JP2597680B2 - Concentration method of radioactive liquid waste - Google Patents

Concentration method of radioactive liquid waste

Info

Publication number
JP2597680B2
JP2597680B2 JP63273102A JP27310288A JP2597680B2 JP 2597680 B2 JP2597680 B2 JP 2597680B2 JP 63273102 A JP63273102 A JP 63273102A JP 27310288 A JP27310288 A JP 27310288A JP 2597680 B2 JP2597680 B2 JP 2597680B2
Authority
JP
Japan
Prior art keywords
waste liquid
radioactive waste
concentration
membrane
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63273102A
Other languages
Japanese (ja)
Other versions
JPH02120698A (en
Inventor
恵二朗 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63273102A priority Critical patent/JP2597680B2/en
Publication of JPH02120698A publication Critical patent/JPH02120698A/en
Application granted granted Critical
Publication of JP2597680B2 publication Critical patent/JP2597680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子力施設から発生する放射性廃液の濃縮方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for concentrating radioactive waste liquid generated from a nuclear facility.

(従来の技術) 原子力発電所で発生する放射性廃液はイオン交換処
理、過処理などを行ったのち、濃縮し、セメント,ア
スファルトまたはプラスチックなどと混合処理して、固
化体として安定な形で保管されている。
(Conventional technology) Radioactive liquid waste generated in a nuclear power plant is subjected to ion exchange treatment, overtreatment, etc., then concentrated, mixed with cement, asphalt or plastic, etc., and stored in a stable form as a solid. ing.

(発明が解決しようとする課題) 従来、濃縮処理には蒸発濃縮器を使用しているが、蒸
発濃縮にはいくつかの欠点がある。例えば濃縮を100℃
前後で実施するため、廃液中に混入しているイオン交換
樹脂が分解し、トリメチルアミンのような揮発性成分が
発生し、濃縮水中に移行して水質悪化を来たす。また、
廃液中に微量に混入する界面活性剤が濃縮中で発泡して
飛沫同伴し、凝縮水中に混入し水質悪化を来たす。さら
に、高温濃縮のため、エネルギーコストも高くなり、設
備が大型化し、装置が高価になるなどの課題がある。
(Problems to be Solved by the Invention) Conventionally, an evaporative concentrator is used for the concentration process, but the evaporative concentration has some disadvantages. For example, concentration at 100 ℃
Since it is carried out before and after, the ion exchange resin mixed in the waste liquid is decomposed, and volatile components such as trimethylamine are generated, and migrate to concentrated water to deteriorate the water quality. Also,
A small amount of surfactant mixed into the waste liquid foams during the concentration and accompanies the droplets, and mixes into the condensed water to cause deterioration of the water quality. Furthermore, there is a problem that energy cost increases due to high-temperature concentration, equipment becomes large, and the apparatus becomes expensive.

また、硫酸ナトリウム水溶液を膜を使用して濃縮する
方法が、ニューメンブレンテクノロジーシンポジウム'8
8において「原子力カプラント高電導廃液への膜蒸留法
の適用」で、また、硫酸水溶液,臭化リチウム水溶液の
濃縮方法が、化学工学協会第52年会(1987年名古屋)A3
13において「サーモパーベーパレーション法を用いた濃
厚水溶液の濃縮」でそれぞれ発表されている。どちらの
方法においても濃縮に使用する膜は疎水性多孔質膜で気
体は通すが、液体は通さないものを使用している。
In addition, a method of concentrating an aqueous sodium sulfate solution using a membrane is described in New Membrane Technology Symposium '8.
In “Applying Membrane Distillation Method to Highly Conductive Wastewater of Nuclear Co-plant” in Section 8, the method of concentrating aqueous sulfuric acid and lithium bromide was described in the 52nd Annual Meeting of the Society of Chemical Engineers (Nagoya, 1987) A3
13, "Concentration of concentrated aqueous solution using thermo-pervaporation method". In either method, the membrane used for concentration is a hydrophobic porous membrane that allows gas to pass but does not allow liquid to pass.

しかしながら、これらの方法を放射性廃液に適用した
場合、放射性廃液中の微小粒子例えば鉄の化合物(Fe2O
3,FeOOH)などの膜面への付着によって多孔質膜の細孔
を塞いで目詰りを起し、濃縮速度を著しく低下させるこ
とは避けられない。
However, when these methods are applied to radioactive waste liquid, fine particles in the radioactive waste liquid, for example, an iron compound (Fe 2 O
(3 , FeOOH) and the like adhere to the membrane surface, thereby blocking the pores of the porous membrane, causing clogging, and inevitably lowering the concentration rate significantly.

本発明は上記課題を解決するためになされたもので、
放射性廃液中に含まれている微小粒子を効率よく除去
し、濃縮時に固形分の膜付着による濃縮速度の低下を防
止するとができる放射性廃液の濃縮方法を提供すること
にある。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method for concentrating a radioactive waste liquid capable of efficiently removing microparticles contained in a radioactive waste liquid and preventing a reduction in a concentration rate due to a solid film adhered during concentration.

[発明の構成] (課題を解決するための手段) 本発明は、原子力施設から発生した放射性廃液中に含
まれている微小粒子を中空糸膜フィルタまたは疎水性多
孔質膜で除去したのち、この微小粒子を除去した放射性
廃液の水蒸気を選択的に通過させ得る性質の浸透気化膜
が組み込まれた濃縮タンク内に流入して加熱し、この加
熱した放射性廃液中の水蒸気を前記浸透気化膜を通過さ
せ、さらにこの通過した水蒸気を真空ポンプにより凝縮
タンクに導いて冷却し凝縮することを特徴とする。
[Constitution of the Invention] (Means for Solving the Problems) In the present invention, fine particles contained in a radioactive waste liquid generated from a nuclear facility are removed by a hollow fiber membrane filter or a hydrophobic porous membrane, and then the fine particles are removed. It flows into a concentration tank incorporating a pervaporation film having the property of selectively allowing the water vapor of the radioactive waste liquid from which microparticles have been removed to be heated, and the water vapor in the heated radioactive waste liquid passes through the pervaporation film. Then, the steam that has passed through is guided to a condensing tank by a vacuum pump to be cooled and condensed.

(作 用) 放射性廃液中の水分は浸透気化膜に吸収される。つぎ
に減圧に保つと、浸透気化膜中の水分は該膜中で気化さ
れて水蒸気になり、冷却することによって水蒸気は水に
変化する。この操作過程で放射性廃液中の水分が除去さ
れて、放射性廃液は濃縮される。
(Operation) The water in the radioactive waste liquid is absorbed by the pervaporation membrane. Next, when the pressure is maintained, the water in the pervaporation film is vaporized in the film to become water vapor, and the water vapor is changed to water by cooling. In this operation process, water in the radioactive waste liquid is removed, and the radioactive waste liquid is concentrated.

浸透性気化膜を通過した水蒸気の凝縮が遅いと、凝縮
タンク内が飽和水蒸気圧になり、濃縮速度を著しく低下
させる。そこで、本発明では真空ポンプにより凝縮タン
クと浸透気化膜の二次側、つまり凝縮側を減圧に維持す
る。これにより浸透気化膜の圧力差を大きくすることが
でき、水の浸透速度がはやくなり濃縮速度がはやくな
る。また、同時に凝縮タンク内が減圧になるので、水蒸
気の発生速度をはやくできる。
If the condensation of the steam passing through the permeable vaporizing membrane is slow, the inside of the condensation tank becomes saturated steam pressure, and the concentration rate is significantly reduced. Therefore, in the present invention, the secondary side of the condensing tank and the pervaporation membrane, that is, the condensing side is maintained at a reduced pressure by a vacuum pump. As a result, the pressure difference between the pervaporation membranes can be increased, and the water permeation rate becomes faster and the concentration rate becomes faster. At the same time, the pressure in the condensation tank is reduced, so that the generation rate of water vapor can be increased.

このようにして、真空ポンプで凝縮タンクに水蒸気を
導くことにより濃縮速度を著しく増加できる。
In this way, the concentration rate can be significantly increased by introducing steam into the condensation tank with a vacuum pump.

また、あらかじめ中空糸膜フィルタまたは疎水性多孔
質膜で放射性廃液中の微小粒子を除去したのち、浸透気
化膜によって濃縮処理を行うと、浸透気化膜に微小粒子
が付着しないので濃縮速度の低下を防止できる。
In addition, if the microparticles in the radioactive waste liquid are removed in advance using a hollow fiber membrane filter or a hydrophobic porous membrane, and then the concentration treatment is performed using a pervaporation membrane, the microparticles do not adhere to the pervaporation membrane. Can be prevented.

(実施例) 第1図に示した装置を使用して本発明に係る放射性廃
液の濃縮方法の第1の実施例を行ったが、その前に第1
図の装置について説明する。
Example A first example of the method for concentrating radioactive waste liquid according to the present invention was performed using the apparatus shown in FIG.
The illustrated device will be described.

第1図中、符号1は濃縮タンクを示しており、この濃
縮タンク1内には水平方向に二分するように選択的に水
および水蒸気を浸透して通過し得る性質を有する浸透気
化膜2、つまり非多孔性浸透膜でたとえばポリエステル
合成膜が張設されている。タンク1内の上部を一次側
3、下部を二次側4と称する。一次側3内には放射性廃
液5が収容され、この放射性廃液5を加熱するためのヒ
ータ6が設けられている。二次側4の側面には浸透気化
膜2を通過した蒸気または水分の蒸気流出管7の一端が
接続されており、この蒸気流出管7の他端は凝縮タンク
8に接続されている。凝縮タンク8内には冷却器9が設
けられ、この冷却器9には冷却水が流れ、凝縮タンク8
内を一定の温度に保つようになっている。
In FIG. 1, reference numeral 1 denotes a concentration tank. In the concentration tank 1, a pervaporation membrane 2, which has a property that water and water vapor can be selectively permeated and passed through so as to be divided in a horizontal direction, That is, for example, a polyester synthetic membrane is stretched over the non-porous permeable membrane. The upper part in the tank 1 is called a primary side 3 and the lower part is called a secondary side 4. A radioactive waste liquid 5 is accommodated in the primary side 3, and a heater 6 for heating the radioactive waste liquid 5 is provided. One end of a vapor or moisture vapor outflow pipe 7 that has passed through the pervaporation membrane 2 is connected to the side surface of the secondary side 4, and the other end of the vapor outflow pipe 7 is connected to a condensation tank 8. A cooler 9 is provided in the condensing tank 8, and cooling water flows through the cooler 9.
The inside is kept at a constant temperature.

また、凝縮タンク8には真空ポンプ10に直結する排気
管11が接続されて凝縮タンク8内を一定の真空度に保つ
ようになっている。凝縮タンク8の下部にはドレン管12
がバルブ13を有して接続されている。ドレン管12の下方
には凝縮水15を収容する凝縮水貯蔵タンク14が設けられ
ている。
An exhaust pipe 11 directly connected to the vacuum pump 10 is connected to the condensing tank 8, so that the inside of the condensing tank 8 is maintained at a constant degree of vacuum. A drain pipe 12 is provided at the lower part of the condensation tank 8.
Are connected with a valve 13. Below the drain pipe 12, a condensed water storage tank 14 for storing the condensed water 15 is provided.

第1図に示した装置において、模擬放射性廃液5を濃
縮タンク1内に一定量収容した。つぎに濃縮タンク1を
加熱し模擬放射性廃液5の温度を一定に保った。真空ポ
ンプ10を運転し、冷却水を通水し、凝縮タンク8を減
圧,低温状態に保った。一定時間経過したのち、凝縮水
貯蔵タンク14内に溜った凝縮水15と濃縮タンク1内に残
った廃液の分析を行った。
In the apparatus shown in FIG. 1, a certain amount of the simulated radioactive waste liquid 5 was stored in the concentration tank 1. Next, the concentration tank 1 was heated to keep the temperature of the simulated radioactive waste liquid 5 constant. The vacuum pump 10 was operated to supply cooling water, and the condensation tank 8 was kept at a reduced pressure and low temperature. After a certain period of time, the condensed water 15 collected in the condensed water storage tank 14 and the waste liquid remaining in the concentration tank 1 were analyzed.

以下に試験条件と結果を示す。 The test conditions and results are shown below.

以上の試験結果から明らかなように硫酸ナトリウム水
溶液の濃度は0.2wt%から20wt%に100倍濃縮することが
できた。また凝縮水中の硫酸ナトリウムの濃度は0.4ppm
で微少量しか凝縮水中に移行していないことが確かめら
れた。
As is clear from the above test results, the concentration of the aqueous sodium sulfate solution could be concentrated 100 times from 0.2 wt% to 20 wt%. The concentration of sodium sulfate in the condensed water is 0.4 ppm
It was confirmed that only a very small amount was transferred into the condensed water.

このように第1の実施例では硫酸ナトリウム水溶液を
35℃の低温で、しかも凝縮中にほとんど濃縮成分を混入
させることなく濃縮することができる。
Thus, in the first embodiment, the aqueous sodium sulfate solution is used.
It can be concentrated at a low temperature of 35 ° C. and with almost no condensed components mixed during the condensation.

つぎに本発明の第2の実施例を説明する。 Next, a second embodiment of the present invention will be described.

第2図および第3図に示す装置を使用して第2の実施
例を行った。
The second embodiment was performed using the apparatus shown in FIGS.

第2図の装置が第1図に示した装置と異なる点は濃縮
タンク1の前段に中空糸膜フィルタ16を連通管17で接続
したことにあり、その他の部分は第1図と同一なので重
複する部分の説明を省略する。なお、第3図は第2図の
中空糸膜フィルタ16内を説明するための要部を示す部分
断面図である。すなわち、第3図において中空糸膜18は
たとえばポリエチレン,ポリカーボネート,ポリウレタ
ン,ポリビニールアルコールなどの高分子材料で形成さ
れた中空の繊維である。この繊維状中空糸膜18を多数本
束ねて管板19に取り付け、この管板19を図示してないタ
ンク内に収納して過装置を構成している。この中空糸
膜18の外面に放射性廃液に含まれる微小粒子20が付着
し、過された液(放射性廃液)は中空糸膜18内を通
り、管板19から連通管17を流れて濃縮タンク1内の一次
側3へ流入する。なお、この実施例で使用した中空糸膜
フィルタは膜面積0.4m2,孔径0.1μmである。
2 differs from the apparatus shown in FIG. 1 in that a hollow fiber membrane filter 16 is connected to the upstream of the concentration tank 1 by a communication pipe 17, and the other parts are the same as those in FIG. The description of the parts to be performed is omitted. FIG. 3 is a partial sectional view showing a main part for explaining the inside of the hollow fiber membrane filter 16 of FIG. That is, in FIG. 3, the hollow fiber membrane 18 is a hollow fiber formed of a polymer material such as polyethylene, polycarbonate, polyurethane, and polyvinyl alcohol. A large number of the fibrous hollow fiber membranes 18 are bundled and attached to a tube sheet 19, and the tube sheet 19 is housed in a tank (not shown) to constitute a filter. The fine particles 20 contained in the radioactive waste liquid adhere to the outer surface of the hollow fiber membrane 18, and the passed liquid (radioactive waste liquid) passes through the hollow fiber membrane 18, flows from the tube sheet 19 through the communication pipe 17, and flows into the concentration tank 1. To the primary side 3 of the inside. The hollow fiber membrane filter used in this example has a membrane area of 0.4 m 2 and a pore diameter of 0.1 μm.

ここで、模擬放射性廃液として硫酸ナトリウム濃度0.
2wt%の水溶液に微小粒子としてFeOOHを200ppmを添加し
て混合したのち、この水溶液を中空糸膜フィルタ16に流
し込んで過して微小粒子を除去した。この液を濃縮
タンク1内の一次側3に流入した。一次側3内の水溶液
を35℃に保った。また、凝縮タンク8内の温度を5℃に
設定し、真空ポンプ10を運転し凝縮タンク8内の真空度
10torrに設定した。一定時間毎に濃縮タンク1内の硫酸
ナトリウム水溶液を採取し、濃度の変化を測定した。こ
の溶液の濃縮速度は105Kg/m2・dであった。
Here, sodium sulfate concentration of 0.
After adding and mixing 200 ppm of FeOOH as fine particles to a 2 wt% aqueous solution, the aqueous solution was poured into a hollow fiber membrane filter 16 to remove the fine particles. This liquid flowed into the primary side 3 in the concentration tank 1. The aqueous solution in the primary side 3 was kept at 35 ° C. Further, the temperature in the condensing tank 8 was set to 5 ° C., and the vacuum pump 10 was operated to operate the vacuum degree in the condensing tank 8.
Set to 10 torr. The sodium sulfate aqueous solution in the concentration tank 1 was sampled at regular intervals, and the change in concentration was measured. The concentration rate of this solution was 105 kg / m 2 · d.

なお、比較例として、この第2の実施例で使用したFe
OOHの微小粒子を200ppm添加した硫酸ナトリウム0.2wt%
濃度の水溶液を中空糸膜フィルタ16を通過させない以外
は第2の実施例と同様にして処理した。この比較例にお
ける溶液の濃縮速度は74Kg/m2・dであった。
In addition, as a comparative example, Fe used in the second example was used.
0.2wt% sodium sulfate with 200ppm OOH microparticles
The treatment was carried out in the same manner as in the second embodiment except that the aqueous solution having the concentration was not passed through the hollow fiber membrane filter 16. The concentration rate of the solution in this comparative example was 74 kg / m 2 · d.

また、第1の実施例における溶液の濃縮速度は106Kg/
m2・dであった。
The concentration rate of the solution in the first embodiment was 106 kg /
m 2 · d.

このように放射性廃液中に微小粒子を含まないか、ま
たは含んでいてもあらかじめフィルタで微小粒子を除去
しておくことによって、濃縮速度の低下はないことが認
められた。
As described above, it was recognized that the concentration rate was not reduced by removing the fine particles with a filter in advance, even if the fine particles were not contained in the radioactive waste liquid or contained.

[発明の効果] 本発明によれば低温度で浸透気化膜で選択的に水,蒸
気を通過させることができるので、放射性廃液を濃縮す
ることができ、しかも濃縮水中に濃縮成分はほとんど混
入されない。また、あらかじめ放射性廃液中に含まれて
いる微小粒子を除去しておくことによって、濃縮速度の
低下を防止することができる。
[Effects of the Invention] According to the present invention, water and steam can be selectively passed through the pervaporation membrane at a low temperature, so that the radioactive waste liquid can be concentrated, and the concentrated component is hardly mixed in the concentrated water. . In addition, by removing the fine particles contained in the radioactive waste liquid in advance, it is possible to prevent a reduction in the concentration rate.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る放射性廃液の第1の実施例を説明
するための系統図、第2図は本発明の第2の実施例を説
明するための系統図、第3図は第2図の要部を示す縦断
面図である。 1……濃縮タンク,2……浸透気化膜 3……一次側,4……二次側 5……放射性廃液,6……ヒータ 7……蒸気流出管,8……凝縮タンク 9……冷却器,10……真空ポンプ 11……排気管,12……ドレン管 13……バルブ 14……凝縮水貯蔵タンク 15……凝縮水 16……中空糸膜フィルタ 17……連通管 18……中空糸膜 19……管板 20……微小粒子
FIG. 1 is a system diagram for explaining a first embodiment of a radioactive liquid waste according to the present invention, FIG. 2 is a system diagram for explaining a second embodiment of the present invention, and FIG. It is a longitudinal cross-sectional view which shows the principal part of a figure. 1 ... concentration tank, 2 ... pervaporation membrane 3 ... primary side, 4 ... secondary side 5 ... radioactive waste liquid, 6 ... heater 7 ... vapor outflow pipe, 8 ... condensation tank 9 ... cooling Vacuum pump 11 Vacuum pump 11 Exhaust pipe 12 Drain pipe 13 Valve 14 Condensate storage tank 15 Condensate 16 Hollow fiber membrane filter 17 Communication pipe 18 Hollow Thread film 19 …… Tube sheet 20 …… Fine particles

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子力施設から発生した放射性廃液中に含
まれている微小粒子を中空糸膜フィルタまたは疎水性多
孔質膜で除去したのち、この微小粒子を除去した放射性
廃液の水蒸気を選択的に通過させ得る性質の浸透気化膜
が組み込まれた濃縮タンク内に流入して加熱し、この加
熱した放射性廃液中の水蒸気を前記浸透気化膜を通過さ
せ、さらにこの通過した水蒸気を真空ポンプにより凝縮
タンクに導いて冷却し凝縮することを特徴とする放射性
廃液の濃縮方法。
(1) After removing fine particles contained in a radioactive waste liquid generated from a nuclear facility with a hollow fiber membrane filter or a hydrophobic porous membrane, water vapor of the radioactive waste liquid from which the fine particles have been removed is selectively removed. It flows into a concentration tank in which a pervaporation membrane having the property of allowing passage is incorporated, and is heated.The steam in the heated radioactive waste liquid is passed through the pervaporation membrane. A method for concentrating radioactive waste liquid, wherein the method is conducted to cool and condense.
JP63273102A 1988-10-31 1988-10-31 Concentration method of radioactive liquid waste Expired - Fee Related JP2597680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63273102A JP2597680B2 (en) 1988-10-31 1988-10-31 Concentration method of radioactive liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63273102A JP2597680B2 (en) 1988-10-31 1988-10-31 Concentration method of radioactive liquid waste

Publications (2)

Publication Number Publication Date
JPH02120698A JPH02120698A (en) 1990-05-08
JP2597680B2 true JP2597680B2 (en) 1997-04-09

Family

ID=17523167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63273102A Expired - Fee Related JP2597680B2 (en) 1988-10-31 1988-10-31 Concentration method of radioactive liquid waste

Country Status (1)

Country Link
JP (1) JP2597680B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100880497B1 (en) * 1999-08-06 2009-01-28 이 아이 듀폰 디 네모아 앤드 캄파니 Water Still and Method of Operation thereof
JP2006159177A (en) * 2004-11-10 2006-06-22 Mitsubishi Heavy Ind Ltd Waste water treatment device, waste water treatment system, waste water treatment method and waste water recycling method
CN102351359B (en) * 2011-07-01 2013-06-12 清华大学 Device and method for radioactive waste water concentration treatment
KR20150004881A (en) * 2012-05-30 2015-01-13 아사히 가세이 케미칼즈 가부시키가이샤 Method and device for obtaining purified water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164195A (en) * 1985-01-16 1986-07-24 日東電工株式会社 Method of treating nuclear power waste water

Also Published As

Publication number Publication date
JPH02120698A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
WO1988006914A1 (en) Apparatus for concentrating waste liquid, apparatus for processing waste liquid and method of concentrating waste liquid
JP2597680B2 (en) Concentration method of radioactive liquid waste
JPH0957069A (en) Method for refining organic liquid by pervaporation, device used therefor and steam drying utilizing them
JPH0140641B2 (en)
JP6015062B2 (en) Equipment for concentrating radioactive material-containing water using a zeolite membrane
SK279588B6 (en) Process for separating water from a diluted aqueous solution of n-methylmorpholine-n-oxide, n-methylmorpholine and/or morpholine
JPH05184888A (en) Separating membrane system and separating method using said system
JPH05192543A (en) Method and apparatus for regenerating membrane evaporative concentrator of waste fluid
US11935665B2 (en) Method and facility for treating aqueouos effluents from the primary circuit of a nuclear power plant comprising boric acid
JPH04346823A (en) Membrane method and device for evaporating and concentrating waste liquid
US20210339197A1 (en) One step integration of membrane distillation with direct air-stripping
JPS60147201A (en) Treatment of aqueous solution containing volatile substance
JPH01115493A (en) Method for regenerating water from domestic waste water
Shahroie et al. Short review on membrane distillation techniques for removal of dissolved ammonia
EP0217874A1 (en) Rapid vapour transport through unwetted porous barriers.
Chmielewski et al. Purification of radioactive wastes by low temperature evaporation (membrane distillation)
JP2898080B2 (en) Operation method of degassing membrane device
JPH0719032Y2 (en) Radioactive waste liquid treatment device
JP2982747B2 (en) Chemical treatment apparatus and chemical treatment method
JPH0313896A (en) Radioactive waste liquid disposal facility
JPH07251157A (en) Ultrapure water heater
WO2022034134A1 (en) Hydrogen halide permeation
JPH07104434B2 (en) Method for concentrating radioactive liquid waste
JPH02160006A (en) Device for removing volatile organic matter
JPH02120699A (en) Concentration of radioactive liquid waste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees