JPH03263712A - Formation of transparent conducting film - Google Patents

Formation of transparent conducting film

Info

Publication number
JPH03263712A
JPH03263712A JP6364990A JP6364990A JPH03263712A JP H03263712 A JPH03263712 A JP H03263712A JP 6364990 A JP6364990 A JP 6364990A JP 6364990 A JP6364990 A JP 6364990A JP H03263712 A JPH03263712 A JP H03263712A
Authority
JP
Japan
Prior art keywords
vacuum
processing tank
conductive film
reducing gas
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6364990A
Other languages
Japanese (ja)
Inventor
Yoji Morimoto
森本 洋示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6364990A priority Critical patent/JPH03263712A/en
Publication of JPH03263712A publication Critical patent/JPH03263712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To shorten the time required for the vacuum heat treatment process and obtain a panel with excellent stability by arranging the panel in a vacuum processing tank, exhausting the tank to vacuum, introducing a trace quantity of reducing gas into the vacuum processing tank, and performing heat treatment. CONSTITUTION:In the formation of a transparent conducting film to remove the excess oxygen contained in the transparent conducting film 2 of a panel 3 stuck with the transparent conducting film 2 made of a metal oxide on an insulating substrate 1 to obtain the transparent conducting film 2 with a low resistance value, the panel 3 is arranged in a vacuum processing tank 4, the tank 4 is exhausted to vacuum, a trace quantity of reducing gas is introduced into the vacuum processing tank 4, and heat treatment is performed. The quantity of the reducing gas to be introduced into the vacuum processing tank 4 is preferably set to several Torr through tens Torr, and nitrogen gas is preferably mixed with the reducing gas. A trace quantity of the reducing gas introduced into the vacuum processing tank 4 reduces the transparent conducting film 2 and quickly extracts excess oxygen. The interior of the vacuum processing tank 4 can quickly be heated by the heat conduction effect of the reducing gas.

Description

【発明の詳細な説明】 〔概 要〕 本発明は金属酸化物からなる透明導電膜の形成方法に関
し、 低抵抗値化のための真空熱処理工程に要する時間の短縮
と、安定性に優れる透明導電膜の提供を目的とし、 絶縁基板上に金属酸化物からなる透明導電膜を被着した
パネルの該透明導電膜に含まれる過剰の酸素を除去して
、低抵抗値の透明導電膜を得る透明導電膜の形成方法に
おいて、真空処理槽内にパネルを配置して真空にした後
、該真空処理槽内に微量の還元性ガスを導入して、加熱
処理を行う構成とし、また、上記真空処理槽内に導入す
る還元性ガスの量が数Torr〜数十Torrとする構
成とし、更にまた、上記還元性ガスに窒素ガスを混入し
た構成とする。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for forming a transparent conductive film made of a metal oxide, which shortens the time required for a vacuum heat treatment process to lower the resistance value, and provides a highly stable transparent conductive film. For the purpose of providing a transparent conductive film, excess oxygen contained in the transparent conductive film of a panel having a transparent conductive film made of a metal oxide coated on an insulating substrate is removed to obtain a transparent conductive film with a low resistance value. In the method for forming a conductive film, a panel is placed in a vacuum treatment tank to create a vacuum, and then a trace amount of reducing gas is introduced into the vacuum treatment tank to perform heat treatment, and the vacuum treatment The amount of reducing gas introduced into the tank is from several Torr to several tens of Torr, and furthermore, nitrogen gas is mixed into the reducing gas.

〔産業上の利用分野〕[Industrial application field]

本発明は金属酸化物からなる透明導電膜の形威方法に関
するものである。
The present invention relates to a method for forming a transparent conductive film made of metal oxide.

〔従来の技術〕[Conventional technology]

蒸着法やスパッタ法等の手段でガラス等の透明絶縁基板
上に、例えばITO(酸化インジウム錫)等の金属酸化
物からなる透明導電膜を形成し。
A transparent conductive film made of a metal oxide such as ITO (indium tin oxide) is formed on a transparent insulating substrate such as glass by a vapor deposition method or a sputtering method.

たパネルは、CRTデイスプレィと靭み合わせにタッチ
パネルやPDP (プラズマデイスプレィ)に応用され
てし)る。
These panels are applied to touch panels and PDPs (plasma displays) along with CRT displays.

第2図は透明導電膜2を用いたタッチパネルの構成を示
すものであり、第3図はその製造王程4:示ずブロック
図である。
FIG. 2 shows the structure of a touch panel using the transparent conductive film 2, and FIG. 3 is a block diagram (not shown) of the manufacturing process.

以下、第3図中の丸数字を付した各工程に従って説明す
る。
Hereinafter, each process marked with a circled number in FIG. 3 will be explained.

■透明絶縁基板11.にrTOよりなる透明導電膜2を
蒸着法もしくはスパッタリング法番こより被着する。
■Transparent insulating substrate 11. Then, a transparent conductive film 2 made of rTO is deposited by vapor deposition or sputtering.

■銀電極14を形成する箇所を除いた上記透明導電膜2
の1層に5iOz保護膵5を蒸着する。
■The transparent conductive film 2 excluding the part where the silver electrode 14 is formed
5iOz protected pancreas 5 is deposited in one layer.

■上記SiO,保護服+5を蒸着L’Tいない透明導電
膜2の露出箇所に、外部機器に導通する電極りなる銀電
極14を図ホしない接着剤を介して印刷や塗布等のf段
で形成する。
■ The above-mentioned SiO, protective clothing + 5 is deposited on the exposed part of the transparent conductive film 2 without L'T, and the silver electrode 14, which will be the electrode to be electrically connected to the external equipment, is attached by printing or coating with an adhesive. Form.

■更に5i02層上にガラス保護層6さなろ水ガラスを
、L記録電極14を形成した箇所を除いて、塗布する。
(2) Furthermore, a glass protective layer 6 of water glass is coated on the 5i02 layer except for the area where the L recording electrode 14 is formed.

■人気中で高温焼成処理を行い、七記水ガラスを硬化さ
七、ガラス保護層6を形成するεともに5.1記銀電極
14を形成するのに使用した上記接着剤を蒸発さゼ・る
5. The adhesive used to form the silver electrode 14 is evaporated to form the glass protective layer 6. Ru.

ところで■記高温焼成処理は、大気中において、通常4
50〜480℃程度の温度下で行われるために1、金属
酸化物からなる透明導電膜2が人気中の酸素によって更
に酸化され、抵抗値か該焼成曲の値の数m〜10倍以上
に十尉するために、このままの状態では実用に適さない
こととなる。
By the way, the high-temperature firing treatment described in
Since the process is carried out at a temperature of about 50 to 480 degrees Celsius, the transparent conductive film 2 made of metal oxide is further oxidized by the popular oxygen, and the resistance value increases from several meters to more than 10 times the value of the firing curve. In order to become a tenth lieutenant, it would be unsuitable for practical use in its current state.

ぞこで、 ■パネル3を真空中で、400℃程度に加熱する真空熱
処理を施し、2に記透明導電膜2に過剰に含まれる酸素
の一部を除去L7、該透明導電膜2の抵抗値を、上記■
に示した焼成処理を行う前の水準に低下させる。
Here, 1) the panel 3 is subjected to a vacuum heat treatment in which the panel 3 is heated to about 400° C. to remove part of the oxygen excessively contained in the transparent conductive film 2 described in 2; and the resistance of the transparent conductive film 2 is The value above
Reduce the temperature to the level before performing the firing treatment shown in .

第4図はこのような真空熱処理に用いる従来の装置ω概
略構成図である。ガラス製Q)真空処理槽21内に透明
導電膜2等が形成されたパネル3を所定の間隔を保つで
設置L2、排気孔22aを介して、真空ポンプ22で該
負空処理槽21内の空気を排出し、! X 10−”T
orv程度の真空度Cごした後、上記真空処理槽21内
に配置し、たヒータ23によりパネル3を400℃程度
に加熱して、そωま4;の状態で約6時間保持し2.7
その後自然冷却さセる。
FIG. 4 is a schematic diagram of a conventional apparatus ω used for such vacuum heat treatment. Glass Q) Panels 3 on which transparent conductive films 2, etc. are formed are installed in the vacuum processing tank 21 at a predetermined interval L2, and the vacuum pump 22 is used to pump the inside of the negative air processing tank 21 through the exhaust hole 22a. Exhaust the air! X 10-”T
After reducing the vacuum degree to C, the panel 3 was placed in the vacuum treatment tank 21, heated to about 400° C. by the heater 23, and kept at about 400° C. for about 6 hours.2. 7
Then let it cool naturally.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記のよ・うな真空熱処理工程では、6透明
感電欣2の抵抗値が、所定の値に達するまでには、6〜
8時間と比較的長時間を嬰する。
By the way, in the vacuum heat treatment process as described above, the resistance value of the 6-transparent electric shock pole 2 reaches a predetermined value by 6~
It takes a relatively long time, 8 hours.

また、真空処理槽21中ω真空度が高いたぬに、該真空
処理槽21内やパネル3の温度の変化を専ら幅側に$1
6 i:ととなるため、加熱ビ、−夕234?よって処
理温度である400”Cに到るまでに要り。
In addition, since the degree of vacuum is high in the vacuum processing tank 21, the temperature change inside the vacuum processing tank 21 and the panel 3 is controlled by $1 on the width side.
6 i: Because it becomes heating Bi, - evening 234? Therefore, it is necessary to reach the processing temperature of 400''C.

る51間、および1.記処理温度から室温に戻るまでG
こ要する肋間が、長くかかることとなる。
51, and 1. G from the above processing temperature until it returns to room temperature.
The intercostal space required will take a long time.

従、て、このような真空熱処理[程の1サイクル番ご要
する時間は合計16〜24時間にもお、Lび、作業効率
を向トする七でネックとなっている。
Therefore, the time required for one cycle of such vacuum heat treatment is a total of 16 to 24 hours, which is a bottleneck in reducing work efficiency.

更にまた、このような長時間にわたって、高真空度、高
温の下にパネル3は曝されることとtする)、・め、↓
−記銀電極14をパネル3に付着させるための11着剤
が、史に蒸発することとなり、該w、、電極14の接着
強度が休Fする傾1ii1にあり、銀電極14が剥離し
7たり、銀電極14の付近の抵抗値が急変する、といっ
た事態を生しる。
Furthermore, the panel 3 will be exposed to high vacuum and high temperatures for such a long time),・Me,↓
- The adhesive 11 for attaching the silver electrode 14 to the panel 3 evaporates over time, and the adhesive strength of the electrode 14 is at a decreasing trend 1ii1, and the silver electrode 14 peels off. Otherwise, the resistance value near the silver electrode 14 may suddenly change.

ぞこご、本発明はに記の様な事情に鑑み、真空熱処理工
程に要する時間の短縮を実現するεともに、安穿性に優
れるパネルを得ることのできる透明導電膜の形成方法を
提供することを目的とする。
In view of the above circumstances, the present invention provides a method for forming a transparent conductive film that can shorten the time required for the vacuum heat treatment process and provide a panel with excellent perforation properties. The purpose is to

(課題を遠戚するための手段) 上記ω11的を遠戚づ“るために、本発明では、以1・
θ)A法を用いる。゛すなわち、絶縁基板14−に金属
酸化物からなる透明導電膜2を被着したパネル3の該透
明導電膜2に含まれる過剰の酸素を除去して、低抵抗値
の透明導電膜を得る透明導電膜の形成方法において、真
空処理槽4内にパネル3を配置して真空にした後、該真
空処理槽4内に微量の還元性ガスを導入して、加熱処理
を行う透明導電膜の形成方法である。
(Means for distantly related to the problem) In order to make the above ω11 objective distantly related, in the present invention, the following 1.
θ) Use method A.゛That is, in a panel 3 in which a transparent conductive film 2 made of a metal oxide is coated on an insulating substrate 14-, excess oxygen contained in the transparent conductive film 2 is removed to obtain a transparent conductive film with a low resistance value. In the method for forming a conductive film, a panel 3 is placed in a vacuum treatment tank 4 to create a vacuum, and then a trace amount of reducing gas is introduced into the vacuum treatment tank 4 to form a transparent conductive film. It's a method.

また、上記真空処理槽4内に導入する還元性ガスの量は
数Torr〜数十Torrであることが望ましく、更に
上記還元性ガスに窒素ガスを混入することも望ましい。
Further, the amount of the reducing gas introduced into the vacuum processing tank 4 is desirably from several Torr to several tens of Torr, and it is also desirable to mix nitrogen gas into the reducing gas.

〔作 用〕[For production]

真空処理槽4内に微量導入された還元性ガスは透明導電
膜2を還元して、過剰の酸素を迅速に抜き取る。また、
この還元性ガスの対流あるいは熱伝導効果によって、該
真空処理槽4内を迅速に加熱することができる。
The small amount of reducing gas introduced into the vacuum processing tank 4 reduces the transparent conductive film 2 and quickly removes excess oxygen. Also,
Due to the convection or heat conduction effect of this reducing gas, the inside of the vacuum processing tank 4 can be rapidly heated.

尚、上記還元性ガスの量は数Torrから数十Torr
の範囲にあることが望ましく、数Torrよりも少ない
量であると、該真空熱処理工程に要する時間を充分に短
縮することができず、数十Torrを越えた量であると
、過度の還元反応を生し、透明導電膜2の透過率が低下
して、好ましくない。
Note that the amount of the reducing gas is from several Torr to several tens of Torr.
If the amount is less than several Torr, the time required for the vacuum heat treatment process cannot be sufficiently shortened, and if the amount exceeds several tens of Torr, excessive reduction reaction may occur. This is undesirable because the transmittance of the transparent conductive film 2 decreases.

更に、上記還元性ガスを窒素ガスとともに、真空処理槽
4内に導入することによって、対流あるいは熱伝導によ
る加熱効果を一層高めることとなる。
Furthermore, by introducing the above-mentioned reducing gas into the vacuum processing tank 4 together with nitrogen gas, the heating effect due to convection or heat conduction can be further enhanced.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail based on examples.

第1図は本発明による実施例の概略構成図である。FIG. 1 is a schematic diagram of an embodiment according to the present invention.

同図において、従来から周知されている方法によって、
ITO(酸化インジウム錫〉からなる透明導電膜2を蒸
着法によって形成し、その後、銀電極14、Sin、保
護膜5、ガラス保護膜6を透明絶縁基板1上に積層・形
成したパネル3を真空処理槽4中に、2段に積層したf
2置棚8上に横方向に並置する。この後、排気孔13を
介して、真空ポンプ11にて排気を行い、該真空処理槽
4内を真空度I X 10−”Torrにまで減圧する
In the figure, by a conventionally well-known method,
A transparent conductive film 2 made of ITO (indium tin oxide) is formed by a vapor deposition method, and then a panel 3 in which a silver electrode 14, Sin, a protective film 5, and a glass protective film 6 are laminated and formed on a transparent insulating substrate 1 is placed in a vacuum. In the treatment tank 4, f laminated in two stages
They are placed side by side on two shelves 8 in the horizontal direction. Thereafter, the vacuum pump 11 performs exhaustion through the exhaust hole 13 to reduce the pressure in the vacuum processing tank 4 to a vacuum degree of I.times.10-'' Torr.

上記減圧が完了すると加熱ヒータ7で真空処理槽4内を
一旦、400℃となるまで加熱し、パネル3や真空処理
槽4内面に含有される水分やガスの除去を行い、更に真
空ポンプ11にて排気を行って、上記真空度I X 1
0−”Torrに回復させる。
When the above pressure reduction is completed, the inside of the vacuum processing tank 4 is heated once to 400°C by the heater 7 to remove moisture and gas contained in the panel 3 and the inside of the vacuum processing tank 4, and then the vacuum pump 11 is heated. and evacuated to the above vacuum degree I
Restore to 0-”Torr.

この後、真空処理槽4内部の気圧が数Torrとなるよ
うに気圧測定袋212で気圧を測定しながら、コック9
を操作して、ボンベ10から水素ガスを導入する。
After that, while measuring the atmospheric pressure with the atmospheric pressure measuring bag 212 so that the atmospheric pressure inside the vacuum processing tank 4 becomes several Torr, the cock 9
to introduce hydrogen gas from the cylinder 10.

上記の状態、すなわち加熱し−タ7を調整して、真空処
理槽4内を400℃に保った状態で、3〜4時間経過後
、加熱ヒータ7をオフにして、自然冷却させることによ
って真空熱処理が完了する。
After 3 to 4 hours in the above state, that is, adjusting the heating heater 7 and keeping the inside of the vacuum processing tank 4 at 400°C, the heater 7 is turned off and the vacuum is allowed to cool naturally. Heat treatment is completed.

尚、上記真空処理槽4中に導入する還元性ガスとしては
、水素ガス単独でなく、水素ガスと窒素ガスを、例えば
、1:9の分圧比で混合したガスを使用しても良く、こ
の場合、水素ガスを単独で使用した場合よりも、更に、
真空処理槽4内を迅速に加熱することができ、処理時間
を短縮することができる。
As the reducing gas introduced into the vacuum processing tank 4, a mixture of hydrogen gas and nitrogen gas at a partial pressure ratio of, for example, 1:9 may be used instead of hydrogen gas alone. If hydrogen gas is used alone,
The inside of the vacuum processing tank 4 can be heated quickly, and the processing time can be shortened.

上記のように本発明による方法で、真空熱処理を行った
場合と従来法による場合との比較を後掲する第1表に示
す。
Table 1 below shows a comparison between the vacuum heat treatment performed by the method of the present invention and the conventional method as described above.

第1表からも明らかなように、本発明によれば、該真空
熱処理工程の1サイクルに要する時間は従来の18時間
から、12〜10時間に短縮することができ、また、パ
ネル3が真空の下に曝される時間を短縮することができ
るので、銀電極14を透明絶縁基板1に固着する接着剤
が過度に散逸することがなく、該銀電極の接着強度(引
き剥がし強度)も従来法に比べて格段に向上し、安定性
に優れる製品を得ることができる。
As is clear from Table 1, according to the present invention, the time required for one cycle of the vacuum heat treatment process can be shortened from the conventional 18 hours to 12 to 10 hours. Since the time for which the silver electrode is exposed to the transparent insulating substrate 1 can be shortened, the adhesive that fixes the silver electrode 14 to the transparent insulating substrate 1 does not dissipate excessively, and the adhesive strength (peel strength) of the silver electrode is lower than that of the conventional one. It is possible to obtain a product that is much improved and has excellent stability compared to the conventional method.

更に、本発明による真空熱処理を施した後の透明導電膜
の膜抵抗値は、水ガラスを固化さセるための焼成工程前
の膜抵抗値の0.7倍にまで低下し、従来法に比べて、
低い膜抵抗値の透明導電膜を得ることが出来る。
Furthermore, the membrane resistance value of the transparent conductive film after the vacuum heat treatment according to the present invention is reduced to 0.7 times the membrane resistance value before the firing process for solidifying water glass, which is lower than that of the conventional method. Compared to,
A transparent conductive film with a low film resistance value can be obtained.

本発明法と従来法の比較 第   1   表 く以ト余7> 〔本発明の効果〕 以」二のように、本発明によれば、真空処理槽内に導入
された微量の還元性ガスによって、金属酸化物からなる
透明導電膜が還ルされる速度が速くなり、該透明導電膜
θ〕抵抗値が所宗の値に低下するまでに要する時間を短
縮することができる。
Comparison of the method of the present invention and the conventional method Table 1 Remarks 7> [Effects of the present invention] As described in 2 below, according to the present invention, a trace amount of reducing gas introduced into the vacuum processing tank The rate at which the transparent conductive film made of metal oxide is reduced becomes faster, and the time required for the resistance value of the transparent conductive film θ to decrease to the desired value can be shortened.

また、該還元性ガス単独、または該還元性ガスど窒素ガ
スとの混合ガスの熱伝導効果によって、真空処理槽内の
温度の変化速度も速くなり、該真空熱処理に要する時間
が短縮することができる。
In addition, due to the heat conduction effect of the reducing gas alone or a mixture of the reducing gas and nitrogen gas, the rate of temperature change in the vacuum processing tank becomes faster, and the time required for the vacuum heat treatment can be shortened. can.

更に、L記の効果によっ°ζ、外部の機器と接続するた
めに設けられた銀電極と絶縁基板とω接着性を確保する
接着剤が、真空中に散逸して、1接着強度の低下を招く
ことがなくなり、透明導電膜を形成したタッチパネルや
Pll) P等のデバイスは、安定しまた晶質を保つこ
とが出来る。
Furthermore, due to the effect described in L, the adhesive that ensures ω adhesion between the silver electrode and the insulating substrate provided for connection with external equipment is dissipated into the vacuum, resulting in a decrease in adhesive strength. Devices such as touch panels and PLLs on which transparent conductive films are formed are stable and can maintain their crystallinity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の概略構成図、第2図はタッ
チパネルのi酪断面図、第3図は透明導′敵1模の形成
王程を示すブロック図、例の概略構成図である。 図中、1−透明絶縁基板、 バ名ル、4−真空処理槽。 透明導電膜、 第4図は従来 7″ オ濤θ馴1釣帥1)/)燦酩、積鮫図 第1図 タッチへ′ネル/)湘V時口幹面図 第2図 税来倒0脱蕗積威図 第4図 tv3月1tlの形、6文、工、1弓E、嚢示ゴフ。ン
7図第 3 図
Fig. 1 is a schematic configuration diagram of one embodiment of the present invention, Fig. 2 is a cross-sectional view of a touch panel, and Fig. 3 is a block diagram showing the process of forming a transparent conductor 1 model, and a schematic configuration diagram of an example. It is. In the figure, 1-transparent insulating substrate, bar, 4-vacuum processing tank. Transparent conductive film, Figure 4 is the conventional 7'' Figure 4: Shape of tv March 1tl, 6 sentences, work, 1 bow E, bag showing Goff. Figure 7 Figure 3

Claims (1)

【特許請求の範囲】 〔1〕絶縁基板(1)上に金属酸化物からなる透明導電
膜(2)を被着したパネル(3)の該透明導電膜(2)
に含まれる過剰の酸素を除去して、低抵抗値の透明導電
膜を得る透明導電膜の形成方法において、 真空処理槽(4)内にパネル(3)を配置して真空にし
た後、該真空処理槽(4)内に微量の還元性ガスを導入
して、加熱処理を行うことを特徴とする透明導電膜の形
成方法。 〔2〕上記真空処理槽(4)内に導入する還元性ガスの
量が数Torr〜数十Torrであることを特徴とする
請求項第1項に記載の透明導電膜の形成方法。 〔3〕上記還元性ガスに窒素ガスを混入したことを特徴
とする請求項第1項に記載の透明導電膜の形成方法。
[Scope of Claims] [1] A transparent conductive film (2) of a panel (3) in which a transparent conductive film (2) made of a metal oxide is deposited on an insulating substrate (1).
In a method for forming a transparent conductive film in which a transparent conductive film with a low resistance value is obtained by removing excess oxygen contained in the A method for forming a transparent conductive film, which comprises introducing a small amount of reducing gas into a vacuum treatment tank (4) and performing heat treatment. [2] The method for forming a transparent conductive film according to claim 1, wherein the amount of reducing gas introduced into the vacuum processing tank (4) is from several Torr to several tens of Torr. [3] The method for forming a transparent conductive film according to claim 1, wherein nitrogen gas is mixed in the reducing gas.
JP6364990A 1990-03-13 1990-03-13 Formation of transparent conducting film Pending JPH03263712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6364990A JPH03263712A (en) 1990-03-13 1990-03-13 Formation of transparent conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6364990A JPH03263712A (en) 1990-03-13 1990-03-13 Formation of transparent conducting film

Publications (1)

Publication Number Publication Date
JPH03263712A true JPH03263712A (en) 1991-11-25

Family

ID=13235410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6364990A Pending JPH03263712A (en) 1990-03-13 1990-03-13 Formation of transparent conducting film

Country Status (1)

Country Link
JP (1) JPH03263712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140684A (en) * 2011-12-28 2013-07-18 Dainippon Printing Co Ltd Annealing method, film production method, annealing device and film production device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140684A (en) * 2011-12-28 2013-07-18 Dainippon Printing Co Ltd Annealing method, film production method, annealing device and film production device

Similar Documents

Publication Publication Date Title
JP6267641B2 (en) Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
CN106835030A (en) Infrared high antireflection film structure of wide-angle multiband and preparation method thereof
JP3749531B2 (en) Method for producing transparent conductive laminate
JPH03263712A (en) Formation of transparent conducting film
JP2000038654A (en) Production of substrate with transparent electrically conductive film, substrate with transparent electrically conductive film and liquid crystal displaying element
JP3489844B2 (en) Transparent conductive film and method for producing the same
JPS58206008A (en) Method of forming transparent conductive laminate
JP2005181670A (en) Manufacturing method of ultra-thin ito film
CN109860106A (en) A kind of preparation method of display base plate
JPH0273963A (en) Formation of thin film on low-temperature substrate
JP2000056321A (en) Production of transparent electroconductive laminate for liquid crystal display
KR101293212B1 (en) Manufacturing method for mosi2 heatingelement and furnace comprising mosi2 heatingelement manufactured by the same
KR20020008352A (en) electroluminescent dispay
JPS63243261A (en) Production of electrically conductive transparent film having low resistance
JPH03184216A (en) Formation of transparent conductive film
JPH111769A (en) Production of sputter film and sputter film
JPS63121653A (en) Formation of transparent conductive film
JPH0384816A (en) Treatment of transparent conductive film
KR100739484B1 (en) The method of deposition for ZnO
JPS60175316A (en) Method of producing conductive transparent thin film
JP3334922B2 (en) Gas barrier polymer film and method for producing the same
CN114188446A (en) Conductive glass and preparation method and application thereof
JPS6226869A (en) Manufacture of photovoltaic device
JPS62216112A (en) Manufacture of transparent conductive film
JPH04324837A (en) Active device and manufacture thereof