JPH03184216A - Formation of transparent conductive film - Google Patents

Formation of transparent conductive film

Info

Publication number
JPH03184216A
JPH03184216A JP32283489A JP32283489A JPH03184216A JP H03184216 A JPH03184216 A JP H03184216A JP 32283489 A JP32283489 A JP 32283489A JP 32283489 A JP32283489 A JP 32283489A JP H03184216 A JPH03184216 A JP H03184216A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
vacuum
microwave
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32283489A
Other languages
Japanese (ja)
Inventor
Yoji Morimoto
森本 洋示
Toshiaki Igawa
井川 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32283489A priority Critical patent/JPH03184216A/en
Publication of JPH03184216A publication Critical patent/JPH03184216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To shorten a necessary time for heat-treatment by putting a transparent conductive film in a treatment tank having a microwave transmissible window, making the inside of the treatment tank vacuum, and radiating microwave through the window. CONSTITUTION:Heat-treatment is carried out by radiating microwave through a microwave transmissible window 12 after a transparent conductive film 10 is put in a treatment tank 11 having the window 12 and the inside of the tank 11 is made vacuum. In order to lower resistance value, a transparent conductive film 2 to be heated is directly heated by microwave and since the microwave is transmitted through the transparent glass substrate 1 and the outer container 11A of the vacuum treatment tank 11, these parts unnecessary to be heated are not directly heated. Consequently, necessary time for increasing the temperature at start of heating and decreasing temperature at finish of heating can be shortened.

Description

【発明の詳細な説明】 [概 要] 各種表示パネルに用いられる透明導電膜の形成方法、特
に真空中で透明導電膜を熱処理することにより低抵抗の
透明導電膜を形成する方法の改良に関し、 真空中加熱処理の所要時間を短縮することができる透明
導電膜の形成方法の提供を目的とし、真空中での透明導
電膜の熱処理は、マイクロ波を透過する窓を備えた処理
槽中に前記透明導電膜を載置して、前記処理槽内を真空
にした後、前記窓を通してマイクロ波を照射することに
よって行うようにする。
[Detailed Description of the Invention] [Summary] This invention relates to an improvement in a method for forming a transparent conductive film used in various display panels, particularly a method for forming a low-resistance transparent conductive film by heat-treating the transparent conductive film in vacuum. The purpose of the present invention is to provide a method for forming a transparent conductive film that can shorten the time required for heat treatment in vacuum. After a transparent conductive film is placed and the inside of the processing tank is evacuated, microwaves are irradiated through the window.

〔産業上の利用分野] 本発明は各種表示パネルに用いられる透明導電膜の形成
方法に関し、特に真空中で透明導電膜を加熱することに
より低抵抗の透明導電膜を形成する方法の改良に関する
[Industrial Application Field] The present invention relates to a method for forming a transparent conductive film used in various display panels, and particularly relates to an improvement in a method for forming a low-resistance transparent conductive film by heating the transparent conductive film in vacuum.

酸化インジウム・スズ(以下ITOとする)等の金属酸
化物よりなる透明導電膜は、タッチパネルや平板形デイ
スプレィデバイスの透明電極形成用として不可欠なもの
であり、上記デイスプレィデバイスの大型化、高解像度
化、あるいは表示駆動特性の安定化等のためには低抵抗
なものが要求されている。このため低抵抗の透明導電膜
を容易に形成し得る方法の実現が望まれている。
Transparent conductive films made of metal oxides such as indium tin oxide (hereinafter referred to as ITO) are essential for forming transparent electrodes in touch panels and flat display devices. A low-resistance device is required to improve resolution or stabilize display drive characteristics. Therefore, it is desired to realize a method that can easily form a low-resistance transparent conductive film.

〔従来の技術〕[Conventional technology]

第2図は透明導電膜を用いるタッチパネルの製造工程の
概略説明図であり、第3図は形成されるタッチパネルの
透明電極を示す概略断面図である。
FIG. 2 is a schematic explanatory view of the manufacturing process of a touch panel using a transparent conductive film, and FIG. 3 is a schematic cross-sectional view showing transparent electrodes of the touch panel to be formed.

以下、タッチパネルの製造工程を第2図に基づき説明す
る。
Hereinafter, the manufacturing process of the touch panel will be explained based on FIG. 2.

■ 透明な絶縁性基板、例えばガラス基板1上にITO
透明導電膜2を蒸着法かあるいはスパッタ法により被着
、形成する。
■ ITO is placed on a transparent insulating substrate, such as glass substrate 1.
A transparent conductive film 2 is deposited and formed by a vapor deposition method or a sputtering method.

■ 上記ITO透明導電膜2の表面に後述する銀電極4
が形成される部分を残してSiO2を蒸着してSiO□
保#I膜3を形成する。
■ A silver electrode 4, which will be described later, is on the surface of the ITO transparent conductive film 2.
SiO2 is deposited leaving the area where SiO□ is formed.
A #I film 3 is formed.

■ 上記の保護膜3を形成しない部分に粘着材を混合し
た銀を塗布して、銀電極4を形成する。この銀電極は外
部機器に接続する導線を接続するためのものである。
(2) Silver mixed with an adhesive material is applied to the portion where the protective film 3 is not formed to form the silver electrode 4. This silver electrode is for connecting a conductor to an external device.

■ 前記SiO□保護膜3上にガラス保護膜5を形成す
るために水ガラスを塗布する。
(2) Apply water glass on the SiO□ protective film 3 to form a glass protective film 5.

■ 上記の水ガラスを塗布した透明ガラス基板1を大気
中で460〜470°C程度に加熱する。この大気中の
加熱は水ガラスを焼成してガラス保護膜5を形成すると
ともに、銀電極3中の粘着材を蒸発させるためのもので
ある。
(2) The transparent glass substrate 1 coated with the water glass described above is heated to about 460 to 470°C in the atmosphere. This heating in the atmosphere is for baking the water glass to form the glass protective film 5 and for evaporating the adhesive in the silver electrode 3.

■ ところで上記■の大気中における高温焼成を施すこ
とにより製造されたタッチパネルlO中の透明導電膜2
の抵抗値は焼成前の10倍程度も大きくなってしまい、
このままではこれを実際にタッチパネルとして使用する
には不適当である。そこでこの透明ガラス基板lOを真
空中で450°C程度に加熱する。この真空中の熱処理
によって■To透明導電膜2の過剰である酸素が追い出
されて抵抗値はほぼ上記■の大気中高温焼成を行う以前
の水準に低下する。
■By the way, the transparent conductive film 2 in the touch panel IO manufactured by performing high temperature baking in the atmosphere as described in (■) above.
The resistance value was about 10 times higher than before firing,
As it stands, it is unsuitable for actual use as a touch panel. Therefore, this transparent glass substrate IO is heated to about 450° C. in a vacuum. By this heat treatment in vacuum, (1) excess oxygen in the To transparent conductive film 2 is expelled, and the resistance value is reduced to approximately the level before performing the high temperature baking in the atmosphere in (2) above.

第4図は上記■の真空熱処理に用いる装置の概略構成断
面図である。図において21はガラス製の真空処理槽で
あり、排気孔22aを介して真空ポンプ22が連結され
ている。また真空処理槽21内の側面には加熱熱源であ
るヒータ23が設けられている。
FIG. 4 is a schematic cross-sectional view of the apparatus used for the vacuum heat treatment described in (2) above. In the figure, 21 is a glass vacuum processing tank, to which a vacuum pump 22 is connected via an exhaust hole 22a. Furthermore, a heater 23 serving as a heating heat source is provided on the side surface of the vacuum processing tank 21 .

上記■までの工程を終了して製造されたタッチパネル1
0は、真空焼成槽22内に間隔をおいて積み重ねられ、
図示しない保持機構により保持される。
Touch panel 1 manufactured by completing the steps up to ■ above
0 are stacked at intervals in the vacuum firing tank 22,
It is held by a holding mechanism (not shown).

そして真空処理槽21内をI X 10−”Torr程
度の真空度にした後、ヒータ13によりタッチパネル1
0を450°C程度に加熱する。
After the inside of the vacuum processing tank 21 is brought to a degree of vacuum of about I x 10-'' Torr, the touch panel 1 is heated by the heater 13.
0 to about 450°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記のように従来の真空熱処理工程において
は加熱熱源としてヒータを使用している。
By the way, as mentioned above, in the conventional vacuum heat treatment process, a heater is used as a heating heat source.

このため直接加熱する必要のない透明ガラス基板1や、
金属製の真空処理槽21をも加熱することになり、熱処
理開始時の昇温および熱処理終了後の降温に長時間を要
するため、この真空中熱処理工程は24時間程度を要す
るものであった。 また真空中で長時間加熱されるため
、形成された銀電極4と透明導電膜2との接着強度が劣
化する傾向があり、このため製造された製品は使用中に
電極の剥離や、電極部の抵抗の急変等の異常が発生し易
いという問題点もある。
Therefore, the transparent glass substrate 1 that does not require direct heating,
This in-vacuum heat treatment process required about 24 hours because the metal vacuum treatment tank 21 was also heated, and it took a long time to raise the temperature at the start of the heat treatment and to lower the temperature after the end of the heat treatment. In addition, since it is heated for a long time in a vacuum, the adhesive strength between the formed silver electrode 4 and the transparent conductive film 2 tends to deteriorate, and for this reason, manufactured products may suffer from peeling of the electrode or electrode part during use. Another problem is that abnormalities such as sudden changes in resistance are likely to occur.

本発明は真空中加熱処理の所要時間を短縮することがで
きる透明導電膜の形成方法の提供を目的とする。
An object of the present invention is to provide a method for forming a transparent conductive film that can shorten the time required for heat treatment in vacuum.

〔課題を解決する手段〕[Means to solve problems]

本発明は上記の課題を解決するために、透明な絶縁性基
板上に金属酸化物からなる透明導電膜を被着した後、該
透明導電膜を真空中で加熱処理することにより低抵抗の
透明導電膜を形成する方法であって、この加熱処理を、
マイクロ波を透過する窓を備えた処理槽中に前記透明導
電膜を載置して前記処理槽内を真空にした後、前記窓を
通してマイクロ波を照射することによって行うものであ
る。
In order to solve the above-mentioned problems, the present invention deposits a transparent conductive film made of metal oxide on a transparent insulating substrate, and then heat-treats the transparent conductive film in vacuum to create a low-resistance transparent film. A method of forming a conductive film, the heat treatment comprising:
The transparent conductive film is placed in a processing tank equipped with a window that transmits microwaves, the inside of the processing tank is evacuated, and then microwaves are irradiated through the window.

〔作 用〕[For production]

本発明では、抵抗値を低減するために加熱すべき透明導
電膜は直接マイクロ波によって加熱する。
In the present invention, the transparent conductive film to be heated in order to reduce the resistance value is directly heated by microwaves.

マイクロ波は透明ガラス基板lや真空処理槽11の外囲
器11Aは透過するため、これらの加熱不要部分を直接
温めることはない。このため熱処理開始時の昇温および
熱処理終了時の降温に要する時間を大幅に短縮すること
ができる。
Since the microwave passes through the transparent glass substrate l and the envelope 11A of the vacuum processing tank 11, it does not directly heat these parts that do not need to be heated. Therefore, the time required to raise the temperature at the start of heat treatment and to lower the temperature at the end of heat treatment can be significantly shortened.

〔実施例〕〔Example〕

以下第1図を用いて本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明の透明導電膜の製造方法に用いられる真
空熱処理装置の一実施例を示す概略構成図である。
FIG. 1 is a schematic diagram showing an embodiment of a vacuum heat treatment apparatus used in the method of manufacturing a transparent conductive film of the present invention.

第1図において11は真空処理槽であり、金属製の外囲
器11Aにより形成されている。また真空処理槽11内
には図示しない保持機構があり、タッチパネル10は間
隔をおいて積み上げられてこの保持機構により保持され
ている。
In FIG. 1, 11 is a vacuum processing tank, which is formed by a metal envelope 11A. Further, there is a holding mechanism (not shown) inside the vacuum processing tank 11, and the touch panels 10 are stacked at intervals and held by this holding mechanism.

真空処理槽11にはマイクロ波を導入するために設けら
れた窓12を有し、この窓に取りつけられた導波管13
を介してマイクロ波の発振器となる数キロワット出力の
マグネトロン14が接続されている。
The vacuum processing tank 11 has a window 12 provided for introducing microwaves, and a waveguide 13 attached to this window.
A magnetron 14 with an output of several kilowatts, which serves as a microwave oscillator, is connected via the .

また15はマグネトロン14に電力を供給するマグネト
ロン電源であり、16は真空処理槽ll中を排気して真
空とする真空ポンプである。
Further, 15 is a magnetron power source that supplies power to the magnetron 14, and 16 is a vacuum pump that evacuates the inside of the vacuum processing tank 11 to create a vacuum.

以下、本実施例による透明導電膜の真空中加熱処理の説
明をする。
The vacuum heat treatment of the transparent conductive film according to this example will be explained below.

上記〔従来技術〕で説明したように大気中における焼成
処理を終了して銀電極4およびガラス保護膜5が形成さ
れたタッチパネル10を真空処理槽11中に載置する。
The touch panel 10 on which the silver electrode 4 and the glass protective film 5 have been formed after completing the firing process in the atmosphere as described in the above [Prior Art] is placed in the vacuum processing tank 11.

次に真空ポンプ16により真空処理槽IIの内部の空気
を排出してI X 10−”Torr程度の真空とする
Next, the air inside the vacuum processing tank II is exhausted by the vacuum pump 16 to create a vacuum of about I x 10-'' Torr.

真空度が前記の程度になった時点でマグネトロン14を
動作させて、導波管13を通してマイクロ波を真空処理
槽11内に導入する。導入されたマイクロ波は透明溝を
膜2を直接加熱する。
When the degree of vacuum reaches the above level, the magnetron 14 is operated to introduce microwaves into the vacuum processing tank 11 through the waveguide 13. The introduced microwaves directly heat the membrane 2 through the transparent groove.

熱処理開始時の昇温にはマグネトロンの出力および被処
理物である透明ガラス基板の量にもよるが、十数骨で所
定の温度(450°C程度)に上昇する。
The temperature rise at the start of the heat treatment depends on the output of the magnetron and the amount of transparent glass substrate to be processed, but the temperature rises to a predetermined temperature (approximately 450° C.) in about 10 or more bones.

透明導電膜2の温度が一定温度に達した段階でマグネト
ロン14の出力を調整して450°C程度を4ないし5
時間程度維持して、透明導電膜2の抵抗値を熱処理前の
10分の工程度に低減させる。
When the temperature of the transparent conductive film 2 reaches a certain temperature, the output of the magnetron 14 is adjusted to about 450°C for 4 to 5 minutes.
The resistance value of the transparent conductive film 2 is reduced to a process time of 10 minutes before the heat treatment.

上記の熱処理が終了すると、タッチパネルIOを取り出
すために真空処理槽11内が降温するまでしばらく放置
する。ここで透明導電膜2と銀電極4以外には高温とな
っている部分がないためタッチパネル11を取り出し得
る温度にまで降温するまで約1時間程度しか要さない。
After the above heat treatment is completed, the touch panel IO is left for a while until the temperature inside the vacuum treatment tank 11 falls in order to take it out. Here, since there are no high temperature parts other than the transparent conductive film 2 and the silver electrode 4, it takes only about one hour for the temperature to drop to a temperature at which the touch panel 11 can be taken out.

このため上記の熱処理工程に要する時間は約5ないし6
時間程度となり、従来のヒータを用いた方法と比べて約
4分のl程度にまで短縮することができる。
Therefore, the time required for the above heat treatment step is approximately 5 to 6 hours.
This can be reduced to about 1/4 of the time compared to the conventional method using a heater.

また加熱時間が短縮されるために同様に温められる銀電
極4の透明導電膜2に対する接着強度の劣化を従来より
抑えることができるため、タッチパネルの使用時に電極
が剥離したり電極部の抵抗値が急変する等の障害発生率
も低くなる。
In addition, since the heating time is shortened, deterioration of the adhesive strength of the silver electrode 4 to the transparent conductive film 2, which is heated in the same way, can be suppressed compared to conventional methods, so the electrode may peel off when the touch panel is used, and the resistance value of the electrode part may decrease. The incidence of failures such as sudden changes will also be lower.

さらにマイクロ波を加熱熱源とすることにより、加熱源
を真空処理槽11の内部に配置する必要がなく、導波管
により比較的遠方からでもマイクロ波を導くことができ
るため装置の設計も容易となり、このため真空熱処理装
置の小型化、簡単化が達成される。
Furthermore, by using microwaves as the heating heat source, there is no need to place the heating source inside the vacuum processing tank 11, and the microwave can be guided even from a relatively long distance using a waveguide, making it easier to design the device. Therefore, the vacuum heat treatment apparatus can be made smaller and simpler.

マイクロ波はガラスを透過するため、真空処理槽ll内
に載置されたタッチパネルIO中の透明ガラス基板lを
直接温めないので、熱効率が良く、従って消費電力を!
ff滅することができる。
Since microwaves pass through glass, they do not directly heat the transparent glass substrate l in the touch panel IO placed in the vacuum processing tank l, resulting in better thermal efficiency and lower power consumption!
ff can be destroyed.

なお本発明は上記一実施例において用いたITOの他に
も、インジウムやスズ、アンチモン等よりなる金属酸化
物より低抵抗の透明導電膜を形成する方法として適用し
てもよい。
Note that the present invention may be applied to a method of forming a transparent conductive film having a resistance lower than that of a metal oxide made of indium, tin, antimony, etc., in addition to the ITO used in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による透明導電膜の形成方
法によれば、抵抗値を低減する真空熱処理工程を大幅に
短縮することができる。また品質的にも電極の剥離や抵
抗値の急変等の障害の少ない製品を製造でき、さらに真
空熱処理装置が小型化、簡単化されるとともに消費電力
も節減できるため、実用上の効果が大きい。
As explained above, according to the method for forming a transparent conductive film according to the present invention, the vacuum heat treatment step for reducing the resistance value can be significantly shortened. Furthermore, in terms of quality, it is possible to manufacture products with fewer problems such as peeling of electrodes and sudden changes in resistance value, and furthermore, the vacuum heat treatment equipment can be made smaller and simpler, and power consumption can be reduced, so it has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の透明導電膜の形成方法に用いられる真
空熱処理装置の一実施例を示す概略構成断面図、 第2図は透明導電膜を用いるタッチパネルの製造工程の
概略を示す図、 第3図はタッチパネルの透明電極部分を示す概略断面図
、 第4図は従来の透明導電膜の形成方法に用いられる真空
熱処理装置の一実施例を示す概略構成断面図である。 図において、 1 ・・・ 透明ガラス基板、 ITO透明導電膜、 SiO□保護膜、 銀電極、 ガラス保護膜、 タッチパネル、 真空処理槽、 マイクロ波導入窓、 導波管、 マグネトロン、 マグネトロン電源、 真空ポンプ。 ま9月11電哄を弔い)ヌ、7チへ゛年1しの袈漬′r
栓/l塵幡αa1図 第2図 従者/lt参熟に理装置n−例を零7綴醇講暖訝め必第
4図
FIG. 1 is a schematic cross-sectional view showing an embodiment of a vacuum heat treatment apparatus used in the method for forming a transparent conductive film of the present invention; FIG. 2 is a diagram showing an outline of the manufacturing process of a touch panel using a transparent conductive film; 3 is a schematic cross-sectional view showing a transparent electrode portion of a touch panel, and FIG. 4 is a schematic cross-sectional view showing an embodiment of a vacuum heat treatment apparatus used in a conventional method for forming a transparent conductive film. In the figure, 1... Transparent glass substrate, ITO transparent conductive film, SiO□ protective film, silver electrode, glass protective film, touch panel, vacuum processing tank, microwave introduction window, waveguide, magnetron, magnetron power supply, vacuum pump . September 11th Denka) nu, 7chi to ゛Year 1st season'r
Stopper / l dust αa1 figure 2 figure 2 servant / lt to master the physical equipment n-example 07 spelling lecture warm question figure 4

Claims (1)

【特許請求の範囲】 透明な絶縁性基板(1)上に金属酸化物からなる透明導
電膜(2)を被着した後、該透明導電膜(2)を真空中
で熱処理することにより低抵抗の透明導電膜を形成する
方法において、 前記熱処理は、マイクロ波を透過する窓(12)を備え
た処理槽(11)中に前記透明導電膜(2)を載置して
、前記処理槽(11)内を真空にした後に、前記窓(1
2)を通してマイクロ波を照射することによって行うこ
とを特徴とする透明導電膜の形成方法。
[Claims] After depositing a transparent conductive film (2) made of a metal oxide on a transparent insulating substrate (1), the transparent conductive film (2) is heat-treated in a vacuum to reduce resistance. In the method for forming a transparent conductive film, the heat treatment is performed by placing the transparent conductive film (2) in a treatment tank (11) equipped with a window (12) that transmits microwaves. 11) After evacuating the interior, open the window (1
2) A method for forming a transparent conductive film, characterized in that it is carried out by irradiating microwaves through the film.
JP32283489A 1989-12-12 1989-12-12 Formation of transparent conductive film Pending JPH03184216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32283489A JPH03184216A (en) 1989-12-12 1989-12-12 Formation of transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32283489A JPH03184216A (en) 1989-12-12 1989-12-12 Formation of transparent conductive film

Publications (1)

Publication Number Publication Date
JPH03184216A true JPH03184216A (en) 1991-08-12

Family

ID=18148126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32283489A Pending JPH03184216A (en) 1989-12-12 1989-12-12 Formation of transparent conductive film

Country Status (1)

Country Link
JP (1) JPH03184216A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514666A (en) * 2007-01-05 2010-05-06 サン−ゴバン グラス フランス Method for depositing a thin layer and the product thus obtained
JP2012079747A (en) * 2010-09-30 2012-04-19 Sharp Corp Method for manufacturing compound semiconductor light emitting element
JP2016510297A (en) * 2013-01-18 2016-04-07 サン−ゴバン グラス フランス Method for obtaining a substrate with a coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514666A (en) * 2007-01-05 2010-05-06 サン−ゴバン グラス フランス Method for depositing a thin layer and the product thus obtained
JP2013076170A (en) * 2007-01-05 2013-04-25 Saint-Gobain Glass France Method for depositing thin layer and product thus obtained
US9073781B2 (en) 2007-01-05 2015-07-07 Saint-Gobain Glass France Method for depositing a thin layer and product thus obtained
JP2012079747A (en) * 2010-09-30 2012-04-19 Sharp Corp Method for manufacturing compound semiconductor light emitting element
JP2016510297A (en) * 2013-01-18 2016-04-07 サン−ゴバン グラス フランス Method for obtaining a substrate with a coating

Similar Documents

Publication Publication Date Title
WO2010030045A1 (en) Method for modifying a transparent electrode film
JP2003273135A (en) Method of manufacturing compound-semiconductor thin- film
EP0403936B1 (en) Method for producing a conductive oxide pattern
JPS63312964A (en) Manufacture of indium-tin-oxide layer
JPH03184216A (en) Formation of transparent conductive film
JP2001135149A (en) Zinc oxide-based transparent electrode
JP4056702B2 (en) Method for producing compound semiconductor thin film
JP3229610B2 (en) Manufacturing method of ITO electrode
JPH0723532B2 (en) Method for forming transparent conductive film
JPS59114853A (en) Laminated integrated circuit element
JPS63243261A (en) Production of electrically conductive transparent film having low resistance
JPS61183813A (en) Formation of conductive film
JP4094127B2 (en) Amorphous silicon production equipment
JP3944963B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting thin film
JPS6037724A (en) Manufacture of thin film semiconductor device
JP2005181670A (en) Manufacturing method of ultra-thin ito film
JPS62286282A (en) Manufacture of thin film transistor
JPS63151926A (en) Production of horizontal orientation film for liquid crystal cell
JPH06243740A (en) Manufacture of transparent conductive film
JPH0414705A (en) Transparent conductive film and manufacture thereof
JP2605739B2 (en) Method of forming ferroelectric thin film
JPS61256943A (en) Formation of colored transparent electrically conductive film
JPH03263712A (en) Formation of transparent conducting film
JP2002025361A (en) Forming method of transparent conductive film
KR900004863B1 (en) Production method of membrane of conduction of electricity