JPH03184000A - Method and device for processing waste liquid of nuclear power plant - Google Patents
Method and device for processing waste liquid of nuclear power plantInfo
- Publication number
- JPH03184000A JPH03184000A JP32256289A JP32256289A JPH03184000A JP H03184000 A JPH03184000 A JP H03184000A JP 32256289 A JP32256289 A JP 32256289A JP 32256289 A JP32256289 A JP 32256289A JP H03184000 A JPH03184000 A JP H03184000A
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- membrane
- condensed water
- nuclear power
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 173
- 239000002699 waste material Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims description 26
- 238000012545 processing Methods 0.000 title abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- 238000004140 cleaning Methods 0.000 claims abstract description 43
- 239000004094 surface-active agent Substances 0.000 claims abstract description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000012528 membrane Substances 0.000 claims description 169
- 238000001704 evaporation Methods 0.000 claims description 45
- 230000008020 evaporation Effects 0.000 claims description 44
- 239000006260 foam Substances 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 14
- 230000002209 hydrophobic effect Effects 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 6
- 230000001172 regenerating effect Effects 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 3
- 239000012466 permeate Substances 0.000 claims 1
- 239000000498 cooling water Substances 0.000 abstract description 13
- 238000011109 contamination Methods 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 abstract description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 4
- 230000008016 vaporization Effects 0.000 abstract 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract 1
- 230000033458 reproduction Effects 0.000 abstract 1
- 235000011149 sulphuric acid Nutrition 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 10
- 238000011069 regeneration method Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、原子力発電プラントにおける廃液処理方法と
装置に係り、特に蒸発面に疎水性多孔質膜を用いた膜蒸
発濃縮装置により塩類を含む廃液を蒸発濃縮し、かつ純
度の高い凝縮水を得る廃液処理方法及び装置に関する・
〔従来の技術〕
塩類を含む溶液を収納した蒸発室の蒸発面に疎水性多孔
質膜を用いた膜蒸発濃縮器としては、例えば特公昭49
−45461号に示される構造がある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and device for treating waste liquid in a nuclear power plant, and in particular, a membrane evaporation concentrator using a hydrophobic porous membrane on the evaporation surface to treat waste liquid containing salts. Concerning a waste liquid treatment method and device for evaporating and concentrating waste liquid and obtaining highly pure condensed water [Prior art] Membrane evaporation concentration using a hydrophobic porous membrane on the evaporation surface of an evaporation chamber containing a solution containing salts As a vessel, for example, Tokuko Sho 49
There is a structure shown in No.-45461.
3−
また、膜蒸発濃縮器を組込んだ廃液処理方法としては、
例えば特開昭61−164195号に示される方法があ
る。3- Also, as a waste liquid treatment method incorporating a membrane evaporation concentrator,
For example, there is a method disclosed in Japanese Patent Application Laid-open No. 164195/1983.
これらの膜蒸発濃縮器は、蒸発面に膜を用いていること
から、蒸発面を自由にとれ、装置の小型化が容易である
。また、中湿度でかつ常圧の廃液から蒸気を発生できる
ので比較的腐食しにくい高分子材料を構造材料として利
用できる。以上の点で膜蒸発濃縮器は従来の金属材料で
造られた蒸発缶濃縮器に比べて多くの利点を有する。Since these membrane evaporation concentrators use a membrane for the evaporation surface, the evaporation surface can be freely set, and the device can be easily miniaturized. Furthermore, since steam can be generated from waste liquid at medium humidity and normal pressure, polymeric materials that are relatively resistant to corrosion can be used as structural materials. In the above points, membrane evaporative concentrators have many advantages over conventional evaporator concentrators made of metal materials.
ところで、原子力発電プラントにおける廃液は。 By the way, what about waste liquid from nuclear power plants?
塩類以外に固形分及び界面活性剤が含まれる可能性があ
る。このような不純物とくに界面活性剤が混入した廃液
は、膜蒸発濃縮器の蒸発面に用いられている疎水性多孔
質膜を親水化し、膜から廃液が漏洩し、凝縮水の純度を
低下させる。このように、膜が親水化した膜蒸発濃縮器
では廃液処理ができないという問題があり、従来の方法
ではこの問題が解決されていなかった。そこで、本発明
は4−
膜蒸発濃縮装置の膜が汚染されて親水化した場合に対処
して凝縮水の純度を維持し、かつ汚染した膜を再生する
ことを目的とする。In addition to salts, solids and surfactants may be included. The waste liquid mixed with such impurities, especially surfactants, makes the hydrophobic porous membrane used on the evaporation surface of the membrane evaporation concentrator hydrophilic, causing the waste liquid to leak from the membrane and reduce the purity of the condensed water. As described above, there is a problem in that a membrane evaporative concentrator in which the membrane is made hydrophilic cannot treat waste liquid, and this problem has not been solved by conventional methods. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to maintain the purity of condensed water and to regenerate the contaminated membrane in a case where the membrane of a 4-membrane evaporation concentrator becomes contaminated and becomes hydrophilic.
また、汚染膜の再生処理において、処理試薬により廃液
が2次発生するという問題があり、本発明の他の目的は
再生処理のための試薬使用量を低減させることにある。Further, in the regeneration treatment of contaminated membranes, there is a problem in that waste liquid is generated secondary due to the treatment reagent, and another object of the present invention is to reduce the amount of reagent used for the regeneration treatment.
さらに、汚染膜の再生処理による廃液処理の中断のため
に膜蒸発濃縮装置の稼動率が低下するという問題があり
、本発明の他の目的は、汚染膜の再生処理の頻度を低下
させることにある。Furthermore, there is a problem in that the operating rate of the membrane evaporation concentrator is reduced due to the interruption of waste liquid treatment due to the regeneration treatment of contaminated membranes.Another object of the present invention is to reduce the frequency of regeneration treatment of contaminated membranes. be.
上記目的を達成するために、本発明は膜蒸発濃縮装置に
よる廃液処理方法において、界面活性剤を予め除去した
廃液を前記膜蒸発濃縮装置に通し、該装置から得られる
凝縮水の導電率を経時的に測定し、その導電率の値が所
定値に達した時点で前記膜蒸発濃縮装置による廃液処理
を中断し、前記膜を酸洗浄及びアルコール洗浄し、最終
的に乾燥して膜に付着してゞいる液状物を除去してから
・前記廃液処理を再開するようにしたものである。In order to achieve the above object, the present invention provides a waste liquid treatment method using a membrane evaporation concentrator, in which a waste liquid from which a surfactant has been removed in advance is passed through the membrane evaporation concentrator, and the conductivity of condensed water obtained from the apparatus is measured over time. When the conductivity value reaches a predetermined value, the waste liquid treatment by the membrane evaporation concentrator is stopped, the membrane is washed with acid and alcohol, and finally it is dried and adhered to the membrane. The waste liquid treatment is restarted after removing the liquid material.
また、上記他の目的を達成するために、汚染膜の再生処
理におけるアルコール洗浄において、アルコール溶液を
35℃以上沸点以下の温度に加熱して汚染膜と接触させ
るようにしたものである。Further, in order to achieve the above-mentioned other objects, in the alcohol cleaning in the regeneration treatment of the contaminated membrane, the alcohol solution is heated to a temperature of 35° C. or more and the boiling point or less and brought into contact with the contaminated membrane.
さらに、上記他の目的を達成するために、廃液を予め界
面活性剤除去処理を施してから、膜蒸発濃縮装置で処理
するようにしたものである。Furthermore, in order to achieve the other objects mentioned above, the waste liquid is subjected to surfactant removal treatment in advance, and then treated in the membrane evaporation concentration device.
前記方法を実施するため本発明の装置は次のように構成
するとよい。すなわち、前記原子カプラントで発生した
塩類を含む廃液を膜蒸発濃縮器の外筒内に導入し、かつ
外筒内で発生した廃液の蒸気を外筒内に設けた疎水性の
多孔質管状膜を透過させその内部に導入し、塩類を濃縮
すると共に、凝縮水を得る廃液処理装置において、該装
置に前記管状膜内を流通する凝縮水の導電率測定手段と
、管状膜内に酸洗浄液及びアルコール洗浄液を供給する
手段と、管状膜内に温風を供給する手段とからなる汚染
膜の再生手段を具備した膜蒸発濃縮器を組込んだ廃液処
理装置を構成する。In order to implement the method, the apparatus of the present invention may be configured as follows. That is, the waste liquid containing salts generated in the atomic couplant is introduced into the outer cylinder of the membrane evaporative concentrator, and the vapor of the waste liquid generated in the outer cylinder is passed through a hydrophobic porous tubular membrane provided in the outer cylinder. In a waste liquid treatment apparatus for concentrating salts and obtaining condensed water, the apparatus includes a means for measuring the conductivity of the condensed water flowing through the tubular membrane, and an acid cleaning solution and alcohol inside the tubular membrane. A waste liquid treatment apparatus incorporating a membrane evaporation concentrator is provided with means for regenerating a contaminated membrane, which includes means for supplying a cleaning liquid and means for supplying warm air into a tubular membrane.
さらに、前記他の方法を実施するため本発明は次の(a
)〜(f)の要素からなる廃液処理システムを構成する
とよい。Furthermore, in order to carry out the other method, the present invention provides the following (a)
) to (f).
(a) 塩類と界面活性剤を含む廃液の貯槽。(a) Storage tank for waste liquid containing salts and surfactants.
(b) 前記貯槽から送られた廃液に微細気泡を吹き
込む泡沫分離装置。(b) A foam separator that blows fine bubbles into the waste liquid sent from the storage tank.
(c) 前記泡沫分離装置で発生し、界面活性剤が濃
縮された泡沫の貯槽。(c) A storage tank for foam generated in the foam separator and containing concentrated surfactant.
(d) 前記泡沫分離装置で生じ、界面活性剤が除去
された廃液を処理する前記の廃液処理装置6
(e) 前記廃液処理装置で生じた濃縮廃液の貯槽。(d) The waste liquid treatment device 6 that processes the waste liquid generated in the foam separator and from which the surfactant has been removed. (e) A storage tank for concentrated waste liquid generated in the waste liquid treatment device.
(f) 前記各貯槽に貯えた泡沫と濃縮廃液を乾燥粉
末にする乾燥機。(f) A dryer for converting the foam and concentrated waste liquid stored in each storage tank into dry powder.
上記課題を解決するために、膜蒸発濃縮装置で界面活性
剤を含んだ塩溶液を原液(廃液に相当する)として処理
した場合の凝縮水の導電率への影響について検討した。In order to solve the above problem, we investigated the effect on the conductivity of condensed water when a salt solution containing a surfactant is treated as a raw solution (equivalent to waste liquid) in a membrane evaporation concentrator.
その結果、第5図に示すように原液中に界面活性剤(D
BS、ドデシルベン7−
ゼン スルフオン酸ソーダ)が含まれると所定時間経過
後に凝縮水の導電率が上昇することがわかった。そして
、凝縮水の導電率が上昇するまでの時間は界面活性剤濃
度に反比例し、その濃度が高い程短時間で凝縮水の導電
率が上昇するという知見を得た。このように凝縮水の導
電率が上昇すなわち原液により汚染された膜の再生方法
について検討した結果、本発明に至った。As a result, as shown in Figure 5, a surfactant (D
It was found that the conductivity of condensed water increases after a predetermined period of time when BS, sodium dodecyl bene 7-zene sulfonate) is contained. They also found that the time it takes for the electrical conductivity of condensed water to increase is inversely proportional to the surfactant concentration, and that the higher the concentration, the faster the electrical conductivity of condensed water increases. As a result of research on a method for regenerating a membrane contaminated by the raw solution, in which the conductivity of condensed water increases as described above, the present invention was achieved.
本発明の廃液処理方法(こおいては、膜蒸発濃縮装置よ
り得られる凝縮水の導電率を経時的に測定する。それに
より、膜が汚染されて廃液が凝縮水側に漏洩すれば凝縮
水の導電率が上昇しているので膜蒸発濃縮装置の膜汚染
の程度を検出できる。The waste liquid treatment method of the present invention (in this case, the conductivity of the condensed water obtained from the membrane evaporation concentrator is measured over time. As a result, if the membrane is contaminated and the waste liquid leaks to the condensed water side, the condensed water The degree of membrane contamination of the membrane evaporation concentrator can be detected because the conductivity of the membrane has increased.
また、凝縮水の導電率が所定値10〜100μs/aw
に達したならば前記膜蒸発濃縮装置による廃液処理を中
断することにより、膜汚染により廃液が凝縮水側へ漏洩
するのを防止し、凝縮水を高純度に維持できる。また、
前記汚染膜を酸洗浄及びアルコール洗浄し、最終的に乾
燥して膜に付着し−
ている液状物を除去してから前記廃液処理を再開するこ
とにより、汚染膜を再生でき、再び膜蒸発濃縮装置によ
る廃液処理を可能とする。In addition, the conductivity of condensed water is a predetermined value of 10 to 100 μs/aw.
When this is reached, the waste liquid treatment by the membrane evaporation concentrator is interrupted, thereby preventing the waste liquid from leaking to the condensed water side due to membrane contamination, and the condensed water can be maintained at a high purity. Also,
By washing the contaminated membrane with acid and alcohol, and finally drying it to remove the liquid matter adhering to the membrane, restarting the waste liquid treatment, the contaminated membrane can be regenerated and the membrane can be evaporated and concentrated again. Enables waste liquid treatment by the device.
さらに、汚染膜の再生処理におけるアルコール洗浄にお
いて、アルコール溶液を35℃以上沸点以下の温度に加
熱して汚染膜と接触させることにより、室温の場合より
も比較的低濃度のアルコール溶液で同じ洗浄効果を得ら
れる。Furthermore, in alcohol cleaning during the regeneration treatment of contaminated membranes, by heating the alcohol solution to a temperature above 35°C and below the boiling point and bringing it into contact with the contaminated membrane, the same cleaning effect can be achieved with a relatively lower concentration alcohol solution than at room temperature. You can get
また、廃液を予め界面活性剤除去処理を施してから、膜
蒸発濃縮装置で処理することにより、廃液による膜汚染
の進行を遅延させ、廃液が膜から漏洩するに至るまでの
時間を長くできる。Furthermore, by subjecting the waste liquid to a surfactant removal process in advance and then treating it in the membrane evaporation concentrator, the progress of membrane contamination by the waste liquid can be delayed and the time required for the waste liquid to leak from the membrane can be lengthened.
以下図面を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は膜蒸発濃縮器2を組込んだ本発明に係る廃液処
理装置1を示す。廃液処理袋w1は膜蒸発濃縮器2を中
心に、廃液の循環系統3,3A。FIG. 1 shows a waste liquid treatment apparatus 1 according to the present invention incorporating a membrane evaporative concentrator 2. As shown in FIG. The waste liquid processing bag w1 has a waste liquid circulation system 3, 3A centered around the membrane evaporation concentrator 2.
冷却水の循環系統4,4A、洗浄液の循環系統5゜5A
及び乾燥空気の供給系統6より構成されてぃる。廃液の
循環系統3,3Aには、廃液を収納する貯槽7.廃液加
熱用のヒータ等の加熱器8及び廃液の循環ポンプ9が設
けられている。冷却水の循環系統4,4Aには、冷却水
の貯槽10.冷却器11.循環ポンプ12及び凝縮水の
導電率を検出する検出器13Aの検出端13が設けられ
ている。また、洗浄液の循環系統5には洗浄液の貯槽1
4及び洗浄液の循環ポンプ15が設けられている。乾燥
空気の供給系統6には温風供給器16が設けられている
。各循環系統には廃液の処理操作と汚染膜の再生操作と
を切換えるために、バルブ21〜30が設けられている
。Cooling water circulation system 4, 4A, cleaning liquid circulation system 5゜5A
and a dry air supply system 6. The waste liquid circulation system 3, 3A includes a storage tank 7 for storing waste liquid. A heater 8 such as a heater for heating waste liquid and a circulation pump 9 for waste liquid are provided. The cooling water circulation system 4, 4A includes a cooling water storage tank 10. Cooler 11. A circulation pump 12 and a detection end 13 of a detector 13A for detecting the conductivity of condensed water are provided. In addition, the cleaning liquid circulation system 5 includes a cleaning liquid storage tank 1.
4 and a cleaning liquid circulation pump 15 are provided. The dry air supply system 6 is provided with a warm air supply device 16 . Each circulation system is provided with valves 21 to 30 for switching between a waste liquid treatment operation and a contaminated membrane regeneration operation.
膜蒸発濃縮器2は、管状膜のモジュール17とこれを収
納する外筒18とにより構成されており、管状膜の内部
が冷却水の流路19であり、管状膜の外部が廃液の流路
20を形成する。管状膜17はポリテトラフルオロエチ
レン、ポリエチレン。The membrane evaporative concentrator 2 is composed of a tubular membrane module 17 and an outer cylinder 18 that houses the module.The inside of the tubular membrane is a cooling water flow path 19, and the outside of the tubular membrane is a waste liquid flow path. Form 20. The tubular membrane 17 is made of polytetrafluoroethylene or polyethylene.
ポリプロピレン及びポリスルホン等の疎水性の材質によ
る多孔質の管状の膜である。膜の細孔径は0.05〜1
μm、空隙率は50〜85%のものが用いられる。It is a porous tubular membrane made of hydrophobic materials such as polypropylene and polysulfone. The pore size of the membrane is 0.05-1
μm and a porosity of 50 to 85% is used.
次に、前記廃液処理装置1を用いて本発明の廃液処理方
法について説明する。貯槽7に収納した廃液は加熱器8
によって所定の温度に加熱され、ポンプ9により循環系
統3を通り膜蒸発濃縮器2の廃液の流路20に供給され
、循環系統3Aを通って循環される。一方、貯槽10に
収納した純水は所定の温度に冷却され、ポンプ12によ
り循環系統4を通り膜蒸発濃縮器2の管状膜17内の冷
却水流路19に供給され、循環系統4Aを通り循環され
る。ここで、流路20の高温廃液と流路19の低温冷却
水とは管状膜17の膜壁を介して存在する状態となる。Next, the waste liquid treatment method of the present invention will be explained using the waste liquid treatment apparatus 1. The waste liquid stored in the storage tank 7 is transferred to the heater 8.
The liquid is heated to a predetermined temperature by the pump 9, is supplied to the waste liquid flow path 20 of the membrane evaporator 2 through the circulation system 3, and is circulated through the circulation system 3A. On the other hand, the pure water stored in the storage tank 10 is cooled to a predetermined temperature, and is supplied by the pump 12 through the circulation system 4 to the cooling water flow path 19 in the tubular membrane 17 of the membrane evaporator concentrator 2, and is then circulated through the circulation system 4A. be done. Here, the high-temperature waste liquid in the flow path 20 and the low-temperature cooling water in the flow path 19 exist through the membrane wall of the tubular membrane 17.
管状膜17は疎水性多孔質膜を用いているので廃液から
発生した水蒸気のみが膜の細孔を通過し、管状膜内部の
冷却水に直接凝縮して凝縮水となる。こうして得られた
凝縮水は増量分だけ循環系統4,4Aの例えば貯槽10
から排出される。このような処理操作により、廃液の塩
類は濃縮されると同時に、純度の高い凝縮水が得られ、
廃液を処理することができる。Since the tubular membrane 17 uses a hydrophobic porous membrane, only the water vapor generated from the waste liquid passes through the pores of the membrane and is directly condensed on the cooling water inside the tubular membrane to become condensed water. The condensed water thus obtained is transferred to the circulation system 4, 4A, for example, in the storage tank 10 by the amount increased.
is discharged from. Through this treatment operation, the salts in the waste liquid are concentrated, and at the same time, highly pure condensed water is obtained.
Waste liquid can be treated.
11−
ところで、廃液に固形分及び界面活性剤が混入すると、
これらが管状膜17の外表面に付着し、その濃度が高け
れば処理時間が経つにつれて膜が汚染される。膜の汚染
により膜が親水化されると、廃液は、蒸気が凝縮する冷
却水側に漏洩するので高純度の凝縮水を得ることはでき
ず、膜蒸発濃縮器2による廃液処理操作を停止せざるを
得ない。11- By the way, if solid content and surfactant are mixed into the waste liquid,
These adhere to the outer surface of the tubular membrane 17, and if their concentration is high, the membrane will be contaminated over time. If the membrane becomes hydrophilic due to membrane contamination, the waste liquid will leak into the cooling water side where steam condenses, making it impossible to obtain high-purity condensed water, and the waste liquid treatment operation by the membrane evaporator concentrator 2 will have to be stopped. I have no choice but to.
そこで、本発明では、凝縮水を得られる冷却水の循環系
統4Aに凝縮水の導電率を経時的に計測する検出器13
Aの検出端13を設けた。膜の汚染で廃液が冷却水側に
漏洩すれば、その導電率が上昇してくるので、その値が
所定値(10〜100μS / an )以上になれば
前記検出端13でそれを検知し、検出器13Aで信号を
発し、廃液の処理を中断する。これにより、廃液の管状
膜17からの漏洩による影響を少なくし、高純度の凝縮
水を維持できる。Therefore, in the present invention, a detector 13 for measuring the conductivity of condensed water over time is installed in the cooling water circulation system 4A from which condensed water is obtained.
A detection end 13 was provided. If the waste liquid leaks to the cooling water side due to membrane contamination, its conductivity will increase, so if the value exceeds a predetermined value (10 to 100 μS/an), the detection end 13 detects this, A signal is generated by the detector 13A to interrupt the waste liquid treatment. Thereby, the influence of leakage of waste liquid from the tubular membrane 17 can be reduced, and highly purified condensed water can be maintained.
次に、廃液処理を中断後、管状膜17の汚染膜を再生す
る。この場合まず、バルブ21を開け、膜蒸発濃縮器2
内の廃液を抜き出し、循環系統12−
3Bを介して貯槽7に戻す。次にバルブ22゜24.2
6及び27を閉じ、バルブ23.25を開け、洗浄液の
貯槽14よりポンプ15を作動して洗浄液を管状膜17
内の流路19に供給する。Next, after interrupting the waste liquid treatment, the contaminated membrane of the tubular membrane 17 is regenerated. In this case, first open the valve 21, and then open the membrane evaporator concentrator 2.
The waste liquid inside is extracted and returned to the storage tank 7 via the circulation system 12-3B. Next, valve 22゜24.2
6 and 27, open the valves 23 and 25, and operate the pump 15 to supply the cleaning liquid from the cleaning liquid storage tank 14 to the tubular membrane 17.
It is supplied to the flow path 19 inside.
洗浄液は酸洗浄液及びアルコール洗浄液である。The cleaning liquid is an acid cleaning liquid and an alcohol cleaning liquid.
酸洗浄液は所定濃度に調製したHasOa及び蓚酸等を
用いる。また、アルコール洗浄液は膜を親水化できる濃
度に調製したメタノール、エタノール等の低級アルコー
ル水溶液を用いるのが好ましい。As the acid cleaning solution, HasOa, oxalic acid, etc. prepared to a predetermined concentration are used. Further, as the alcohol cleaning solution, it is preferable to use an aqueous solution of a lower alcohol such as methanol or ethanol prepared to a concentration that can make the membrane hydrophilic.
ここで、洗浄液とくにアルコール洗浄液は35℃以上沸
点以下好ましくは膜・の耐熱温度以下に加熱して管状膜
17の汚染膜と接触させて洗浄する。Here, the cleaning liquid, particularly the alcohol cleaning liquid, is heated to a temperature above 35° C. and below the boiling point, preferably below the heat resistance temperature of the membrane, and is brought into contact with the contaminated membrane of the tubular membrane 17 for cleaning.
このことにより、洗浄液による洗浄効果が高められ、使
用する酸及びアルコールの量を低減して、廃液の2次発
生を抑制できる。さらに、汚染膜を洗浄して界面活性剤
を含有した洗浄液は、例えば活性炭と接触させて界面活
性剤を除去処理し再生するのが好ましい。これにより洗
浄液を繰返し使用することができ、廃液の2次発生を抑
制できる。This increases the cleaning effect of the cleaning liquid, reduces the amount of acid and alcohol used, and suppresses secondary generation of waste liquid. Furthermore, it is preferable that the cleaning liquid containing a surfactant obtained by cleaning the contaminated film be brought into contact with, for example, activated carbon to remove the surfactant and be regenerated. As a result, the cleaning liquid can be used repeatedly, and secondary generation of waste liquid can be suppressed.
次に、管状膜内外に付着した汚染物質を除去後、膜蒸発
濃縮器2内から洗浄液を抜き出す。その後、バルブ27
,28.30を開け、温風供給器16より所定温度の温
風を供給し、膜に付着している液状物を除去する。Next, after removing contaminants adhering to the inside and outside of the tubular membrane, the cleaning liquid is extracted from the membrane evaporator concentrator 2. Then valve 27
, 28 and 30 are opened, and hot air at a predetermined temperature is supplied from the hot air supply device 16 to remove the liquid matter adhering to the membrane.
この汚染膜の再生操作により管状膜t7に付着した固形
物及び界面活性剤を除去し、膜の疎水性を回復できる。By this regeneration operation of the contaminated membrane, the solid matter and surfactant adhering to the tubular membrane t7 can be removed, and the hydrophobicity of the membrane can be restored.
このように、膜蒸発濃縮器2における管状膜17の汚染
膜再生においては、汚染膜を洗浄して膜から汚染物質を
除去した後最終的に膜を乾燥させる操作が必要である。As described above, in regenerating the contaminated membrane of the tubular membrane 17 in the membrane evaporation concentrator 2, it is necessary to wash the contaminated membrane to remove contaminants from the membrane, and then finally dry the membrane.
これに対し、従来の水処理用濾過装置の場合には膜汚染
の再生は洗浄により膜から汚染物質を除去するだけでよ
く、最終的に膜を乾燥させる必要はない。これは、膜蒸
発濃縮器2による蒸発処理は、管状膜17が疎水化され
た状態すなわち膜の細孔内に液状物が存在しない状態で
操作されることによる。この洗浄後の膜の乾燥による効
果を確認するために、比較実験した結果を第3図に示す
。第3図は、膜を洗浄後Aはそのままの状態で、またB
はさらに膜を乾燥後、再びN a Z S O4溶液を
供給して蒸発濃縮処理したときの凝縮水の導電率の経時
変化を示す。その結果、AはN a 2 S O4溶液
を供給開始後、ただちに、凝縮水の導電率が上昇した。On the other hand, in the case of conventional water treatment filtration devices, regeneration of membrane contamination requires only cleaning to remove contaminants from the membrane, and there is no need to finally dry the membrane. This is because the evaporation process by the membrane evaporation concentrator 2 is performed in a state where the tubular membrane 17 is made hydrophobic, that is, in a state where no liquid exists in the pores of the membrane. In order to confirm the effect of drying the membrane after cleaning, the results of a comparative experiment are shown in FIG. Figure 3 shows A as it is after cleaning the membrane, and B
2 shows the change over time in the electrical conductivity of condensed water when the membrane was further dried and then the N a Z S O 4 solution was supplied again for evaporation and concentration treatment. As a result, in A, the conductivity of the condensed water immediately increased after starting to supply the Na 2 SO 4 solution.
これは膜の疎水状態が回復していないことを示す。これ
に対してBは長時間にわたって凝縮水の導電率が上昇し
なかった。このことから、膜蒸発濃縮器2における汚染
膜の再生においては汚染膜を洗浄後最終的に膜を乾燥さ
せることの重要性がわかる。This indicates that the hydrophobic state of the membrane has not been recovered. On the other hand, in B, the conductivity of condensed water did not increase over a long period of time. This shows the importance of finally drying the contaminated membrane after cleaning it in regenerating the contaminated membrane in the membrane evaporation concentrator 2.
次に、第4図は乾燥工程における膜の乾燥状態の変化を
示す。膜を洗浄した直後は第4図の(1)に示すように
、細孔17A内に液状物40が満されており、膜は親水
化された状態である。このような膜では膜蒸発操作がで
きないことを第3図で示した。膜を乾燥すると、管状膜
17の細孔17Aに付着した液状物40は第4図(2)
から(4)の状態に移行し、膜が完全に乾燥されれば第
4図(4)の状態になる。これらの中で第4図(2)は
、膜の表面だけが乾燥し、膜の細孔17Aの内部に液状
物40が残った状態であり、このような膜を15−
蒸発操作に使用すると、膜の細孔内部に液状物40が蓄
積し、廃液が漏洩し易くなる。また、完全な乾燥状態の
第4図(4)にすることは乾燥に長時間を要する。そこ
で、膜の細孔17A内に自然の空気とほぼ平衡状態にあ
る極微量の液状物が付着した(3)の状態の膜に乾燥す
るのが好ましい。Next, FIG. 4 shows changes in the dry state of the membrane during the drying process. Immediately after cleaning the membrane, as shown in FIG. 4 (1), the pores 17A are filled with liquid material 40, and the membrane is in a hydrophilic state. FIG. 3 shows that such a membrane cannot be used for membrane evaporation. When the membrane is dried, the liquid substance 40 adhering to the pores 17A of the tubular membrane 17 is removed as shown in FIG. 4 (2).
When the film is completely dried, the state shown in FIG. 4 (4) is reached. Among these, Fig. 4 (2) shows a state in which only the surface of the membrane is dry and a liquid substance 40 remains inside the pores 17A of the membrane. , the liquid substance 40 accumulates inside the pores of the membrane, making it easy for the waste liquid to leak. In addition, it takes a long time to dry to the completely dry state shown in FIG. 4 (4). Therefore, it is preferable to dry the membrane in the state (3) in which a very small amount of a liquid substance in almost equilibrium with natural air is attached to the pores 17A of the membrane.
そこで、バルブ23,25,28.30を閉じ、バルブ
22.26.24,27.29を開けて、循環系統3,
4から廃液及び冷却水を膜蒸発濃縮器2に供給して再び
廃液処理を開始する。Therefore, valves 23, 25, 28.30 are closed, valves 22, 26, 24, 27.29 are opened, and circulation system 3,
4, the waste liquid and cooling water are supplied to the membrane evaporator concentrator 2, and the waste liquid treatment is started again.
以上の廃液処理方法により、凝縮水へ廃液の混入をでき
るだけ抑制して凝縮水を高純度に維持できる。また、汚
染膜再生時の洗浄液による2次廃液の発生量を低減でき
る。By the above waste liquid treatment method, contamination of waste liquid into condensed water can be suppressed as much as possible and the condensed water can be maintained at a high purity. Furthermore, the amount of secondary waste liquid generated by the cleaning liquid during contaminated membrane regeneration can be reduced.
次に、本発明の廃液処理装置1に、予め界面活性剤の除
去処理工程を組合せた廃液処理システムを第2図につい
て説明する。このシステムは例えば、原子力発電プラン
トで発生する高電導度廃液の処理を対象とする。廃液を
収納した貯槽7より供給された廃液は前処理装置31に
送液される。Next, a waste liquid treatment system in which the waste liquid treatment apparatus 1 of the present invention is combined with a surfactant removal process will be described with reference to FIG. This system is intended, for example, for the treatment of highly conductive waste liquids generated in nuclear power plants. The waste liquid supplied from the storage tank 7 containing the waste liquid is sent to the pretreatment device 31 .
16−
前処理装置31は例えば泡沫分離装置であり、廃液を所
定時間滞留させ、廃液中に微細気泡を吹き込む。界面活
性剤は発生した泡沫に濃縮されるので、泡沫を廃液から
分離し、貯槽32へ送る。前処理装置31内に所定時間
滞留し、界面活性剤を除去された廃液は膜蒸発濃縮器2
を組込んだ廃液処理装置1に供給して処理される。なお
、不測の事態で廃液処理装置1への供給液中の界面活性
剤濃度が急上昇した場合に備えて、上記供給液中の界面
活性剤濃度を計測し、その値が所定値に達したならば別
に設けた活性炭層にバイパスしてから廃液処理装置1に
供給する予備の前処理装置を設置するのが望ましい(図
示せず)。廃液処理装置1で処理され濃縮された廃液は
貯槽33に送られる。貯槽32と貯槽33に収納された
廃液は乾燥機34に供給されて乾燥して粉末にされ、さ
らに同化機35でペレット固化体に成型されて貯槽36
に収納される。16- The pretreatment device 31 is, for example, a foam separator, which allows the waste liquid to stay there for a predetermined period of time and blows fine bubbles into the waste liquid. Since the surfactant is concentrated in the generated foam, the foam is separated from the waste liquid and sent to storage tank 32. The waste liquid that remains in the pretreatment device 31 for a predetermined period of time and from which the surfactant has been removed is transferred to the membrane evaporation concentrator 2.
The waste liquid is supplied to the waste liquid treatment device 1 incorporating the waste liquid and is treated therein. In addition, in case the concentration of surfactant in the liquid supplied to the waste liquid treatment device 1 suddenly increases due to an unexpected situation, the concentration of surfactant in the liquid supplied is measured, and when the value reaches a predetermined value, It is desirable to install a preliminary pretreatment device (not shown) that bypasses the activated carbon layer provided separately and then supplies the waste liquid to the wastewater treatment device 1 (not shown). The waste liquid treated and concentrated by the waste liquid treatment device 1 is sent to the storage tank 33. The waste liquid stored in the storage tank 32 and the storage tank 33 is supplied to the dryer 34, dried and powdered, and further formed into solidified pellets in the assimilation machine 35 and sent to the storage tank 36.
will be stored in.
一方、廃液処理装置1により得られた凝縮水はさらに脱
塩器37で処理して、貯槽38に貯留し、復水補給水と
して再利用される。ここで、長時間の廃液処理により膜
蒸発濃縮器2の膜が汚染された場合には、前記凝縮水の
導電率が上昇するのでその値が所定値(10〜100μ
S/a11)に達したならば廃液処理を中断する。さら
に、汚染膜を前記洗浄法により汚染物質を除去し、乾燥
して膜の疎水性を回復した後、再び廃液を膜蒸発濃縮器
2に供給し、廃液処理を再開する。On the other hand, the condensed water obtained by the waste liquid treatment device 1 is further treated in a demineralizer 37, stored in a storage tank 38, and reused as condensate make-up water. Here, if the membrane of the membrane evaporator concentrator 2 becomes contaminated due to long-term waste liquid treatment, the electrical conductivity of the condensed water increases, and its value increases to a predetermined value (10 to 100 μm).
When S/a11) is reached, waste liquid treatment is interrupted. Furthermore, after removing contaminants from the contaminated membrane by the above-mentioned cleaning method and drying it to recover the hydrophobicity of the membrane, the waste liquid is again supplied to the membrane evaporation concentrator 2 and the waste liquid treatment is restarted.
以上の廃液処理システムにより、膜汚染の進行を遅延さ
せ、廃液処理装置1の稼動率を向上させる。The above waste liquid treatment system delays the progress of membrane contamination and improves the operating rate of the waste liquid treatment apparatus 1.
本発明の方法によれば、廃液の凝縮水への混入を防止し
、回収する凝縮水を高純度に維持できるので、次の処理
工程である脱塩器の負荷低減の効果がある。また、汚染
膜の洗浄に要する試薬の使用量を低減し、廃液の2次発
生を抑制できるので。According to the method of the present invention, mixing of waste liquid into condensed water can be prevented and the recovered condensed water can be maintained at a high purity, which has the effect of reducing the load on the demineralizer, which is the next treatment step. In addition, the amount of reagents required for cleaning contaminated membranes can be reduced, and secondary generation of waste liquid can be suppressed.
そのための廃液処理が簡便になる効果がある。さらに、
膜汚染の進行を遅らせ、廃液処理装置の稼動率を向上で
きる効果がある。This has the effect of simplifying waste liquid treatment. moreover,
This has the effect of slowing down the progress of membrane contamination and improving the operating rate of waste liquid treatment equipment.
また前記方法を実施する本発明の装置によれば、膜蒸発
濃縮の管状膜内を流通する凝縮水の導電率を測定するこ
とにより適確に膜汚染による管状膜の親水化の程度を検
知できると共に、汚染膜の再生処理に際しては、管状膜
内に酸洗浄液、アルコール洗浄液及び温風を順次供給し
、この一連の操作で膜の細孔内を洗浄し、かっ細孔内に
残留する液状物を速やかに除去して疎水化でき、短時間
で廃液処理を再開できる。Furthermore, according to the apparatus of the present invention that carries out the above method, it is possible to accurately detect the degree of hydrophilization of the tubular membrane due to membrane contamination by measuring the conductivity of condensed water flowing within the tubular membrane of membrane evaporation concentration. At the same time, when regenerating a contaminated membrane, acid cleaning solution, alcohol cleaning solution, and hot air are sequentially supplied into the tubular membrane, and this series of operations cleans the inside of the pores of the membrane and removes any liquid remaining in the pores. can be quickly removed and hydrophobicized, and waste liquid treatment can be restarted in a short time.
さらに本発明の廃水処理システムによると泡沫分離装置
を含む各要素をラインに組込むことにより廃液処理装置
の稼動率を向上でき、効率的な処理を行うことができる
。Furthermore, according to the wastewater treatment system of the present invention, by incorporating each element including the foam separator into the line, the operating rate of the wastewater treatment apparatus can be improved and efficient treatment can be performed.
第1図は本発明の一実施例の廃液処理装置の説明図、第
2図は本発明の一実施例の廃液処理システム図、第3図
は汚染膜洗浄後の膜の乾燥操作の効果を示す実験データ
のグラフ、第4図(1)。
(2)、(3)は膜の乾燥状態を示す拡大断面図、第5
図は界面活性剤が含まれた廃液を膜蒸発濃縮19−
処理した場合の凝縮水の導電率の変化を示す実験データ
のグラフである。
1・・・廃液処理装置、2・・・膜蒸発濃縮器、3,3
A・・・廃液循環系統、4,4A・・・冷却水循環、5
゜5A・・・洗浄液循環系統、6・・・温風供給系統、
13・・・導電率検出端、13A・・・導電率検出器、
3工・・・前処理装置。Fig. 1 is an explanatory diagram of a waste liquid treatment device according to an embodiment of the present invention, Fig. 2 is a diagram of a waste liquid treatment system according to an embodiment of the present invention, and Fig. 3 shows the effect of a membrane drying operation after cleaning a contaminated membrane. Graph of experimental data shown in Figure 4 (1). (2) and (3) are enlarged cross-sectional views showing the dry state of the membrane;
The figure is a graph of experimental data showing changes in the conductivity of condensed water when a waste liquid containing a surfactant is subjected to membrane evaporation concentration19- treatment. 1... Waste liquid treatment device, 2... Membrane evaporation concentrator, 3, 3
A... Waste liquid circulation system, 4, 4A... Cooling water circulation, 5
゜5A...Cleaning liquid circulation system, 6...Warm air supply system,
13... Conductivity detection end, 13A... Conductivity detector,
3rd stage: Pre-treatment equipment.
Claims (1)
を含む廃液を蒸発面に疎水性の多孔質膜を用いた膜蒸発
濃縮装置によつて処理し、塩分を濃縮すると共に凝縮水
を得る廃液処理方法において、前記廃液中の前記界面活
性剤を除去したのち凝縮水の導電率を測定しその値が所
定値に達した時点で前記膜蒸発濃縮装置による廃液処理
を中断し、前記多孔質膜を酸洗浄及びアルコール洗浄し
、その後乾燥して多孔質膜に付着している液状物を除去
してから前記廃液処理を再開することを特徴とする原子
力発電プラントにおける廃液処理方法。 2、前記アルコール洗浄はアルコール溶液を35℃以上
沸点以下の温度に加熱して前記多孔質膜と接触させるこ
とによつて行うことを特徴とする請求項1記載の原子力
発電プラントにおける廃液処理方法。 3、原子力発電プラントで発生する塩類及び界面活性剤
を含む廃液を蒸発面に疎水性の多孔質膜を用いた膜蒸発
濃縮装置によつて処理し、塩分を濃縮すると共に凝縮水
を得る廃液処理方法において、前記廃液を予め界面活性
剤除去処理を施してから前記膜蒸発濃縮装置へ供給する
ようにし、前記凝縮水の導電率を測定し、その値が所定
値10〜100μS/cmに達したならば、前記膜蒸発
濃縮装置による廃液処理を中断し、前記多孔質膜を酸洗
浄及びアルコール洗浄し、その後乾燥して多孔質膜に付
着している液状物を除去してから前記廃液処理を再開す
ることを特徴とする原子力発電プラントにおける廃液処
理方法。 4、前記アルコール洗浄はアルコール溶液を35℃以上
沸点以下の温度に加熱して前記多孔質膜と接触させるこ
とによつて行うことを特徴とする請求項3記載の原子力
発電プラントにおける廃液処理方法。 5、原子力発電プラントで発生する塩類及び界面活性剤
を含む廃液を、膜蒸発濃縮器の外筒内に導入し、かつ外
筒内で発生した廃液の蒸気を外筒内に設けた疎水性の多
孔質管状膜を透過させてその内部に導入し、塩類を濃縮
すると共に、凝縮水を得る廃液処理装置において、前記
廃液を前記膜蒸発濃縮器へ導入する前に該廃液中の界面
活性剤を予め除去する手段と、前記管状膜内を流通する
凝縮水の導電率測定手段と、管状膜内に酸洗浄液及びア
ルコール洗浄液を供給する手段と、管状膜内に温風を供
給する手段とからなる汚染膜の再生手段を具備した膜蒸
発濃縮器を組込んだことを特徴とする原子力発電プラン
トにおける廃液処理装置。 6、次の(a)〜(f)の要素から構成してなる原子力
発電プラントにおける廃液処理システム。 (a)塩類と界面活性剤を含む廃液の貯槽。 (b)前記貯槽から送られた廃液に微細気泡を吹き込む
泡沫分離装置。 (c)前記泡沫分離装置で発生し、界面活性剤が濃縮さ
れた泡沫の貯槽。 (d)前記泡沫分離装置で生じ、界面活性剤が除去され
た廃液を処理する請求項5記載の廃液処理装置。 (e)前記廃液処理装置で生じた濃縮廃液の貯槽。 (f)前記各貯槽に貯えた泡沫と濃縮廃液を乾燥粉末に
する乾燥機。[Claims] 1. Waste liquid containing salts and surfactants generated in a nuclear power plant is treated with a membrane evaporation concentrator using a hydrophobic porous membrane on the evaporation surface to concentrate salts and In the waste liquid treatment method for obtaining condensed water, the conductivity of the condensed water is measured after removing the surfactant in the waste liquid, and when the value reaches a predetermined value, the waste liquid treatment by the membrane evaporation concentrator is interrupted. A method for treating waste liquid in a nuclear power plant, characterized in that the porous membrane is washed with acid and alcohol, and then dried to remove liquid matter adhering to the porous membrane, and then the waste liquid treatment is restarted. . 2. The method for treating waste liquid in a nuclear power plant according to claim 1, wherein the alcohol cleaning is performed by heating an alcohol solution to a temperature of 35° C. or higher and lower than the boiling point and bringing it into contact with the porous membrane. 3. Waste liquid treatment that processes waste liquid containing salts and surfactants generated in nuclear power plants using a membrane evaporation concentrator that uses a hydrophobic porous membrane on the evaporation surface to concentrate salt and obtain condensed water. In the method, the waste liquid is subjected to surfactant removal treatment in advance before being supplied to the membrane evaporation concentrator, and the conductivity of the condensed water is measured, and the value reaches a predetermined value of 10 to 100 μS/cm. If so, the waste liquid treatment by the membrane evaporation concentrator is interrupted, the porous membrane is washed with acid and alcohol, and then the liquid substance adhering to the porous membrane is removed by drying, and then the waste liquid treatment is started. A waste liquid treatment method in a nuclear power plant characterized by restarting. 4. The method for treating waste liquid in a nuclear power plant according to claim 3, wherein the alcohol cleaning is performed by heating an alcohol solution to a temperature of 35° C. or higher and lower than the boiling point and bringing it into contact with the porous membrane. 5. Waste liquid containing salts and surfactants generated in nuclear power plants is introduced into the outer cylinder of the membrane evaporative concentrator, and the vapor of the waste liquid generated in the outer cylinder is transferred to a hydrophobic membrane installed in the outer cylinder. In a waste liquid treatment device that permeates a porous tubular membrane and introduces it into the interior to concentrate salts and obtain condensed water, a surfactant in the waste liquid is removed before the waste liquid is introduced into the membrane evaporation concentrator. It consists of a means for removing in advance, a means for measuring the conductivity of condensed water flowing through the tubular membrane, a means for supplying an acid cleaning solution and an alcohol cleaning solution into the tubular membrane, and a means for supplying hot air into the tubular membrane. A waste liquid treatment device for a nuclear power plant, characterized in that it incorporates a membrane evaporation concentrator equipped with means for regenerating contaminated membranes. 6. A waste liquid treatment system in a nuclear power plant comprising the following elements (a) to (f). (a) Storage tank for waste liquid containing salts and surfactants. (b) A foam separator that blows fine bubbles into the waste liquid sent from the storage tank. (c) A storage tank for foam generated in the foam separator and containing concentrated surfactant. The waste liquid treatment apparatus according to claim 5, wherein (d) the waste liquid generated in the foam separator and from which the surfactant has been removed is treated. (e) A storage tank for concentrated waste liquid generated in the waste liquid treatment device. (f) A dryer that converts the foam and concentrated waste liquid stored in each storage tank into dry powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1322562A JPH0727067B2 (en) | 1989-12-14 | 1989-12-14 | Waste liquid treatment method and apparatus in nuclear power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1322562A JPH0727067B2 (en) | 1989-12-14 | 1989-12-14 | Waste liquid treatment method and apparatus in nuclear power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03184000A true JPH03184000A (en) | 1991-08-09 |
JPH0727067B2 JPH0727067B2 (en) | 1995-03-29 |
Family
ID=18145065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1322562A Expired - Lifetime JPH0727067B2 (en) | 1989-12-14 | 1989-12-14 | Waste liquid treatment method and apparatus in nuclear power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727067B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011083694A (en) * | 2009-10-15 | 2011-04-28 | Mitsubishi Heavy Ind Ltd | Operation method of dehydrator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101388475B1 (en) * | 2011-12-23 | 2014-04-23 | 한국건설기술연구원 | Device for Desalination using De-wetting |
-
1989
- 1989-12-14 JP JP1322562A patent/JPH0727067B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011083694A (en) * | 2009-10-15 | 2011-04-28 | Mitsubishi Heavy Ind Ltd | Operation method of dehydrator |
Also Published As
Publication number | Publication date |
---|---|
JPH0727067B2 (en) | 1995-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2631092B2 (en) | Semiconductor wafer wet processing equipment | |
WO1988006914A1 (en) | Apparatus for concentrating waste liquid, apparatus for processing waste liquid and method of concentrating waste liquid | |
CN108766610B (en) | Concentration treatment method of radioactive wastewater and radioactive wastewater treatment system | |
JPH06103686B2 (en) | Surface drying treatment method and device | |
JPH03184000A (en) | Method and device for processing waste liquid of nuclear power plant | |
KR100617984B1 (en) | Vacuum washing and drying apparatus | |
TW200946254A (en) | Cleaning method and cleaning system for electronic part | |
JPH05192543A (en) | Method and apparatus for regenerating membrane evaporative concentrator of waste fluid | |
JP3094505B2 (en) | Method and apparatus for membrane evaporation and concentration of waste liquid | |
JPH04155924A (en) | Vapor drying device | |
JPH1157304A (en) | Method for refining chemicals for production of semiconductor element and regeneration system therefor | |
JPH03169386A (en) | Water circulation apparatus | |
JP2597680B2 (en) | Concentration method of radioactive liquid waste | |
JP2898080B2 (en) | Operation method of degassing membrane device | |
JP2004033998A (en) | Method for treating organic chemical-containing waste water and apparatus for the same | |
CN212632300U (en) | Hot film coupling concentration crystallization system | |
Kikuchi et al. | Development of a laundry waste treatment system | |
JP2003245679A (en) | Supercritical water oxidizing method and supercritical oxidation apparatus | |
JP6927145B2 (en) | Fly ash cleaning device and fly ash cleaning method | |
CN103255419A (en) | Recovery system and recovery method of waste system in photocell wet process | |
JPH0275387A (en) | Apparatus for treating waste water containing surfactant | |
JPH0590240A (en) | Vapor drying device | |
JP2002085943A (en) | Wafer dryer | |
JPS6230501A (en) | Apparatus for concentrating and separating dissolved substance | |
JPH0459098A (en) | Treatment of processing waste liquid of photosensitive material free from silver salt and treating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |