JPH03184014A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH03184014A
JPH03184014A JP32461089A JP32461089A JPH03184014A JP H03184014 A JPH03184014 A JP H03184014A JP 32461089 A JP32461089 A JP 32461089A JP 32461089 A JP32461089 A JP 32461089A JP H03184014 A JPH03184014 A JP H03184014A
Authority
JP
Japan
Prior art keywords
electrode
signal
optical
substrate
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32461089A
Other languages
Japanese (ja)
Other versions
JP2780400B2 (en
Inventor
Minoru Kiyono
實 清野
Naoyuki Megata
直之 女鹿田
Takefumi Namiki
武文 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1324610A priority Critical patent/JP2780400B2/en
Publication of JPH03184014A publication Critical patent/JPH03184014A/en
Application granted granted Critical
Publication of JP2780400B2 publication Critical patent/JP2780400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure

Abstract

PURPOSE:To reduce electric induction and mutual interference by the interven tion of an elastic wave nearby the surface of a substrate 1 and to improve the SN ratio of a modulated signal by providing a 1st asymmetrical electrode consisting of a 1st signal electrode and a 1st ground electrode and a 2nd asym metrical electrode consisting of a 2nd signal electrode and a 2nd ground elec trode. CONSTITUTION:The 1st asymmetrical electrode 10 consists of the 1st signal electrode 3a and 1st ground electrode 4b and the 2nd asymmetrical electrode 20 consists of the 2nd signal electrode 3b and 2nd ground electrode 4a and is arranged subordinately to the 1st asymmetrical electrode 10. In this case, the 1st signal electrode 3a and 2nd signal electrode 3b are arranged subordinately to each other, so the distance between the both is large and ground electrodes 4a and 4b can be interposed and arranged between both the signal electrodes 3a and 3b. Consequently, the electric induction and mutual interference by the intervention of the elastic wave nearby the surface of the substrate 1 are made small and the SN ratio of the modulated signal of the fast optical modulator is improved greatly.

Description

【発明の詳細な説明】 〔目次] 概要 産業上の利用分野 従来の技術(第9図〜第11図) 発明が解決しようとする課題 課題を解決するための手段 作用 実施例(第1図〜第8図) 発明の効果 〔概要〕 光変調器に関し、 高速駆動の外部光変調において、動作点の変動のない、
かつ、長期にわたって安定で使い易い光変調器を実現す
ることを目的とし、 平面に加工した電気光学効果を有する基板上に第1およ
び第2の分岐光導波路を有する光導波路を設け、前記第
1の分岐光導波路上に設けられた第1の信号電極と前記
第2の分岐光導波路上に前記第1の信号電極と並列に設
けられた第1の接地電極とからなる第1の非対称電極を
形成し、前記第1の非対称電極の後段に、前記第2の分
岐光導波路上に設けられた第2の信号電極と前記第1の
分岐光導波路上に前記第2の信号電極と並列に設けられ
た第2の接地電極とからなる第2の非対称電極を従属的
に形成して光変調器を構成する。
[Detailed Description of the Invention] [Table of Contents] Overview Industrial Application Fields Prior Art (Figs. 9 to 11) Problems to be Solved by the Invention Examples of Means and Actions for Solving the Problems (Figs. 1 to 11) (Figure 8) Effects of the invention [Summary] Regarding the optical modulator, there is no fluctuation in the operating point in high-speed drive external light modulation.
In addition, with the aim of realizing an optical modulator that is stable and easy to use over a long period of time, an optical waveguide having first and second branched optical waveguides is provided on a planar substrate having an electro-optic effect, and A first asymmetric electrode consisting of a first signal electrode provided on the branched optical waveguide and a first ground electrode provided in parallel with the first signal electrode on the second branched optical waveguide. a second signal electrode provided on the second branched optical waveguide after the first asymmetric electrode, and a second signal electrode provided on the first branched optical waveguide in parallel with the second signal electrode. An optical modulator is constructed by forming a second asymmetrical electrode consisting of a second ground electrode and a second ground electrode.

また、第1および第2の信号電極のそれぞれの入力電極
リード部を両方ともに前記基板上の一方の側に引き出し
、外部電気信号回路に接続するようにして実装上使い易
い光変調器を構成する。
In addition, the input electrode lead portions of the first and second signal electrodes are both drawn out to one side of the substrate and connected to an external electric signal circuit, thereby configuring an optical modulator that is easy to use in terms of mounting. .

〔産業上の利用分野〕[Industrial application field]

本発明は、高速・高安定に光変調を行い、かつ実装上使
い易い光変調器、とくに、その電極構成に関する。
The present invention relates to an optical modulator that performs optical modulation at high speed and with high stability and is easy to use in terms of mounting, and particularly relates to an electrode configuration thereof.

最近の光通信システムの光送信系において、たとえば、
1.6 GHz程度までの光通信システムにおいては、
レーザダイオード(LD)を直接変調する方式を用いて
きたが、変調周波数がより高くなると変調光波長の時間
的微小変動、いわゆる、チャーピング現象が起こり高速
化と長距離通信への限界となる。
In the optical transmission system of recent optical communication systems, for example,
In optical communication systems up to about 1.6 GHz,
A method has been used in which a laser diode (LD) is directly modulated, but as the modulation frequency becomes higher, temporal minute fluctuations in the modulated light wavelength, the so-called chirping phenomenon, occur, which limits high-speed and long-distance communication.

一方、今後ますます大容量・長距離通信の要求が強まっ
てくるので、より高速、かつ、高安定で使い易い光変調
器の開発が求められている。
On the other hand, as the demand for large-capacity and long-distance communications will become stronger in the future, there is a need to develop optical modulators that are faster, more stable, and easier to use.

〔従来の技術〕[Conventional technology]

高速光変調方式としては、半導体レーザ光を外部で変調
する外部変調方式、とくに、電気光学結晶基板上に分岐
光導波路を設け、進行波電極で駆動するマツハツエンダ
型光変調器が知られている。
As a high-speed optical modulation method, an external modulation method in which a semiconductor laser beam is externally modulated is known, and in particular, a Matsuhatsu Enda type optical modulator in which a branched optical waveguide is provided on an electro-optic crystal substrate and is driven by a traveling wave electrode is known.

第9図は従来の外部光変調器の構成例を示す図(非対称
電極型)で、同図(イ)は上面図、同図(ロ)はY−Y
’断面図である。
Figure 9 is a diagram showing an example of the configuration of a conventional external light modulator (asymmetric electrode type), where (a) is a top view and (b) is a Y-Y
'This is a cross-sectional view.

図中、1は平面に加工した電気光学効果を有する基板、
たとえば、LiTa0i基板である。2は光導波路で中
間に分岐光導波路2a、2bが形成されている。この光
導波路は通常基板の表面にTiなどの金属を、光導波路
部分だけに選択的に拡散させ、その部分の屈折率を回り
の部分よりも少し大きくなるようにしである。3”は信
号電極で、たとえば、進行波信号電極、4°は接地電極
である。60は光導波路上の金属電極層への光の吸収を
小さくするためのバッファ層で、通常、SiO□なとの
薄膜が用いられている。信号電極3゛と接地電極4“は
バッファ層60を介して光導波路上に、Auなとの金属
を蒸着あるいはめっきによって形成している。
In the figure, 1 is a substrate having an electro-optic effect processed into a flat surface;
For example, a LiTaOi substrate. 2 is an optical waveguide, and branch optical waveguides 2a and 2b are formed in the middle. This optical waveguide is usually made by selectively diffusing a metal such as Ti on the surface of a substrate only to the optical waveguide portion, so that the refractive index of that portion is slightly larger than that of the surrounding portions. 3'' is a signal electrode, for example, a traveling wave signal electrode, and 4° is a ground electrode. 60 is a buffer layer for reducing absorption of light into the metal electrode layer on the optical waveguide, and is usually made of SiO□. The signal electrode 3'' and the ground electrode 4'' are formed on the optical waveguide via the buffer layer 60 by vapor deposition or plating of a metal such as Au.

いま、たとえば、半導体レーザ100から発した直流光
が左側の光導波路2から入り、分岐光導波路2a 、 
2bで2つに分けられ、その間に、信号電極3′に高周
波変調信号:a15°から信号電圧を印加すると、基板
上に設けられた前記分岐光導波路2a、2bにおける電
気光学効果によって分岐された両光に位相差が生じる。
Now, for example, DC light emitted from the semiconductor laser 100 enters from the left optical waveguide 2, and branches into the branch optical waveguide 2a,
When a signal voltage is applied to the signal electrode 3' from 15° to the signal electrode 3', the waveguides are split into two by the electro-optic effect in the branched optical waveguides 2a and 2b provided on the substrate. A phase difference occurs between the two lights.

この両光を再び合流させて、右側の一本の光導波路2か
ら変調された光信号出力を取り出し、光検知器200で
電気信号に変換するように構成されている。前記分枝光
導波路2a、2bにおける両光の位相差がπ、あるいは
、Oになるように駆動電圧を印加すれば、たとえば、光
信号出力は0N−OFFのパルス信号として得られる。
The two lights are combined again, a modulated optical signal output is taken out from one optical waveguide 2 on the right side, and the photodetector 200 converts it into an electrical signal. If a driving voltage is applied so that the phase difference between the two lights in the branched optical waveguides 2a and 2b becomes π or O, for example, an optical signal output can be obtained as an ON-OFF pulse signal.

なお、R7は終端抵抗である。Note that R7 is a terminating resistor.

同図(ロ)のR3およびBkは各導波路における光に作
用する実効的な電界の大きさと向きを示している。この
構成の光変調器においては、接地電極4゛は高周波電気
信号の伝達をよくするため、図に示したように、信号電
極3′よりも大きくしてあり、したがって、分岐光導波
路2a、2bに印加される電界分布は等しくなく、その
ために、それぞれにおける光に作用する実効的な電界の
大きさE。
R3 and Bk in the same figure (b) indicate the magnitude and direction of the effective electric field acting on the light in each waveguide. In the optical modulator with this configuration, the ground electrode 4' is made larger than the signal electrode 3', as shown in the figure, in order to improve the transmission of high-frequency electrical signals, and therefore the branched optical waveguides 2a, 2b The electric field distributions applied at are unequal and therefore the effective electric field magnitude E acting on the light at each.

およびE、は非対称で、通常E、はE、の3〜6倍程度
になる。
and E are asymmetric, and usually E is about 3 to 6 times that of E.

変調効率は(E−+ Eb )に比例するので、上記の
如く、E、がB、に比較して非常に小さいことは変調効
率が上がらず、プッシュプル動作による駆動が困難であ
り、結局、変調用の駆動電圧を大きくしなければならな
いことになる。
Since the modulation efficiency is proportional to (E-+Eb), as mentioned above, if E is very small compared to B, the modulation efficiency will not increase and driving by push-pull operation will be difficult. This means that the drive voltage for modulation must be increased.

さらに、信号電極3′と接地電極4゛にか覧る電界の非
対称性のために、分岐光導波路2a、2bに温度差が生
じ、それに基づく歪みによって光変調特性の動作点がシ
フトしてしまうという欠点があった。
Furthermore, due to the asymmetry of the electric field seen between the signal electrode 3' and the ground electrode 4', a temperature difference occurs between the branched optical waveguides 2a and 2b, and the resulting distortion shifts the operating point of the optical modulation characteristics. There was a drawback.

第10図は従来の外部光変調器の構成例を示す図(並列
2信号電極型)で、上記欠点を改善するために提案され
た例であり、同図(イ)は上面図、同図(ロ)はY−Y
’断面図である。図中、3a、3bは分岐光導波路2a
、2b上に設けられた第1.第2の信号電極、たとえば
、進行波信号電極、31a、31bは第1.第2の信号
電極それぞれの入力電極リード部、4a、4bは第1お
よび第2の信号電極(3a 、 3b)と対をなし、信
号電圧の印加により前記第1および第2の分岐光導波路
2a、2b中を伝送される光に位相差を生じさせるよう
に配設された接地電極、15”。
Figure 10 is a diagram showing an example of the configuration of a conventional external optical modulator (parallel two-signal electrode type), and is an example proposed to improve the above-mentioned drawbacks; (b) is Y-Y
'This is a cross-sectional view. In the figure, 3a and 3b are branched optical waveguides 2a.
, 2b. The second signal electrodes, for example traveling wave signal electrodes, 31a, 31b are the first. The input electrode lead portions 4a, 4b of each of the second signal electrodes form a pair with the first and second signal electrodes (3a, 3b), and the first and second branch optical waveguides 2a are connected to each other by application of a signal voltage. , 2b, a ground electrode arranged to create a phase difference in the light transmitted through it, 15''.

16”は高周波変調信号源である。16'' is a high frequency modulation signal source.

なお、前記従来例の図面で説明したものと同等の部分に
ついては同一符号を付し、かつ、同等部分についての説
明は省略する。
Note that the same reference numerals are given to the same parts as those explained in the drawings of the conventional example, and the explanation of the same parts will be omitted.

この例の場合には、同図(ロ)に示したように電極は全
く対称に配置されているので、2つの分岐光導波路2a
、2bにか\る電界E、とEbは等しくプッシュプル動
作ができるので、上記の非対称電極型の場合に比較して
駆動電圧を60%程度に下げることができる。
In this example, since the electrodes are arranged completely symmetrically as shown in FIG.
, 2b, and Eb are equally capable of push-pull operation, so the drive voltage can be lowered to about 60% compared to the case of the asymmetric electrode type described above.

また、電極の対称配置により分岐光導波路2a、2bに
は温度差が生じないので、前記非対称電極型のように光
変調特性の動作点シフトも生じない。
Furthermore, since no temperature difference occurs between the branched optical waveguides 2a and 2b due to the symmetrical arrangement of the electrodes, no shift in the operating point of the optical modulation characteristics occurs as in the asymmetric electrode type.

第11図は従来の光変調器の素子搭載状態の例を示す図
で、前記第10図に示した光変調素子を実装配置した場
合の例であり、同図(イ)は上面図、同図(ロ)は側面
図である。図中、50は黄銅ブロックで基板1の基台で
あり、かつ、熱放散と接地効果をよくする役割も果たし
ている。51°、52゛ は外部電気信号回路用IC5
3′や終端抵抗R7その他を搭載するための回路基板、
たとえば、セラミンク基板からなるハイブリッドICで
ある。すなわち、2個のIC53’を光変調素子の両側
に配置して入力電極リード部31a、31bに接続して
いる。
FIG. 11 is a diagram showing an example of the element mounting state of a conventional optical modulator, in which the optical modulator shown in FIG. 10 is mounted and arranged, and FIG. Figure (b) is a side view. In the figure, a brass block 50 serves as a base for the substrate 1, and also serves to improve heat dissipation and grounding effects. 51°, 52゛ are IC5 for external electric signal circuit
3', a circuit board for mounting terminating resistor R7, etc.
For example, it is a hybrid IC made of a ceramic substrate. That is, two ICs 53' are arranged on both sides of the light modulation element and connected to the input electrode lead parts 31a and 31b.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記のような並列2信号電極型構威の光変調器
においては、2つの信号電極3a、3bが近接・対向し
て配置されているので、電気的誘導や基板1表面近傍で
の弾性波を介しての相互干渉が大きく、変調信号のS/
Nが劣化するという重大な問題があり、その解決が必要
であった。
However, in the optical modulator with the parallel two-signal electrode structure as described above, since the two signal electrodes 3a and 3b are arranged close to each other and facing each other, electrical induction and elasticity near the surface of the substrate 1 are The mutual interference through the waves is large, and the S/ of the modulated signal is
There was a serious problem of N deterioration, which needed to be solved.

〔課題を解決するための手段] 上記の課題は、平面に加工した電気光学効果を有する基
板と、前記基板1上に形成された第1および第2の分岐
光導波路2a 、 2bを有する光導波路2と、前記第
1の分岐光導波路2a上に設けられた第1の信号電極3
aと前記第2の分岐光導波路2b上に前記第1の信号電
極3aと並列に設けられた第1の接地電極4bとからな
る第1の非対称電極10と、前記第1の非対称電極10
の後段に従属的に配設され、前記第2の分岐光導波路2
b上に設けられた第2の信号電極3bと前記第1の分岐
光導波路2a上に前記第2の信号電極3bと並列に設け
られた第2の接地電極4aとからなる第2の非対称電極
20とを少なくとも備えた光変調器を構成することによ
り解決することができる。
[Means for Solving the Problem] The above problem is solved by an optical waveguide having a substrate having an electro-optic effect processed into a plane, and first and second branched optical waveguides 2a and 2b formed on the substrate 1. 2, and a first signal electrode 3 provided on the first branched optical waveguide 2a.
a and a first ground electrode 4b provided on the second branched optical waveguide 2b in parallel with the first signal electrode 3a;
The second branch optical waveguide 2 is arranged in a downstream stage and is subordinate to the second branch optical waveguide 2.
a second asymmetric electrode consisting of a second signal electrode 3b provided on the second signal electrode 3b and a second ground electrode 4a provided on the first branched optical waveguide 2a in parallel with the second signal electrode 3b; This can be solved by configuring an optical modulator including at least 20.

さらに、この光変調器において、前記第1および第2の
信号電極3a、3bのそれぞれの入力電極リード部31
a、31bを両方ともに前記基板1上の一方の側に引出
し、外部電気信号回路に接続するように構成すれば集積
回路装置を片側だけに配置すればよく実装上きわめて好
都合な光変調器が構成できる。
Furthermore, in this optical modulator, each input electrode lead portion 31 of the first and second signal electrodes 3a, 3b
If both a and 31b are drawn out to one side of the substrate 1 and connected to an external electric signal circuit, an optical modulator can be constructed which is extremely convenient in terms of mounting, since it is only necessary to place the integrated circuit device on one side. can.

また、並列2信号電極型の光変調器で第1および第2の
信号電極3a、3bのそれぞれの入力電極リード部31
a、31bを両方ともに基板1上の一方の側に引き出し
、外部電気信号回路に接続するように構成すれば集積回
路装置を片側だけに配置すればよく、この場合も実装上
きわめて好都合な光変調器が構成できる。
Further, in a parallel two-signal electrode type optical modulator, the input electrode lead portions 31 of each of the first and second signal electrodes 3a and 3b
If both a and 31b are drawn out to one side of the board 1 and connected to an external electrical signal circuit, it is only necessary to place the integrated circuit device on one side, and in this case as well, optical modulation is very convenient for mounting. The vessel can be configured.

〔作用〕[Effect]

本発明の構成によれば、第1の信号電極3aと第2の信
号電極3bは、互いに従属的に配置されているので両者
の距離は離れており、かつ、両信号電極間に接地電極を
介在・配置する構成も可能であり、したがって、電気的
誘導や基板1表面近傍での弾性波を介しての相互干渉が
小さくなり、高速光変調器の変調信号のS/Nが大巾に
向上する。
According to the configuration of the present invention, the first signal electrode 3a and the second signal electrode 3b are arranged subordinately to each other, so that the distance between them is large, and the ground electrode is provided between both signal electrodes. It is also possible to have a structure in which the optical fibers are interposed and arranged, and therefore, mutual interference through electrical induction and elastic waves near the surface of the substrate 1 is reduced, and the S/N of the modulated signal of the high-speed optical modulator is greatly improved. do.

さらに、第1および第2の信号電極3a、3bのそれぞ
れの入力電極リード部31a、 31bを両方ともに基
板l上の一方の側に引き出し、外部電気信号回路に接続
するように構成しているので、たとえば、集積回路装置
を片側だけに配置すればよく、実装上きわめて好都合な
光変調器が構成できる。
Furthermore, the input electrode lead portions 31a and 31b of the first and second signal electrodes 3a and 3b are both drawn out to one side of the substrate l and connected to an external electric signal circuit. For example, it is only necessary to place the integrated circuit device on one side, and an optical modulator can be constructed which is extremely convenient in terms of implementation.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示す上面図である。 FIG. 1 is a top view showing a first embodiment of the present invention.

基板lには大きさ60mmX2 mm、厚さ1mmのL
iNb0zのZ板の表面を鏡面研磨して使用した。
The board L has a size of 60 mm x 2 mm and a thickness of 1 mm.
The surface of an iNb0z Z plate was mirror polished and used.

この基板の上にTiを約90nmの厚さに真空蒸着し、
分岐光導波路2aおよび2bを含む光導波路2に相当す
る部分にTiが残るように通常のホトエツチング法で処
理したのち、約1050’CでTiをLiNb0゜中に
熱拡散して全光導波路2を形成した。
On this substrate, Ti was vacuum-deposited to a thickness of about 90 nm,
After treating the area corresponding to the optical waveguide 2, including the branched optical waveguides 2a and 2b, using a normal photoetching method, Ti is thermally diffused into LiNb0° at about 1050'C to form the entire optical waveguide 2. Formed.

分岐光導波路部分の長さは45mm、光導波路の幅は全
て7〜11μmになるように調整した。
The length of the branched optical waveguide portion was adjusted to 45 mm, and the widths of all optical waveguides were adjusted to 7 to 11 μm.

次いで、バッファ層としてSiO2を300〜1000
 nmの厚さにスパッタ法で形成した。
Next, as a buffer layer, SiO2 is deposited at a concentration of 300 to 1000
It was formed by sputtering to a thickness of nm.

信号電極3aおよび3bは図示したごとく、従属的に3
mmの間隔をあけて進行波信号電極を構成するように配
置するために、Ti−Au合金膜を蒸着したのち、分岐
光導波路2aおよび2bの上に幅10μmの電極形状に
パターンエツチングし、さらに、その上に厚さ3μmの
Auをめっきにより付着形成した。31aおよび31b
は入力電極リード部で外部電気信号回路に接続される。
As shown, the signal electrodes 3a and 3b are
In order to arrange traveling wave signal electrodes with an interval of mm, a Ti-Au alloy film was deposited, and then pattern etched into an electrode shape with a width of 10 μm on the branch optical waveguides 2a and 2b. , on which Au with a thickness of 3 μm was deposited by plating. 31a and 31b
is connected to an external electrical signal circuit through an input electrode lead.

接地電極4bおよび4aは信号電極と同様のプロセスで
信号電極形成と同時形成する。接地電極4bは信号電極
3aと、また、接地電極4aは信号電極3bと並列して
、それぞれ分岐光導波路2b上および2a上に形成され
る。
The ground electrodes 4b and 4a are formed at the same time as the signal electrode by the same process as the signal electrode. The ground electrode 4b is formed in parallel with the signal electrode 3a, and the ground electrode 4a is formed in parallel with the signal electrode 3b on the branched optical waveguides 2b and 2a, respectively.

すなわち、第1の信号電極3aと第1の接地電極4bと
が第1の非対称電極lOを形威し、第2の信号電極3b
と第2の接地電極4aとが第2の非対称電極20を形成
して、第2の非対称電極20は第1の非対称電極lOに
従属的に配置される。
That is, the first signal electrode 3a and the first ground electrode 4b form a first asymmetrical electrode lO, and the second signal electrode 3b
and the second ground electrode 4a form a second asymmetrical electrode 20, and the second asymmetrical electrode 20 is arranged subordinately to the first asymmetrical electrode IO.

いま、直流光として光導波路2に入射した光は分岐光導
波路2a、2bにおける両光の位相差がπ。
Now, the light that has entered the optical waveguide 2 as DC light has a phase difference of π in the branched optical waveguides 2a and 2b.

あるいは、0になるように、第1および第2の非対称電
極の駆動電圧を整合をとって印加すれば。
Alternatively, if the driving voltages of the first and second asymmetrical electrodes are matched and applied so that the voltage becomes 0.

たとえば、光信号出力は0N−OFFのパルス信号とし
て得られ本発明の光変調器が動作する。15および25
は高周波信号源である。
For example, the optical signal output is obtained as an ON-OFF pulse signal, and the optical modulator of the present invention operates. 15 and 25
is a high frequency signal source.

終端抵抗R7は進行波信号電極3aおよび3bの特性イ
ンピーダンスにあわせて50Ωになるように調整した。
The terminating resistor R7 was adjusted to 50Ω in accordance with the characteristic impedance of the traveling wave signal electrodes 3a and 3b.

以上の構成により、約5 GHzまでの周波数帯域で、
相互干渉が小さく動作点シフトのない低駆動電圧の光変
調器が得られた。
With the above configuration, in the frequency band up to approximately 5 GHz,
An optical modulator with low driving voltage and low mutual interference and no operating point shift was obtained.

また、非対称電極の従属数は2つとは限らず、4つ以上
の偶数個を配設してもよい。
Further, the number of dependent asymmetric electrodes is not limited to two, and an even number of four or more may be provided.

第2図は本発明の第2実施例を示す上面図である。FIG. 2 is a top view showing a second embodiment of the invention.

なお、前記の図面で説明したものと同等の部分について
は同一符号を付し、かつ、同等部分についての説明は省
略する。
Note that the same reference numerals are given to the same parts as those explained in the above drawings, and the explanation of the same parts will be omitted.

本実施例は分岐光導波路の中間で光導波路を曲げて平行
にシフトさせたもので、電極間の電気的相互干渉をより
小さくすることができる。
In this embodiment, the optical waveguide is bent in the middle of the branched optical waveguide and shifted in parallel, so that mutual electrical interference between the electrodes can be further reduced.

第3図は本発明の第3実施例を示す上面図である。FIG. 3 is a top view showing a third embodiment of the present invention.

この例では、第1および第2の信号電極3a、3bのそ
れぞれの人力電極リード部31a、31bを両方ともに
前記基板1上の一方の側、たとえば、下側に引き出し、
外部電気信号回路に接続するように構成した場合で、駆
動用の集積回路装置などを片側だけに配置すればよく、
実装上きわめて好都合な光変調器が構成できる。たN′
、図示したごとく分岐光導波路3aおよび3b上の電極
構成が完全に対称でないので、動作点シフトなどが若干
生じる場合がある。
In this example, both the manual electrode lead parts 31a and 31b of the first and second signal electrodes 3a and 3b are pulled out to one side, for example, the bottom side, on the substrate 1,
When configured to connect to an external electrical signal circuit, it is only necessary to place the driving integrated circuit device on one side.
An optical modulator that is extremely convenient in terms of implementation can be constructed. N'
As shown in the figure, since the electrode configurations on the branched optical waveguides 3a and 3b are not completely symmetrical, a slight shift in the operating point may occur.

第4図は本発明の第4実施例を示す上面図である。FIG. 4 is a top view showing a fourth embodiment of the present invention.

この実施例も第1および第2の信号電極3a、3bのそ
れぞれの入力電極リード部31a、31bを両方ともに
基板1の下側に引き出し、分岐光導波路3aおよび3b
上の電極構成をはり対称にし、かつ、両信号電極間に両
接地電極のリード引出し部が介在してガードするように
形威しであるので、相互干渉が極めて小さく、動作点シ
フトもなく、かつ、実装上好都合な構成のものである。
In this embodiment as well, the input electrode lead parts 31a and 31b of the first and second signal electrodes 3a and 3b are both drawn out to the lower side of the substrate 1, and the branched optical waveguides 3a and 3b are
The upper electrode structure is symmetrical, and the lead-out portions of both ground electrodes are interposed between both signal electrodes to guard them, so mutual interference is extremely small and there is no shift in the operating point. Moreover, it has a configuration convenient for implementation.

第5図は本発明実施例の素子搭載状態を示す図で、前記
第4図に示した光変調素子を実装配置した場合の例であ
り、同図(イ)は上面図で、同図(口〉は側面図である
。図中、50は黄銅ブロックで基板1の基台であり、か
つ、熱放散と接地を効果的にするためにも役立てるもの
である。51および52は外部信号回路用IC53や終
端抵抗R7その他を搭載するための回路基板、たとえば
、セラくツク基板からなるハイブリッドICである。す
なわち、本実施例ではIC53は片側だけに配置すれば
よく、実装上きわめて好都合である。
FIG. 5 is a diagram showing the mounting state of the device according to the embodiment of the present invention, and is an example in which the light modulation device shown in FIG. 4 is mounted and arranged. 〉 is a side view. In the figure, 50 is a brass block that is the base of the board 1 and is also useful for effective heat dissipation and grounding. 51 and 52 are external signal circuits. This is a hybrid IC consisting of a circuit board, for example, a ceramic board, on which the IC 53 for use with the IC 53, the terminating resistor R7, and others are mounted.In other words, in this embodiment, the IC 53 only needs to be placed on one side, which is extremely convenient for mounting. .

第6図は本発明の第5実施例を示す上面図である。この
例は基本的には並列2電極型構成のものであるが、第1
および第2の信号電極3a、3bのそれぞれの入力電極
リード部31a、31bを両方ともに基板1の下側に引
き出して、実装上の効果を狙ったものである。たりし、
両信号電極間の相互干渉や若干の動作点シフトが予想さ
れるので、用途に応じて使い分ける必要がある。
FIG. 6 is a top view showing a fifth embodiment of the present invention. This example basically has a parallel two-electrode configuration, but the
The input electrode lead portions 31a and 31b of the second signal electrodes 3a and 3b are both drawn out to the lower side of the substrate 1, aiming at a mounting effect. Tarishi,
Mutual interference between both signal electrodes and a slight shift in the operating point are expected, so it is necessary to use them appropriately depending on the application.

第7図は本発明の第6実施例を示す上面図である。この
例も基本的に並列2電極型構成のものであるが、入力電
極リード部31a、31bを両方ともに基板1の下側に
引き出して、実装上の効果を狙ったものである。電極の
対称性は確保されており動作点シフトはないが、両信号
電極間の相互干渉が残るので、前記第5実施例と同様に
用途に応じて使い分ける必要がある。
FIG. 7 is a top view showing a sixth embodiment of the present invention. This example also basically has a parallel two-electrode type configuration, but both input electrode lead portions 31a and 31b are drawn out to the lower side of the substrate 1, aiming at a mounting effect. Although the symmetry of the electrodes is ensured and there is no shift in the operating point, mutual interference between both signal electrodes remains, so it is necessary to use them selectively depending on the application, as in the fifth embodiment.

第8図は本発明の第7実施例を示す上面図である。この
例も基本的に並列2電極型構戒のものであるが、入力電
極リード部31a、 31bを両方ともに基板1の下側
に引き出して、実装上の効果を狙っている。また、電極
の対称性は確保されており動作点シフトがなく、シかも
、両信号電極間に巾の広い共通の接地電極4が配置され
る構成であるので、相互干渉も大巾に抑制され、低駆動
電圧で。
FIG. 8 is a top view showing a seventh embodiment of the present invention. This example is also basically a parallel two-electrode type structure, but both input electrode lead parts 31a and 31b are drawn out to the bottom of the board 1, aiming at a mounting effect. In addition, the symmetry of the electrodes is ensured and there is no operating point shift, and since the common ground electrode 4 with a wide width is arranged between both signal electrodes, mutual interference is greatly suppressed. , with low driving voltage.

かつ、長さの短い小形光変調器に非常に適している。In addition, it is very suitable for short and compact optical modulators.

以上述べた実施例は数例を示したもので、本発明の趣旨
に添うものである限り、使用する素材や構成1寸法、製
作プロセスなど適宜好ましいもの、あるいはその組み合
わせを用いることができることは言うまでもない。
The embodiments described above are just a few examples, and it goes without saying that preferred materials, configuration dimensions, manufacturing processes, etc., or combinations thereof may be used as appropriate, as long as they comply with the spirit of the present invention. stomach.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光変調器は高周波変調の
ための高速駆動において、低駆動電圧であって、信号電
極間の相互干渉が小さく、シかも動作点シフトが抑制さ
れ、かつ、電極リード部を同一側にして実装し易くする
ことができるので、高周波・長距離光通信用の光変調器
の性能・品質の向上に寄与するところが極めて大きい。
As explained above, the optical modulator of the present invention has low driving voltage, low mutual interference between signal electrodes, and suppresses operating point shift in high-speed driving for high-frequency modulation. Since the lead portions can be placed on the same side for ease of mounting, this greatly contributes to improving the performance and quality of optical modulators for high-frequency, long-distance optical communications.

【図面の簡単な説明】 第1図は本発明の第1実施例を示す上面図、第2図は本
発明の第2実施例を示す上面図、第3図は本発明の第3
実施例を示す上面図、第4図は本発明の第4実施例を示
す上面図、第5図は本発明実施例の素子搭載状態を示す
図、第6図は本発明の第5実施例を示す上面図、第7図
は本発明の第6実施例を示す上面図、第8図は本発明の
第7実施例を示す上面図、第9図は従来の外部光変調器
の構成例を示す図(非対称電極型)、 第10図は従来の外部光変調器の構成例を示す図(並列
2信号電極型)、 第11図は従来の光変調器の素子搭載状態を示す図であ
る。 図において、 1は基板、2は光導波路、 2aおよび2bは第1および第2の分岐光導波路、3a
および3bは第1および第2の信号電極、4(4a、4
b)は接地電極、 10は第1の非対称電極、 20は第2の非対称電極、 31aおよび31bは入力電極リード部である。
[Brief Description of the Drawings] Fig. 1 is a top view showing a first embodiment of the present invention, Fig. 2 is a top view showing a second embodiment of the invention, and Fig. 3 is a top view showing a third embodiment of the invention.
FIG. 4 is a top view showing the fourth embodiment of the present invention, FIG. 5 is a diagram showing the element mounting state of the embodiment of the present invention, and FIG. 6 is the fifth embodiment of the present invention. 7 is a top view showing a sixth embodiment of the present invention, FIG. 8 is a top view showing a seventh embodiment of the present invention, and FIG. 9 is a configuration example of a conventional external optical modulator. (asymmetric electrode type), Figure 10 is a diagram showing an example of the configuration of a conventional external optical modulator (parallel two-signal electrode type), and Figure 11 is a diagram showing the element mounting state of a conventional optical modulator. be. In the figure, 1 is a substrate, 2 is an optical waveguide, 2a and 2b are first and second branch optical waveguides, 3a
and 3b are first and second signal electrodes, 4 (4a, 4
b) is a ground electrode; 10 is a first asymmetric electrode; 20 is a second asymmetric electrode; 31a and 31b are input electrode lead parts.

Claims (5)

【特許請求の範囲】[Claims] (1)平面に加工した電気光学効果を有する基板(1)
と、 前記基板(1)上に形成された第1および第2の分岐光
導波路(2a,2b)を有する光導波路(2)と、前記
第1の分岐光導波路(2a)上に設けられた第1の信号
電極(3a)と、前記第2の分岐光導波路(2b)上に
前記第1の信号電極(3a)と並列に設けられた第1の
接地電極(4b)とからなる第1の非対称電極(10)
と、 前記第1の非対称電極(10)の後段に従属的に配設さ
れ、前記第2の分岐光導波路(2b)上に設けられた第
2の信号電極(3b)と、前記第1の分岐光導波路(2
a)上に前記第2の信号電極(3b)と並列に設けられ
た第2の接地電極(4a)とからなる第2の非対称電極
(20)とを少なくとも備えることを特徴とした光変調
器。
(1) Substrate with electro-optic effect processed into a flat surface (1)
and an optical waveguide (2) having first and second branched optical waveguides (2a, 2b) formed on the substrate (1), and an optical waveguide (2) provided on the first branched optical waveguide (2a). A first signal electrode (3a) and a first ground electrode (4b) provided on the second branched optical waveguide (2b) in parallel with the first signal electrode (3a). Asymmetric electrode (10)
a second signal electrode (3b) disposed downstream of the first asymmetrical electrode (10) and provided on the second branch optical waveguide (2b); Branch optical waveguide (2
a) an optical modulator comprising at least a second asymmetrical electrode (20) consisting of a second ground electrode (4a) provided above the second signal electrode (3b) and in parallel; .
(2)前記請求項(1)記載の光変調器において、前記
少なくとも2組の非対称電極(10,20)の間で前記
第1および第2の分岐光導波路(2a,2b)が曲げら
れ、前記少なくとも2組の非対称電極(10,20)が
それぞれ同一直線上に配置されない構成をなすことを特
徴とする光変調器。
(2) In the optical modulator according to claim (1), the first and second branch optical waveguides (2a, 2b) are bent between the at least two sets of asymmetric electrodes (10, 20), An optical modulator characterized in that the at least two sets of asymmetric electrodes (10, 20) are not arranged on the same straight line.
(3)前記請求項(1)記載の光変調器において、前記
第1および第2の信号電極(3a,3b)のそれぞれの
入力電極リード部(31a,31b)を両方ともに前記
基板(1)上の一方の側に引き出し、外部電気信号回路
に接続するように構成したことを特徴とする光変調器。
(3) In the optical modulator according to claim (1), both input electrode lead portions (31a, 31b) of the first and second signal electrodes (3a, 3b) are connected to the substrate (1). An optical modulator characterized in that it is configured to be drawn out on one side of the top and connected to an external electrical signal circuit.
(4)平面に加工した電気光学効果を有する基板(1)
と、 前記基板(1)上に形成された第1および第2の分岐光
導波路(2a,2b)を有する光導波路(2)と、前記
第1および第2の分岐光導波路(2a,2b)上に、そ
れぞれ並列に配設された第1および第2の信号電極(3
a,3b)と、 前記第1および第2の信号電極(3a,3b)と対をな
し、信号電圧の印加により前記第1および第2の分岐光
導波路(2a,2b)中を伝送される光に位相差を生じ
させるように配設された少なくとも1つの接地電極(4
)とを少なくとも備えた光変調器であって、 前記第1および第2の信号電極(3a,3b)のそれぞ
れの入力電極リード部(31a,31b)を両方ともに
前記基板(1)上の一方の側に引き出し、外部電気信号
回路に接続するように構成したことを特徴とする光変調
器。
(4) Substrate with electro-optic effect processed into a flat surface (1)
and an optical waveguide (2) having first and second branched optical waveguides (2a, 2b) formed on the substrate (1), and the first and second branched optical waveguides (2a, 2b). First and second signal electrodes (3
a, 3b), which form a pair with the first and second signal electrodes (3a, 3b), and are transmitted through the first and second branched optical waveguides (2a, 2b) by application of a signal voltage. at least one ground electrode (4) arranged to create a phase difference in the light;
), wherein the input electrode lead portions (31a, 31b) of the first and second signal electrodes (3a, 3b) are both connected to one side on the substrate (1). 1. An optical modulator characterized in that the optical modulator is configured to be pulled out to the side thereof and connected to an external electrical signal circuit.
(5)平面に加工した電気光学効果を有する基板(1)
と、前記基板(1)上に形成された第1および第2の分
岐光導波路(2a,2b)を有する光導波路(2)と、
前記第1および第2の分岐光導波路(2a,2b)上に
配置された第1および第2の信号電極(3a,3b)と
、前記第1および第2の信号電極(3a,3b)を電気
的に隔離するように設けられた接地電極を備え、この接
地電極が前記第1および第2の信号電極(3a,3b)
の少なくとも一方と対をなし、信号電圧の印加により前
記第1および第2の分岐光導波路(2a,2b)中を伝
送される光に位相差を生じさせるように配設された光変
調器であって、 前記第1および第2の信号電極(3a,3b)のそれぞ
れの入力電極リード部(31a,31b)を両方ともに
前記基板(1)上の一方の側に引き出し、外部電気信号
回路に接続するように構成したことを特徴とする光変調
器。
(5) Substrate with electro-optic effect processed into a flat surface (1)
and an optical waveguide (2) having first and second branch optical waveguides (2a, 2b) formed on the substrate (1);
first and second signal electrodes (3a, 3b) arranged on the first and second branched optical waveguides (2a, 2b), and the first and second signal electrodes (3a, 3b). A ground electrode is provided so as to be electrically isolated, and this ground electrode is connected to the first and second signal electrodes (3a, 3b).
an optical modulator that is paired with at least one of the optical modulators and arranged so as to create a phase difference in the light transmitted through the first and second branch optical waveguides (2a, 2b) by applying a signal voltage. The input electrode lead portions (31a, 31b) of the first and second signal electrodes (3a, 3b) are both pulled out to one side of the substrate (1) and connected to an external electrical signal circuit. An optical modulator characterized in that it is configured to be connected.
JP1324610A 1989-12-14 1989-12-14 Light modulator Expired - Fee Related JP2780400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1324610A JP2780400B2 (en) 1989-12-14 1989-12-14 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1324610A JP2780400B2 (en) 1989-12-14 1989-12-14 Light modulator

Publications (2)

Publication Number Publication Date
JPH03184014A true JPH03184014A (en) 1991-08-12
JP2780400B2 JP2780400B2 (en) 1998-07-30

Family

ID=18167742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1324610A Expired - Fee Related JP2780400B2 (en) 1989-12-14 1989-12-14 Light modulator

Country Status (1)

Country Link
JP (1) JP2780400B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341027A2 (en) * 2002-02-07 2003-09-03 Fujitsu Limited Optical modulator module and optical modulator
WO2004086126A1 (en) * 2003-03-24 2004-10-07 Fujitsu Limited Waveguide optical modulator
US6980706B2 (en) 2003-03-24 2005-12-27 Fujitsu Limited Waveguide optical modulator
JP2008242243A (en) * 2007-03-28 2008-10-09 Sumitomo Osaka Cement Co Ltd Optical waveguide element, and optical crosstalk suppressing method of optical waveguide
JP2010038951A (en) * 2008-07-31 2010-02-18 Anritsu Corp Optical modulator
JP2010286770A (en) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd Optical device
JP2012113333A (en) * 2012-03-23 2012-06-14 Anritsu Corp Optical modulator
JP2012212028A (en) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd Progressive wave type optical modulation element
JP2015045790A (en) * 2013-08-29 2015-03-12 富士通オプティカルコンポーネンツ株式会社 Optical module and optical transmission device
JP2015055840A (en) * 2013-09-13 2015-03-23 富士通オプティカルコンポーネンツ株式会社 Optical module and optical transmitter
JP2017156400A (en) * 2016-02-29 2017-09-07 住友大阪セメント株式会社 Optical modulator and optical transmitter using optical modulator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341027A2 (en) * 2002-02-07 2003-09-03 Fujitsu Limited Optical modulator module and optical modulator
EP1341027A3 (en) * 2002-02-07 2003-09-17 Fujitsu Limited Optical modulator module and optical modulator
US6873748B2 (en) 2002-02-07 2005-03-29 Fujitsu Limited Optical modulator module and optical modulator
WO2004086126A1 (en) * 2003-03-24 2004-10-07 Fujitsu Limited Waveguide optical modulator
US6980706B2 (en) 2003-03-24 2005-12-27 Fujitsu Limited Waveguide optical modulator
JP2008242243A (en) * 2007-03-28 2008-10-09 Sumitomo Osaka Cement Co Ltd Optical waveguide element, and optical crosstalk suppressing method of optical waveguide
JP2010038951A (en) * 2008-07-31 2010-02-18 Anritsu Corp Optical modulator
JP2010286770A (en) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd Optical device
JP2012212028A (en) * 2011-03-31 2012-11-01 Sumitomo Osaka Cement Co Ltd Progressive wave type optical modulation element
JP2012113333A (en) * 2012-03-23 2012-06-14 Anritsu Corp Optical modulator
JP2015045790A (en) * 2013-08-29 2015-03-12 富士通オプティカルコンポーネンツ株式会社 Optical module and optical transmission device
JP2015055840A (en) * 2013-09-13 2015-03-23 富士通オプティカルコンポーネンツ株式会社 Optical module and optical transmitter
CN104467980A (en) * 2013-09-13 2015-03-25 富士通光器件株式会社 Optical module and optical transmitter
JP2017156400A (en) * 2016-02-29 2017-09-07 住友大阪セメント株式会社 Optical modulator and optical transmitter using optical modulator

Also Published As

Publication number Publication date
JP2780400B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP5056040B2 (en) Light modulator
US6867901B2 (en) Optical modulator and design method therefor
CN100410732C (en) Optical modulator
JPH05196902A (en) Traveling-wave optical modulator
JP2001154164A (en) Optical modulator and optical modulating method
JPH03184014A (en) Optical modulator
JP3088988B2 (en) Traveling wave optical modulator and optical modulation method
US6646776B1 (en) Suppression of high frequency resonance in an electro-optical modulator
JP3570735B2 (en) Optical waveguide device
JP2000267056A (en) Waveguide type optical device
JP3995537B2 (en) Light modulator
US6885780B2 (en) Suppression of high frequency resonance in an electro-optical modulator
US6950218B2 (en) Optical modulator
JP2919132B2 (en) Light modulator
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
JP2002122834A (en) Optical waveguide element
JP2564999B2 (en) Light modulator
JPH0713711B2 (en) High speed optical modulator
JP2734708B2 (en) Light modulator
WO2022042229A1 (en) Traveling wave electrode modulator and photonic integrated chip
JP2001004967A (en) Optical waveguide element
JP2800339B2 (en) Method of manufacturing optical modulator
JPWO2002097521A1 (en) Optical modulation device having excellent electrical characteristics by effectively suppressing thermal drift and method of manufacturing the same
WO2004086126A1 (en) Waveguide optical modulator
JP2725341B2 (en) Light modulator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees