JPH03183661A - Production of silicon nitride sintered body - Google Patents

Production of silicon nitride sintered body

Info

Publication number
JPH03183661A
JPH03183661A JP1317835A JP31783589A JPH03183661A JP H03183661 A JPH03183661 A JP H03183661A JP 1317835 A JP1317835 A JP 1317835A JP 31783589 A JP31783589 A JP 31783589A JP H03183661 A JPH03183661 A JP H03183661A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
water
oxide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1317835A
Other languages
Japanese (ja)
Inventor
Isao Ikeda
功 池田
Hiroshi Izuhara
浩 出原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronics Engineering Corp
Original Assignee
Toshiba Corp
Toshiba Material Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Material Engineering Co Ltd filed Critical Toshiba Corp
Priority to JP1317835A priority Critical patent/JPH03183661A/en
Publication of JPH03183661A publication Critical patent/JPH03183661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the environmental pollution at the time of mixing and to shorten the time for mixing by subjecting a mixture formed by adopting specific raw materials, adding a specific ratio of sintering assistant to the materials and using water as a dispersion medium to degreasing calcination. CONSTITUTION:The compsn. prepd. by adding 1 to 6 pts.wt. oxide of a rare earth element contg. >=30wt.% Y2O3 or cerium oxide, 2 to 7 pts.wt. Al2O3 and <=3 pts.wt. >=1 kinds of titanium oxide, zirconium oxide and molybdenum carbide to 100 pts.wt. silicon nitride powder produced by a silicon dimide pyrolysis method is used. The mixture obtd. by adding water as a dispersion medium to this compsn. and mixing the compsn. by a wet process is pelletized and calcined to yield the silicon nitride sintered body. The silicon nitride powder produced by the silicon dimide pyrolysis method is relatively small in the reactivity with water, therefore, water is usable as a dispersion medium. Since the water is superior in dispersion function to the dispersion media of a solvent system to pollute the environment, the time for mixing is shortened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は窒化けい素焼結体の製造方法に係り、特に原料
粉末混合操作の際に有毒な溶剤等を使用せず、優れた品
質特性を備える窒化けい素焼結体を安価に製造し得る窒
化けい素焼結体の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for producing a silicon nitride sintered body, and in particular does not use toxic solvents or the like during the raw material powder mixing operation. The present invention relates to a method for producing a silicon nitride sintered body that can produce a silicon nitride sintered body with excellent quality characteristics at low cost.

(従来の技術) 窒化けい素を主成分とするセラミックス焼結体は軽量で
高強度を有し、また耐摩耗特性に優れているため、ベア
リングの転動体およびレース材として広く普及し始め、
さらに自動車部品や化学機械部品にも利用されている。
(Prior art) Ceramic sintered bodies mainly composed of silicon nitride are lightweight, have high strength, and have excellent wear resistance, so they have begun to be widely used as rolling elements and race materials for bearings.
It is also used in automobile parts and chemical and mechanical parts.

特に窒化けい素焼結体は1900℃程度までの高温度範
囲において優れた耐熱性を有し、かつ熱膨脹係数も小さ
いため、熱衝撃に対する耐性も従来の金属材より優れて
いることから、ガスタービン翼、タービンノズル、内燃
機関部品を始め、各種の高強度耐熱部品材料としてその
用途開発が進められている。
In particular, silicon nitride sintered bodies have excellent heat resistance in the high temperature range up to about 1900°C and have a small coefficient of thermal expansion, so they have better resistance to thermal shock than conventional metal materials. Applications are being developed as materials for various high-strength, heat-resistant parts, including turbine nozzles and internal combustion engine parts.

従来、窒化けい素焼結体は、所定粒径の窒化(い素粉末
と、焼結助剤としての酸化イットリウ1(Y2O2)、
などの希土類酸化物、酸化アルミニウム(A I 20
 a )と、分散媒としてのトリづロルエタン等の塩素
系溶剤とを混合して均一なd合体を形成し、得られた混
合体を造粒成形し、2らに脱脂焼結して製造される。
Conventionally, silicon nitride sintered bodies are made by combining nitride (silicon powder) with a predetermined particle size, yttrium oxide (Y2O2) as a sintering aid,
Rare earth oxides such as aluminum oxide (AI 20
A) is mixed with a chlorinated solvent such as trichloroethane as a dispersion medium to form a uniform d-coalescence, the resulting mixture is granulated, and then degreased and sintered into two parts. Ru.

ここで原料となる窒化けい素粉末としては、般に二酸化
けい素(S + 02 )を還元して窒化l二い素とす
る、いわゆるシリカ還元法によって製lされた原料粉末
や、けい素の金属化合物を高温1で直接窒化させる、い
わゆるメタル窒化法によ1て製造された原料粉末などが
使用される。
The silicon nitride powder used as the raw material here is generally a raw material powder produced by the so-called silica reduction method, in which silicon dioxide (S + 02) is reduced to disilicone nitride, or a silicon nitride powder made by the so-called silica reduction method, and Raw material powder produced by a so-called metal nitriding method in which a metal compound is directly nitrided at high temperature 1 is used.

また焼結体を構成する上記窒化けい素粉末の2では焼結
性が極めて悪いため、各種の焼結助剤力原料中に添加さ
れる。焼結体の特性を向上させどためには、窒化けい素
粉末と焼結助剤とを均一に混合する必要があり、そのた
めに原料粉末に分費媒を添加して均一に混合する操作が
実行される。
Further, since the sintering property of the silicon nitride powder 2 which constitutes the sintered body is extremely poor, various sintering aids are added to raw materials. In order to improve the properties of the sintered body, it is necessary to uniformly mix the silicon nitride powder and the sintering aid, and for this purpose it is necessary to add a dispensing medium to the raw material powder and mix it uniformly. executed.

分散媒としては、一般に水が優れた機能を発揮するが、
従来の窒化けい素粉末は水と反応し易く、NHとS ]
 02に分解し易く、焼結体の強度時性や耐摩耗性が低
下する場合が多い。そのため原料粉末と反応しにくいト
リクロルエタン等の有機塩素系溶剤が分散媒として、一
般に使用される。
Water generally works well as a dispersion medium, but
Conventional silicon nitride powder easily reacts with water, resulting in NH and S]
It is easy to decompose into 02, and the strength, durability and wear resistance of the sintered body often deteriorate. Therefore, organic chlorine solvents such as trichloroethane that do not easily react with the raw material powder are generally used as dispersion media.

(発明が解決しようとする課題) しかしながら従来の窒化けい素焼結体の製造方法によれ
ば、分散媒としてしトリクロルエタン等の塩素系溶剤を
使用していたため、原料粉末の混合工程において有害な
溶剤蒸気が排出される可能性が大きく、作業環境および
周辺環境を汚染する危険性があり、その防護対策に膨大
な費用を要する欠点があった。
(Problem to be solved by the invention) However, according to the conventional manufacturing method of silicon nitride sintered bodies, a chlorinated solvent such as trichloroethane was used as a dispersion medium, which caused harmful solvents to be used in the mixing process of raw material powder. There is a high possibility that steam will be emitted, and there is a risk of contaminating the working environment and the surrounding environment, and there is a drawback that protective measures require a huge amount of cost.

またトリクロルエタン等の塩素系溶剤は、窒化けい素粉
末原料と焼結助剤とを分散させる機能が低いため、原料
粉末を均一に混合するには長時間にわたる混合操作が必
要であった。そのため焼結体の製造効率が低く、量産性
が低いという課題が残されていた。
In addition, chlorinated solvents such as trichloroethane have a low ability to disperse the silicon nitride powder raw material and the sintering aid, so a long mixing operation is required to uniformly mix the raw material powder. Therefore, the problem of low manufacturing efficiency of the sintered body and low mass productivity remained.

本発明は上記の課題を解決するためになされたものであ
り、原料混合工程において有害なミスト蒸気等を発生す
る分散媒を使用せず、優れた品質特性を有する窒化けい
素焼結体を安価かつ効率的に製造し得る窒化けい素焼結
体の製造方法を提供することを目的とする。
The present invention was made to solve the above problems, and it is possible to produce a silicon nitride sintered body with excellent quality characteristics at a low cost and without using a dispersion medium that generates harmful mist vapor etc. in the raw material mixing process. An object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that can be manufactured efficiently.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段と作用) 本発明者は、以上の観点から有害な分散媒を使用せず、
また従来の焼結体と比較して品質特性を損うことなく、
効率的に窒化けい素焼結体を得ることを目的に、窒化け
い素粉末の種類、焼結助剤としての添加物の種類および
含有量、分散媒の種類を種々変えて実験を繰り返したと
ころ、特定の原料を採用し、所定比率の焼結助剤を添加
し、水を分散媒として均一に混合して脱脂焼成すること
により、従来の焼結体の品質特性と遜色なく、効率的に
窒化けい素焼結体を得ることができた。
(Means and effects for solving the problem) From the above viewpoint, the present inventors do not use harmful dispersion media,
In addition, compared to conventional sintered bodies, without compromising quality characteristics,
In order to efficiently obtain a silicon nitride sintered body, we repeated experiments by varying the type of silicon nitride powder, the type and content of additives as sintering aids, and the type of dispersion medium. By using specific raw materials, adding a sintering aid in a predetermined ratio, and uniformly mixing water as a dispersion medium before degreasing and firing, we can efficiently nitridize the product, comparable to the quality characteristics of conventional sintered bodies. A silicon sintered body could be obtained.

本発明は上記の知見に基づいて完成されたものである。The present invention was completed based on the above findings.

すなわち本願発明に係る窒化けい素焼結体の製造方法は
シリコンジイミド熱分解法によって製造された窒化けい
素粉末100重量部に対して酸化イツトリウムおよび酸
化セリウムのいずれかを30重量%以上含む希土類元素
の酸化物を1〜6重量部、酸化アルミニウムを2〜7重
量部、酸化チタニウム、酸化ジルコニウムおよび炭化モ
リブデンの群から選択された少なくとも1種の化合物を
3重量部以下添加して成る組成物に対して分散媒として
水を添加し、湿式混合した後に得られた混合物を造粒成
形し、焼成することを特徴とする。
That is, the method for producing a silicon nitride sintered body according to the present invention uses a rare earth element containing 30% by weight or more of either yttrium oxide or cerium oxide based on 100 parts by weight of silicon nitride powder produced by silicon diimide pyrolysis method. For a composition comprising 1 to 6 parts by weight of an oxide, 2 to 7 parts by weight of aluminum oxide, and 3 parts by weight or less of at least one compound selected from the group of titanium oxide, zirconium oxide, and molybdenum carbide. The method is characterized in that water is added as a dispersion medium, wet-mixed, and the resulting mixture is granulated and fired.

また窒化けい素の平均粒径は2μm以下に設定するとよ
い。
Further, the average particle size of silicon nitride is preferably set to 2 μm or less.

以下本発明の限定理由を述べる。The reasons for the limitations of the present invention will be described below.

本発明の対象となる窒化けい素焼結体の原料となる窒化
けい素粉末は、シリコンジイミド熱分解法によって製造
されたものを使用する。シリコンジイミド熱分解法はシ
リコンジイミド(Si(NH)2)を高温条件下におい
て熱分解し、窒化けい素(SiN)と水素(H2)とに
分解する4 方法である。このシリコンジイミド熱分解法によって製
造された窒化けい素粉末は、水との反応性が比較的小さ
いため、後述する原料混合工程において、水を分散媒と
して使用することが可能となる。
The silicon nitride powder used as the raw material for the silicon nitride sintered body, which is the object of the present invention, is produced by a silicon diimide pyrolysis method. The silicon diimide thermal decomposition method is a method in which silicon diimide (Si(NH)2) is thermally decomposed under high temperature conditions to decompose it into silicon nitride (SiN) and hydrogen (H2). Since the silicon nitride powder produced by this silicon diimide pyrolysis method has relatively low reactivity with water, water can be used as a dispersion medium in the raw material mixing step described below.

また使用する窒化けい素粉末の平均粒径は、2μm以下
に設定するとよい。その理由は2μmを超えると焼結体
の緻密度が低下するからである。
Further, the average particle size of the silicon nitride powder used is preferably set to 2 μm or less. The reason for this is that when the thickness exceeds 2 μm, the density of the sintered body decreases.

酸化イツトリウムおよび酸化セリウム等の希土類元素酸
化物は、後述する酸化アルミニウムや酸化チタニウムと
ともに、焼結性を改善する焼結助剤として添加されるも
のであり、その添加量は窒化けい素粉末100重量部に
対して1〜6重量部である。
Rare earth element oxides such as yttrium oxide and cerium oxide are added as sintering aids to improve sinterability, along with aluminum oxide and titanium oxide, which will be described later. 1 to 6 parts by weight.

添加量が1重量部未満では焼結促進剤としての機能が不
充分でうまく焼結できない。一方添加量が6重量部を超
えると、高温時における焼結体の機械的強度および耐熱
衝撃性が低下するため、添加量は上記範囲に設定される
If the amount added is less than 1 part by weight, the function as a sintering accelerator will be insufficient and sintering will not be successful. On the other hand, if the amount added exceeds 6 parts by weight, the mechanical strength and thermal shock resistance of the sintered body at high temperatures will decrease, so the amount added is set within the above range.

この焼結助剤として使用される希土類元素酸化物粉末は
高純度のものである必要はなく、酸化イツトリウムおよ
び酸化セリウムのいずれかを30重量%以上を含み、残
部にランタン、スカンジウム等の希土類元素の酸化物や
その他の不純物を含有する粗製の原料粉末でもよい。
The rare earth element oxide powder used as this sintering aid does not need to be of high purity; it contains 30% by weight or more of either yttrium oxide or cerium oxide, and the balance is a rare earth element such as lanthanum or scandium. It may also be a crude raw material powder containing oxides and other impurities.

この粗製原料を使用することにより、高純度の酸化イツ
トリウムを使用した場合と比較して、焼結温度を低く設
定することが可能となり、また少ない添加量で充分に焼
結できるという利点がある上に、高価なイツトリウムや
セリウムの使用量が減少し、焼結体の製造コストを大幅
に低減することができる。
By using this crude raw material, it is possible to set the sintering temperature lower than when using high-purity yttrium oxide, and it has the advantage that sufficient sintering can be achieved with a small amount of addition. In addition, the amount of expensive yttrium and cerium used is reduced, and the manufacturing cost of the sintered body can be significantly reduced.

次に酸化アルミニウム(A1203)は、酸化イツトリ
ウムおよび酸化セリウムとともに焼結助剤として添加さ
れる。その添加量は窒化けい素100重量部に対して2
〜7重量部に設定される。
Aluminum oxide (A1203) is then added as a sintering aid along with yttrium oxide and cerium oxide. The amount added is 2 parts by weight per 100 parts by weight of silicon nitride.
~7 parts by weight.

添加量が2重量部未満であると、焼結性が低下する一方
、添加量が7重量部を超えると焼結体の高温強度が低下
するためである。
This is because if the amount added is less than 2 parts by weight, the sinterability decreases, while if the amount added exceeds 7 parts by weight, the high temperature strength of the sintered body decreases.

さらに添加成分として酸化チタニウム、酸化ジルコニウ
ム、炭化モリブデンの群から選択された少なくとも1種
の化合物を、3重量部以下(但し0は含まず)添加する
。これらの化合物は焼結体の靭性を高めるとともに焼結
体の色調を改良するために添加されものである。添加量
が3重量部を超えると焼結体の高温強度が低下するため
上記範囲に設定される。
Further, as an additive component, at least one compound selected from the group of titanium oxide, zirconium oxide, and molybdenum carbide is added in an amount of 3 parts by weight or less (excluding zero). These compounds are added to increase the toughness of the sintered body and to improve the color tone of the sintered body. If the amount added exceeds 3 parts by weight, the high temperature strength of the sintered body will decrease, so it is set within the above range.

上記各組成分を所定範囲内の組成比で添加した後に分散
媒としての水を添加し、各成分を均一に混合する。水の
添加量はスラリ混合物全重量に対して40〜65%程度
に設定される。40%未満では分散効果が少ない一方、
65%を超えると乾燥時間が長期化するためである。
After adding each of the above components in a composition ratio within a predetermined range, water as a dispersion medium is added to uniformly mix each component. The amount of water added is set to about 40 to 65% based on the total weight of the slurry mixture. If it is less than 40%, the dispersion effect is small;
This is because if it exceeds 65%, the drying time becomes long.

ここで混合機としては、従来のボールミルより混合効率
が高いアトライタを使用するとよい。アトライタは例え
ば第2図に示すように粉砕攪拌用ボール1を多数装填し
、原料粉末および分散媒を収容した粉砕タンク2と、収
容された原料粉末層内に回転自在に配置されたアジテー
タアーム3と、アジテータアーム3を回転するアジテー
タシャフト4と、粉砕タンク2の外面に一体に取り付け
られ、原料スラリ等の温度調節を行なうジャケット5と
、粉砕タンク2内の原料粉末等を循環させるための循環
ポンプ6および循環配管7とから構成される。
Here, as the mixer, it is preferable to use an attritor, which has higher mixing efficiency than a conventional ball mill. For example, as shown in FIG. 2, the attritor includes a crushing tank 2 loaded with a large number of crushing and stirring balls 1 and containing raw material powder and a dispersion medium, and an agitator arm 3 rotatably disposed within the contained raw material powder layer. , an agitator shaft 4 that rotates the agitator arm 3, a jacket 5 that is integrally attached to the outer surface of the grinding tank 2 and adjusts the temperature of the raw material slurry, etc., and a circulation system that circulates the raw material powder, etc. in the grinding tank 2. It is composed of a pump 6 and circulation piping 7.

粉砕タンク2内に収容された原料粉末、焼結助剤および
水は、アジテータアーム3の回転によって混合される。
The raw material powder, sintering aid, and water contained in the crushing tank 2 are mixed by rotation of the agitator arm 3.

各原料粉末は相互に混合するとともにボール1の衝撃力
によってより微細化される。
Each of the raw material powders is mixed with each other and further refined by the impact force of the ball 1.

ここで混合時間は1〜24時間に設定される。Here, the mixing time is set to 1 to 24 hours.

混合時間が1時間未満では窒化けい素粉末と焼結助剤と
の分散混合が不充分である一方、24時間を超える長期
に及ぶと、窒化けい素粉末の一部が水と反応してSiO
□を生じ、焼結体の強度低下を招くからである。
If the mixing time is less than 1 hour, the dispersion and mixing of the silicon nitride powder and the sintering aid will be insufficient, while if the mixing time exceeds 24 hours, a part of the silicon nitride powder will react with water and form SiO.
This is because □ is produced, leading to a decrease in the strength of the sintered body.

次に混合操作によって得られた均一なスラリーを温度2
00℃の雰囲気中に噴霧して造粒するスプレー造粒工程
に供する。この造粒工程においてスラリー中の水分のみ
が蒸発して原料粒子が形成される。次に得られた原料粒
子をプレス成形して所定の形状に成形し、さらに必要に
応じて生加Jおよび脱脂操作を行なった後に、非酸化性
奪回2において、温度1650〜1850℃で焼結する
なお、この焼結は常圧焼結法によっても、あるいはその
他の焼結法、例えばホットプレス法、1囲気を加圧して
行なう熱間静水圧焼結法(HIP等によっても、緻密、
かつ高温強度や耐熱衝撃性の優れた窒化けい素焼結体が
得られる。
Next, the uniform slurry obtained by the mixing operation was mixed at a temperature of 2
The mixture is subjected to a spray granulation process in which the mixture is sprayed into an atmosphere at 00°C and granulated. In this granulation step, only the water in the slurry evaporates to form raw material particles. Next, the obtained raw material particles are press-molded into a predetermined shape, and then subjected to raw processing and degreasing operations as necessary, and then sintered at a temperature of 1650 to 1850 °C in non-oxidizing recovery 2. However, this sintering can be performed by pressureless sintering, or by other sintering methods such as hot pressing, hot isostatic pressing (HIP, etc.)
Moreover, a silicon nitride sintered body having excellent high-temperature strength and thermal shock resistance can be obtained.

本発明に係る窒化けい素焼結体の製造方法によれば、原
料粉末を均一に混合するための分散媒として水を使用し
ているため、混合操作時に有害蒸気を発生するおそれが
なく、作業環境および周辺環境を汚染することがない。
According to the method for producing a silicon nitride sintered body according to the present invention, water is used as a dispersion medium to uniformly mix the raw material powder, so there is no risk of generating harmful vapor during the mixing operation, and the work environment is and will not pollute the surrounding environment.

またシリコンジイミド熱分解法によって製造された窒化
けい素原料粉末は、水との反応性が小さく安定している
ため、分散媒として水を使用することが可能になり、水
との反応による焼結体の品質特性の低下を招くことなく
、高温強度や耐熱性に優れた焼結体が得られる。
In addition, the silicon nitride raw material powder produced by the silicon diimide pyrolysis method has low reactivity with water and is stable, making it possible to use water as a dispersion medium, and sintering by reaction with water. A sintered body with excellent high-temperature strength and heat resistance can be obtained without deteriorating the quality characteristics of the body.

そして水は、従来のトリクロルエタンなどの溶剤系の分
散媒と比較して原料粉末の分散機能が極めて優れている
ため、短時間の混合操作によって原料粉末を均一に混合
することができる。したがって焼結体の製造効率が大幅
に向上し、焼結体の量産性を改善することができる。
Since water has an extremely superior ability to disperse the raw material powder compared to conventional solvent-based dispersion media such as trichloroethane, the raw material powder can be uniformly mixed in a short mixing operation. Therefore, the manufacturing efficiency of the sintered body can be greatly improved, and the mass productivity of the sintered body can be improved.

(実施例) 次に本発明を実施例により具体的に説明する。(Example) Next, the present invention will be specifically explained using examples.

実施例1としてシリコンジイミド熱分解法によって製造
した平均粒径0.8μmの窒化けい素粉末100重量部
に対して、焼結助剤としての酸化イツトリウムを5重量
部、酸化アルミニウムを5重量部、酸化チタニウムを1
,5重量部を添加して原料粉末混合体を形成し、得られ
た混合体重量の80%重量相当のイオン交換水を分散媒
として添加し、第2図に示すアトライタにて4時間混合
した。
As Example 1, to 100 parts by weight of silicon nitride powder with an average particle size of 0.8 μm produced by silicon diimide pyrolysis method, 5 parts by weight of yttrium oxide as a sintering aid, 5 parts by weight of aluminum oxide, 1 titanium oxide
, 5 parts by weight were added to form a raw material powder mixture, ion-exchanged water equivalent to 80% of the weight of the resulting mixture was added as a dispersion medium, and mixed for 4 hours in an attritor shown in Figure 2. .

次に得られたスラリー混合体に結合剤としてワックスエ
マルジョンと水溶性アクリル樹脂を重量比で7%添加し
、スプレードライヤーにて乾燥温度200℃で造粒した
。次に得られた造粒粉をプレス機にて700kg/cn
fの成形圧で円柱形の生成形体を形成し、さらに生加工
を施し、球状に成形した。かくして得た生成形体を70
0℃の非酸化性雰囲気にて加熱処理を施して脱脂を行な
った後に、1800℃で2時間常圧焼結を行ない、その
後さらに1750℃の窒素ガス雰囲気において、100
0気圧の静水圧をかけて1時間HIP処理を行ない焼結
体素体を得た。
Next, 7% by weight of a wax emulsion and a water-soluble acrylic resin were added as binders to the obtained slurry mixture, and the mixture was granulated using a spray dryer at a drying temperature of 200°C. Next, the obtained granulated powder was put into a press at a rate of 700 kg/cn.
A cylindrical shaped body was formed at a molding pressure of f, and was further processed into a spherical shape. The resulting formed body is 70
After degreasing by heat treatment in a non-oxidizing atmosphere at 0°C, normal pressure sintering was performed at 1800°C for 2 hours, and then further 100°C in a nitrogen gas atmosphere at 1750°C.
A hydrostatic pressure of 0 atmospheres was applied and HIP treatment was performed for 1 hour to obtain a sintered body.

次に得られた焼結体素体の表面加工を施し、粗加工およ
び仕上げ加工を行なって、最終的に真球度0.25μm
、直径不同0.25pm、相互差0.5μm1表面粗さ
0.025μmの精度まで加工し、ベアリング用ボール
としての球状焼結体を形威した。
Next, the obtained sintered body is subjected to surface processing, rough processing and finishing processing to achieve a final sphericity of 0.25 μm.
The spherical sintered body was processed to an accuracy of 0.25 pm for diameter variation, 0.5 μm for mutual difference, and 0.025 μm for surface roughness, and formed a spherical sintered body as a ball for a bearing.

そして得られた球状焼結体8を第3図に示すようなスラ
スト荷重転がり疲労試験装置に装填して球状焼結体8の
転がり疲労特性を測定した。ここでスラスト荷重転がり
疲労試験装置は、例えば5UJ2製の基板9上に保持器
10を介して複数の球状焼結体8を転勤自在に離間配置
し、球状焼結体8の上面に内輪11を介して回転軸12
を設けて構成される。本実施例の試験条件は、回転軸1
2に付加する荷重を400kg、回転数を毎分1500
回転とした。
Then, the obtained spherical sintered body 8 was loaded into a thrust load rolling fatigue testing apparatus as shown in FIG. 3, and the rolling fatigue characteristics of the spherical sintered body 8 were measured. Here, in the thrust load rolling fatigue test apparatus, a plurality of spherical sintered bodies 8 are arranged at a distance from each other via a cage 10 on a substrate 9 made of, for example, 5UJ2, and an inner ring 11 is placed on the upper surface of the spherical sintered bodies 8. Rotating shaft 12 through
It is configured by providing. The test conditions of this example are as follows:
The load added to 2 is 400 kg, and the rotation speed is 1500 per minute.
It was rotated.

一方、比較例1として実施例1と同一の組成を有する原
料粉末に対して分散媒としてトリクロルエタンを添加し
、同一条件で処理して球状焼結体を形威し、スラスト荷
重転がり疲労試験に供した。
On the other hand, as Comparative Example 1, trichloroethane was added as a dispersion medium to the raw material powder having the same composition as in Example 1, and it was processed under the same conditions to form a spherical sintered body, which was subjected to a thrust load rolling fatigue test. provided.

その結果、実施例1および比較例1ともに試験時間が2
00時間を超えても、球状焼結体表面に剥離等の欠陥が
発生せず、充分な転がり疲労特性を有することが確認で
きた。
As a result, the test time was 2 for both Example 1 and Comparative Example 1.
Even after 00 hours, no defects such as peeling occurred on the surface of the spherical sintered body, and it was confirmed that the sintered body had sufficient rolling fatigue properties.

また実施例1および比較例1と同一条件で3点曲げ試験
用のテストピースを調製し、温度別による3点曲げ強度
を測定し、下記第1表に示す結果を得た。なお各温度で
の測定は5検体ずつ行ない、その平均値を表示している
Further, test pieces for a three-point bending test were prepared under the same conditions as in Example 1 and Comparative Example 1, and the three-point bending strength was measured at different temperatures, and the results shown in Table 1 below were obtained. Note that measurements at each temperature were performed on five samples, and the average value is displayed.

〔以下余白〕[Margin below]

第1表 第1表に示す結果から明らかなように分散媒としてイオ
ン交換水を使用した場合においても、トリクロルエタン
を使用した従来例と比較して遜色のない強度特性値が得
られ、水混合による影響がないことがわかる。
Table 1 As is clear from the results shown in Table 1, even when using ion-exchanged water as a dispersion medium, strength characteristics comparable to those of the conventional example using trichloroethane were obtained, and water mixing It can be seen that there is no influence due to

次に比較例2.3として窒化けい素粉米原料をそれぞれ
シリカ還元法、メタル窒化法によって製造したものを使
用し実施例1と同様な処理条件で、すなわち分散媒とし
てイオン交換水を使用して原料粉末を混合調製し、球状
焼結体を得た。
Next, as Comparative Examples 2 and 3, silicon nitride powder rice raw materials produced by the silica reduction method and the metal nitriding method were used, and treated under the same treatment conditions as in Example 1, that is, using ion-exchanged water as the dispersion medium. The raw material powders were mixed and prepared to obtain a spherical sintered body.

また比較例3として、希土類酸化物の添加量を過少の0
.5重量部としたもの、比較例4として酸化アルミニウ
ムの添加量を過少の1.5重量部としたもの、比較例5
として酸化チタニウムの添加量を過多の5重量部とした
ものについて、それぞれ実施例1と同様な処理条件で原
料混合、焼結を行ない同一寸法の球状焼結体を得た。
In addition, as Comparative Example 3, the amount of rare earth oxide added was reduced to 0.
.. 5 parts by weight, Comparative Example 4 where the amount of aluminum oxide added was too small, 1.5 parts by weight, Comparative Example 5
As for the samples in which the amount of titanium oxide added was an excessive 5 parts by weight, the raw materials were mixed and sintered under the same processing conditions as in Example 1 to obtain spherical sintered bodies of the same size.

そして実施例1および比較例1〜5において得られた球
状焼結体を、第4図に示すような圧砕試験装置に装填し
、各焼結体の機械的強度を測定した。ここで圧砕試験装
置は筒体13内部に対向するように上板14および下板
15を軸方向に摺動自在に配設し、上板14および下板
15の対向面中央部に形成した凹陥部に球状焼結体8を
それぞれ配置した状態で、上板14に荷重を作用させ、
球状焼結体8が圧砕されるときの荷重Wを求めて、焼結
体の強度を試験する装置である。
The spherical sintered bodies obtained in Example 1 and Comparative Examples 1 to 5 were loaded into a crushing test apparatus as shown in FIG. 4, and the mechanical strength of each sintered body was measured. Here, the crushing test apparatus has an upper plate 14 and a lower plate 15 arranged so as to be slidable in the axial direction so as to face each other inside the cylinder 13, and a recess formed in the center of the opposing surfaces of the upper plate 14 and the lower plate 15. With the spherical sintered bodies 8 placed in the respective parts, a load is applied to the upper plate 14,
This device tests the strength of the sintered body by determining the load W when the spherical sintered body 8 is crushed.

ここで各球状焼結体の強度特性は、焼結体の大きさによ
る影響を除くために、下記(1)式によって算定される
ST値によって表わした。
Here, the strength characteristics of each spherical sintered body were expressed by the ST value calculated by the following equation (1) in order to eliminate the influence of the size of the sintered body.

ST値=W/D”       ・・・・・・(1)こ
こでWは球状焼結体が圧砕されたときの荷重、Dは球状
焼結体の直径である。
ST value=W/D” (1) Here, W is the load when the spherical sintered body is crushed, and D is the diameter of the spherical sintered body.

実施例1および比較例1〜5の各球状焼結体の圧砕試験
結果を第1図に示す。
The crushing test results of each of the spherical sintered bodies of Example 1 and Comparative Examples 1 to 5 are shown in FIG.

第1図に示す結果から明らかなように分散媒としてイオ
ン交換水を使用した実施例1においても、分散媒として
トリクロルエタンを使用した従来例(比較例1)と較べ
て遜色のないST値が得られる。一方窒化けい素粉末と
してシリカ還元法やメタル窒化法によって製造された原
料粉末を使用した比較例2.3においては、原料粉末と
イオン交換水との反応が部分的に発生し、焼結体のST
値が低下してしまう。また焼結助剤としての酸化アルミ
ニウムが過少な場合(比較例4)や酸化チタニウムが過
多な場合(比較例5)についてもややST値が低下し、
充分な強度特性が得られないことがわかる。
As is clear from the results shown in Figure 1, even in Example 1 where ion-exchanged water was used as the dispersion medium, the ST value was comparable to that of the conventional example (Comparative Example 1) where trichloroethane was used as the dispersion medium. can get. On the other hand, in Comparative Example 2.3, in which raw material powder produced by the silica reduction method or metal nitriding method was used as silicon nitride powder, the reaction between the raw material powder and ion-exchanged water partially occurred, resulting in the formation of a sintered body. ST
The value will decrease. Also, the ST value decreases slightly when there is too little aluminum oxide as a sintering aid (Comparative Example 4) or when there is too much titanium oxide (Comparative Example 5).
It can be seen that sufficient strength characteristics cannot be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り、本発明に係る窒化けい素焼結体の製造
方法によれば、原料粉末を均一に混合するための分散媒
として水を使用しているため、混合操作時に有害蒸気を
発生するおそれがなく、作業環境および周辺環境を汚染
することがない。
As explained above, according to the method for producing a silicon nitride sintered body according to the present invention, water is used as a dispersion medium to uniformly mix the raw material powder, so there is a risk that harmful vapor may be generated during the mixing operation. There is no risk of contamination of the work environment or surrounding environment.

またシリコンジイミド熱分解法によって製造された窒化
けい素原料粉末は、水との反応性が小さく安定している
ため、分散媒として水を使用することが可能になり、水
との反応による焼結体の品質特性の低下を招くことなく
、高温強度や耐熱性に優れた焼結体が得られる。
In addition, the silicon nitride raw material powder produced by the silicon diimide pyrolysis method has low reactivity with water and is stable, making it possible to use water as a dispersion medium, and sintering by reaction with water. A sintered body with excellent high-temperature strength and heat resistance can be obtained without deteriorating the quality characteristics of the body.

そして水は、従来のトリクロルエタンなどの溶剤系の分
散媒と比較して原料粉末の分散機能が極めて優れている
ため、短時間の混合操作によって原料粉末を均一に混合
することができる。したがって焼結体の製造効率が大幅
に向上し、焼結体の量産性を改善することができる。
Since water has an extremely superior ability to disperse the raw material powder compared to conventional solvent-based dispersion media such as trichloroethane, the raw material powder can be uniformly mixed in a short mixing operation. Therefore, the manufacturing efficiency of the sintered body can be greatly improved, and the mass productivity of the sintered body can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によって製造した焼結体のST値を
比較例と共に示すグラフ、第2図はアトライタ混合機の
構成を示す断面図、第3図はスラスト荷重板がり疲労試
験装置の構成を示す断面図、第4図は圧砕試験装置の構
成を示す断面図である。 1・・・ボール、2・・・粉砕タンク、3・・・アジテ
ータアーム、4・・・アジテータシャフト、5・・・ジ
ャケット、6・・・循環ポンプ、7・・・循環配管、8
・・・球状焼結体、9・・・基板、10・・・保持器、
11・・・内輪、12・・・回転軸、13・・・筒体、
14・・・上板、15・・・下板。
Fig. 1 is a graph showing the ST values of sintered bodies manufactured by the method of the present invention together with comparative examples, Fig. 2 is a cross-sectional view showing the configuration of the attritor mixer, and Fig. 3 is the configuration of the thrust load plate fatigue test device. FIG. 4 is a cross-sectional view showing the configuration of the crushing test apparatus. DESCRIPTION OF SYMBOLS 1... Ball, 2... Grinding tank, 3... Agitator arm, 4... Agitator shaft, 5... Jacket, 6... Circulation pump, 7... Circulation piping, 8
... Spherical sintered body, 9 ... Substrate, 10 ... Cage,
11... Inner ring, 12... Rotating shaft, 13... Cylindrical body,
14... Upper plate, 15... Lower plate.

Claims (2)

【特許請求の範囲】[Claims] 1.シリコンジイミド熱分解法によって製造された窒化
けい素粉末100重量部に対して酸化イットリウムおよ
び酸化セリウムのいずれかを30重量%以上含む希土類
元素の酸化物を1〜6重量部、酸化アルミニウムを2〜
7重量部、酸化チタニウム、酸化ジルコニウムおよび炭
化モリブデンの群から選択された少なくとも1種の化合
物を3重量部以下添加して成る組成物に対して分散媒と
して水を添加し、湿式混合した後に得られた混合物を造
粒成形し、焼成することを特徴とする窒化けい素焼結体
の製造方法。
1. 1 to 6 parts by weight of a rare earth element oxide containing 30% by weight or more of either yttrium oxide or cerium oxide, and 2 to 2 parts by weight of aluminum oxide for 100 parts by weight of silicon nitride powder produced by silicon diimide pyrolysis method.
7 parts by weight and 3 parts by weight or less of at least one compound selected from the group of titanium oxide, zirconium oxide, and molybdenum carbide. A method for producing a silicon nitride sintered body, which comprises granulating and firing the resulting mixture.
2.窒化けい素の平均粒径は2μm以下に設定すること
を特徴とする請求項1記載の窒化けい素焼結体の製造方
法。
2. 2. The method of manufacturing a silicon nitride sintered body according to claim 1, wherein the average particle size of the silicon nitride is set to 2 μm or less.
JP1317835A 1989-12-08 1989-12-08 Production of silicon nitride sintered body Pending JPH03183661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1317835A JPH03183661A (en) 1989-12-08 1989-12-08 Production of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1317835A JPH03183661A (en) 1989-12-08 1989-12-08 Production of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPH03183661A true JPH03183661A (en) 1991-08-09

Family

ID=18092582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1317835A Pending JPH03183661A (en) 1989-12-08 1989-12-08 Production of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH03183661A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113674A (en) * 1979-02-22 1980-09-02 Tokyo Shibaura Electric Co Manufacture of ceramic sintered body
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
JPS62182163A (en) * 1986-01-31 1987-08-10 株式会社東芝 Silicon nitride ceramic sintered body and manufacture
JPS6340767A (en) * 1986-07-31 1988-02-22 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPH0193470A (en) * 1987-09-30 1989-04-12 Toshiba Corp Ceramic sintered material
JPH01157467A (en) * 1987-09-16 1989-06-20 Ube Ind Ltd Silicon nitride powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113674A (en) * 1979-02-22 1980-09-02 Tokyo Shibaura Electric Co Manufacture of ceramic sintered body
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
JPS62182163A (en) * 1986-01-31 1987-08-10 株式会社東芝 Silicon nitride ceramic sintered body and manufacture
JPS6340767A (en) * 1986-07-31 1988-02-22 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPH01157467A (en) * 1987-09-16 1989-06-20 Ube Ind Ltd Silicon nitride powder
JPH0193470A (en) * 1987-09-30 1989-04-12 Toshiba Corp Ceramic sintered material

Similar Documents

Publication Publication Date Title
US7056850B2 (en) Wear-resistant silicon nitride member and method of manufacture thereof
CN106588021B (en) A kind of silicon carbide ceramics and preparation method thereof
JP2002326875A (en) Abrasion resistant member of silicon nitride and its manufacturing method
CN106083068A (en) A kind of preparation method of water base pelletize the directly silicon nitride ceramics of cold isostatic compaction
KR890002888B1 (en) Sliding materials
JP2004091272A (en) beta-SIALON SINTERED COMPACT
US2636828A (en) Silicon nitride-bonded refractory oxide bodies and method of making
JPWO2005030674A1 (en) Wear-resistant member made of silicon nitride and method of manufacturing the same
KR20080091254A (en) Method for producing carbon-containing silicon carbide ceramic
US5879078A (en) Device for producing ceramic sintered body
CN108314455A (en) Silicon carbide ceramics and its preparation method and application
RU2399601C2 (en) Method of making non-shrinking structural ceramic article
JPH03183661A (en) Production of silicon nitride sintered body
CN108975918A (en) A kind of high tenacity high-temperature structural material MoSi2-Mo5Si3The preparation of composite ceramics
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP2000337386A (en) Ceramic rolling element raw material, its manufacture and rolling element using it
JP2004002067A (en) Wear-resistant member and its production process
US5545362A (en) Production method of sintered silicon nitride
JPH02124771A (en) Silicon nitride-base sintered body for rolling bearing material and its production
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
KR20210088361A (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
RU2542073C1 (en) Method of producing non-shrinking nano-modified structural ceramic material
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JP2647135B2 (en) Method for producing silicon carbide ceramics
JP3153518B2 (en) Silicon carbide carbon composite ceramics