2 (en) Field effect transistors and method of making a field effect transistor
JPS6340323A (en) Formation of fine pattern
JP3018662B2 (en) Method for manufacturing field effect transistor
JPS62115782A (en) Manufacture of semiconductor device
JPH04137737A (en) Manufacture of semiconductor device
JP3120765B2 (en) Method for manufacturing semiconductor device
JPH04196541A (en) Manufacture of semiconductor device
JPH10189618A (en) Field-effect transistor and manufacture thereof
JPH0595004A (en) Manufacture of field-effect transistor
JPH0410437A (en) Manufacture of semiconductor device
JPS61263168A (en) Field-effect transistor
JPH0831844A (en) Fabrication of semiconductor device
JPH05283438A (en) Manufacture of two-step recess type fet
JPH0982725A (en) Semiconductor device and its manufacture
JPS6279677A (en) Manufacture of semiconductor device
JPH0684951A (en) Manufacture of semiconductor device
JPH0822997A (en) Semiconductor device and its manufacture