JPS6340767A - Silicon nitride sintered body and manufacture - Google Patents

Silicon nitride sintered body and manufacture

Info

Publication number
JPS6340767A
JPS6340767A JP61181445A JP18144586A JPS6340767A JP S6340767 A JPS6340767 A JP S6340767A JP 61181445 A JP61181445 A JP 61181445A JP 18144586 A JP18144586 A JP 18144586A JP S6340767 A JPS6340767 A JP S6340767A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
oxide
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61181445A
Other languages
Japanese (ja)
Inventor
隆夫 西岡
晃 山川
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61181445A priority Critical patent/JPS6340767A/en
Publication of JPS6340767A publication Critical patent/JPS6340767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度かつ高強度の窒化ケイ素焼結体及びそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-density and high-strength silicon nitride sintered body and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来から高温構造部材に使用するエンノニャリング・セ
ラミックのひとつとして、窒化ケイ素焼結体が注目され
ているが、窒化ケイ素単独では焼結が困難であるため、
焼結助剤として低融点化合物を使用して焼結を行ってい
る。かかる焼結助剤としては、アルミニウム、マグネシ
ウム、イツトリウム、ランタン、セリウム、ベリリウム
、ジルコニウム等の酸化物が知られ、これらを1種又は
2種以上添加して焼結する方法が一般的である。
Silicon nitride sintered bodies have traditionally attracted attention as one of the ennobling ceramics used in high-temperature structural members, but silicon nitride alone is difficult to sinter, so
Sintering is performed using a low melting point compound as a sintering aid. As such sintering aids, oxides of aluminum, magnesium, yttrium, lanthanum, cerium, beryllium, zirconium, etc. are known, and a method in which one or more of these are added and sintered is common.

しかし、上記の焼結助剤を添加して焼結を行っても、高
密度で高強度の窒化ケイ素焼結体を得るには十分ではな
く、ホットプレス法等の加圧焼結を行う必要があるので
、連続焼結が困難であり、製品がコスト高になる等の欠
点があった。
However, even if sintering is performed with the addition of the above-mentioned sintering aid, it is not sufficient to obtain a high-density, high-strength silicon nitride sintered body, and pressure sintering such as a hot press method is required. Because of this, continuous sintering is difficult and the product has disadvantages such as high cost.

エた、窒化ケイ素焼結体の製造に、酸化ノルコニウムと
酸化アルミニウムを組合わせて焼結助剤として用いるこ
とは既に検討されている(猪股等、窯業協会誌82α2
1,1976)。しかし、この報告では、得られた窒化
ケイ素焼結体の特性値は示されていないが、酸化ジルコ
ニウムとして通常の単斜晶形酸化ジルコニウムを使用し
ているので、焼結体中の酸化ジルコニウムの結晶形から
判断して酸化ノルコニウムの相変態による特性の劣化が
予想され、事実発明者等の実験により上記の特性劣化が
確認された。
Furthermore, the use of a combination of norconium oxide and aluminum oxide as a sintering aid in the production of silicon nitride sintered bodies has already been considered (Inomata et al., Ceramics Association Journal 82α2
1, 1976). However, in this report, the characteristic values of the obtained silicon nitride sintered body are not shown, but since ordinary monoclinic zirconium oxide is used as the zirconium oxide, the crystals of zirconium oxide in the sintered body are Judging from the shape, it was expected that the properties would deteriorate due to phase transformation of norconium oxide, and in fact, the inventors' experiments confirmed the above-mentioned property deterioration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の事情に鑑み、最適な焼結助剤を選択す
ることにより、高密度で高強度な窒化ケイ素焼結体を提
供すること、及び最適な焼結助剤の使用によって加圧焼
結のみならず、常圧焼結においても高密度で高強度な焼
結体を得ることのできる窒化ケイ素焼結体の製造方法を
提供することを目的とする。
In view of the above circumstances, the present invention aims to provide a high-density and high-strength silicon nitride sintered body by selecting an optimal sintering aid, and to pressurize by using the optimal sintering aid. It is an object of the present invention to provide a method for producing a silicon nitride sintered body that can produce a sintered body with high density and high strength not only by sintering but also by pressureless sintering.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の窒化ケイ素焼結体は、立方晶形酸化ジルコニウ
ムを3〜20体’IN %、酸化アルミニウムを1〜1
0重量%、酸化イツトリウムを1〜15重量%及び残部
の窒化ケイ素とからなり、窒化ケイ素は大部分がβ相と
なっている。
The silicon nitride sintered body of the present invention contains 3 to 20% cubic zirconium oxide and 1 to 1% aluminum oxide.
0% by weight, 1 to 15% by weight of yttrium oxide, and the remainder silicon nitride, and most of the silicon nitride is in the β phase.

上記窒化ケイ素焼結体の製造方法は、生成焼結体中にお
ける含有景が3〜20体積チとなる量の安定化させた立
方晶形の酸化ジルコニウム粉末と、1〜−10重量%の
酸化アルミニウム粉末と、1〜15重量%の酸化イツト
リウム粉末と、残部の窒化ケイ素粉末とを添加混合し、
混合粉末を加圧成形した後、非酸化性ガス雰囲気中にお
いて1700〜1900Cで焼結することを特徴として
おり、加圧焼結はもちろん常圧焼結で焼結してもよい。
The above-mentioned method for producing a silicon nitride sintered body uses stabilized cubic zirconium oxide powder in an amount such that the content in the produced sintered body is 3 to 20% by volume, and 1 to -10% by weight of aluminum oxide. powder, 1 to 15% by weight of yttrium oxide powder, and the balance of silicon nitride powder are added and mixed;
After the mixed powder is pressure-molded, it is sintered at 1700 to 1900C in a non-oxidizing gas atmosphere, and sintering may be performed not only by pressure sintering but also by normal pressure sintering.

酸化ジルコニウムは通常は単斜晶形であるが、本方法に
おいては立方晶形に安定化させたものを使用する。その
ためには単斜晶形の酸化ジルコニウムを数チの酸化カル
シウム又は酸化マグネシウム、若しくはla族金属の酸
化物、特に酸化イツトリウムの少なくとも1種と共に約
1000 trに加熱すれば立方晶形に安定化した酸化
ジルコニウムが得られる。
Zirconium oxide is normally in the monoclinic form, but in this method, zirconium oxide is stabilized in the cubic form. For this purpose, monoclinic zirconium oxide is heated to about 1000 tr with at least one element of calcium oxide or magnesium oxide, or an oxide of a group LA metal, especially yttrium oxide, to produce zirconium oxide stabilized in cubic crystal form. is obtained.

〔作用〕[Effect]

本発明においては、焼結助剤として安定化させた立方晶
の酸化ジルコニウムと、酸化アルミニウム及び酸化イツ
トリウムを組合わせて用いることが重要である。特に、
安定化させた立方晶の酸化ジルコニウムを用いることに
よシ、焼結温度での相変態がなくなシ、優れた特性の窒
化ケイ素焼結体が得られる。
In the present invention, it is important to use stabilized cubic zirconium oxide as a sintering aid in combination with aluminum oxide and yttrium oxide. especially,
By using stabilized cubic zirconium oxide, there is no phase transformation at the sintering temperature, and a silicon nitride sintered body with excellent properties can be obtained.

酸化ノルコニウムの添加量を3〜20体積係に限定する
のは、3体積チ未満では窒化ケイ素焼結体に密度や強度
の向上等の効果が得られず、20体積チを越えると窒化
ケイ素焼結体の強度が著しく低下するためである。
The reason why the amount of norconium oxide added is limited to 3 to 20 parts by volume is that if it is less than 3 parts by volume, the silicon nitride sintered body will not have the effect of improving density or strength, and if it exceeds 20 parts by volume, silicon nitride sintered This is because the strength of the solid body is significantly reduced.

また、酸化アルミニウム及び酸化イツトリウムの添加量
を夫々1〜10重量%及び1〜15重量%に限定する理
山は、1重量%未満では窒化ケイ量チを超えると窒化ケ
イ素焼結体の強度、特に高温強度の顕著な低下の原因と
なるからである。
Furthermore, Rizan limits the amount of aluminum oxide and yttrium oxide added to 1 to 10% by weight and 1 to 15% by weight, respectively. This is because, in particular, it causes a significant decrease in high-temperature strength.

〔実施例〕〔Example〕

実施例1 下記第1表に示す焼結体組成となるように、平均粒径1
μm以下のα−8i3N4粉末、Y2O3安定化の立方
晶形Z r O2粉末、A[203粉末及びY2O3粉
末を混合し、混合粉末を1 ton/ cm2の圧力で
静圧成形した。この成形体から6 mm X 6 mm
 X 40 mmの大きさに切り出した成形体を、2気
圧の窒素ガス雰囲気中において1800℃の温度で2時
間″焼結した。
Example 1 The average grain size was set to 1 to have the composition of the sintered body shown in Table 1 below
α-8i3N4 powder of less than μm size, Y2O3-stabilized cubic ZrO2 powder, A[203 powder and Y2O3 powder were mixed, and the mixed powder was statically pressed at a pressure of 1 ton/cm2. 6 mm x 6 mm from this molded body
The molded body cut into a size of 40 mm was sintered at a temperature of 1800° C. for 2 hours in a nitrogen gas atmosphere of 2 atm.

第1表 1    残部   1 vr)9%  l wt% 
 1wt%2   残部   5   3   33 
  残部   5103 4    残部   5315 5    残部   1033 6    残部   1055 7   残部   2555 8    残部   0    3    39   
残部   0   5   510    残部   
5    0    511     残部   5 
   5    012     残部   3   
5   513    残部   10   15  
  514    残部   10    5   2
0得られた各焼結体について密度(チ)、硬度(HRA
)及び抗折力(ky/mm2)を測定した結果を下記第
2表に示した。
Table 1 1 Remainder 1 vr) 9% l wt%
1wt%2 Remainder 5 3 33
Remaining portion 5103 4 Remaining portion 5315 5 Remaining portion 1033 6 Remaining portion 1055 7 Remaining portion 2555 8 Remaining portion 0 3 39
Remainder 0 5 510 Remainder
5 0 511 Remainder 5
5 012 Remainder 3
5 513 Remainder 10 15
514 Remainder 10 5 2
0 Density (chi), hardness (HRA) of each sintered body obtained
) and transverse rupture strength (ky/mm2) and the results are shown in Table 2 below.

第2表 (注)試料AI 、&7〜14は比較例である。Table 2 (Note) Samples AI, &7 to 14 are comparative examples.

実施例2 実施例1の試料番号A 2 、5 、6の焼結体と同一
組成となるように、ただし単科晶形粉末を用いて、同一
条件で焼結体を製造し、得られた各焼結体について密度
(%)、硬度(HRA)、室温での抗折力(ky/mx
2)及び破壊靭性(MN/m3/2)を測定した結果を
下記第3表に示した。
Example 2 Sintered bodies were manufactured under the same conditions so as to have the same composition as the sintered bodies of sample numbers A 2 , 5 , and 6 of Example 1, but using monocrystalline powder, and each of the obtained sintered bodies Density (%), hardness (HRA), transverse rupture strength at room temperature (ky/mx
2) and fracture toughness (MN/m3/2) are shown in Table 3 below.

第3表 試料屋 密度 硬度 抗折力 破壊靭性2   98 
 92   85   5.25   97  91 
  80   5.56   98  90   85
   5.82*94   88   55    4
.55*95   90   65    4.76”
   96   90   70    4.9(注)
試料A 2 、5 、6は比較例である。
Table 3 Sample shop Density Hardness Transverse rupture strength Fracture toughness 2 98
92 85 5.25 97 91
80 5.56 98 90 85
5.82*94 88 55 4
.. 55*95 90 65 4.76"
96 90 70 4.9 (Note)
Samples A 2 , 5 and 6 are comparative examples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高密度であると共に高硬度及び高強度
であり、靭性にも優れた窒化ケイ素焼結体を安価に提供
することができる。
According to the present invention, a silicon nitride sintered body having high density, high hardness, high strength, and excellent toughness can be provided at low cost.

従って、この窒化ケイ素焼結体は自動車部品等の耐摩耗
性部品及び切削用工具等への適用が期待される。
Therefore, this silicon nitride sintered body is expected to be applied to wear-resistant parts such as automobile parts and cutting tools.

Claims (3)

【特許請求の範囲】[Claims] (1)立方晶形酸化ジルコニウムを3〜20体積%、酸
化アルミニウムを1〜10重量%、酸化イットリウムを
1〜15重量%、及び残部の窒化珪素とからなる窒化珪
素焼結体。
(1) A silicon nitride sintered body comprising 3 to 20% by volume of cubic zirconium oxide, 1 to 10% by weight of aluminum oxide, 1 to 15% by weight of yttrium oxide, and the balance silicon nitride.
(2)生成焼結体中における含有量が3〜20体積%と
なる量の安定化させた立方晶形の酸化ジルコニウム粉末
と、1〜10重量%の酸化アルミニウム粉末と、1〜1
5重量%の酸化イットリウム粉末と、残部の窒化ケイ素
粉末とを添加混合し、混合粉末を加圧成形した後、非酸
化性ガス雰囲気中において1700〜1900℃で焼結
することを特徴とする窒化ケイ素焼結体の製造方法。
(2) stabilized cubic zirconium oxide powder in an amount such that the content in the generated sintered body is 3 to 20% by volume, 1 to 10% by weight of aluminum oxide powder, and 1 to 1% by weight of aluminum oxide powder;
Nitriding, which is characterized by adding and mixing 5% by weight of yttrium oxide powder and the remainder of silicon nitride powder, press-molding the mixed powder, and then sintering it at 1700 to 1900°C in a non-oxidizing gas atmosphere. Method for manufacturing silicon sintered body.
(3)立方晶形酸化ジルコニウムは、酸化カルシウム、
酸化マグネシウム、酸化イットリウムの少なくとも1種
と共に加熱することにより安定化させたものであること
を特徴とする、特許請求の範囲(2)記載の窒化ケイ素
焼結体の製造方法。
(3) Cubic zirconium oxide includes calcium oxide,
The method for producing a silicon nitride sintered body according to claim (2), which is stabilized by heating with at least one of magnesium oxide and yttrium oxide.
JP61181445A 1986-07-31 1986-07-31 Silicon nitride sintered body and manufacture Pending JPS6340767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181445A JPS6340767A (en) 1986-07-31 1986-07-31 Silicon nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181445A JPS6340767A (en) 1986-07-31 1986-07-31 Silicon nitride sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS6340767A true JPS6340767A (en) 1988-02-22

Family

ID=16100893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181445A Pending JPS6340767A (en) 1986-07-31 1986-07-31 Silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS6340767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183661A (en) * 1989-12-08 1991-08-09 Toshiba Corp Production of silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183661A (en) * 1989-12-08 1991-08-09 Toshiba Corp Production of silicon nitride sintered body

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
US4764490A (en) Process for preparation of sintered silicon nitride
JPS61111970A (en) Silicon nitride sintered body and manufacture
GB2063302A (en) Sintered silicon nitride
JP2829229B2 (en) Silicon nitride ceramic sintered body
US4946807A (en) Composite ceramic material reinforced with silicon carbide whiskers
JPH0351669B2 (en)
JPS63185863A (en) Silicon nitride-base sintered body and manufacture
JP2825701B2 (en) Cubic boron nitride sintered body
US4650498A (en) Abrasion resistant silicon nitride based articles
US5106788A (en) Process for producing highly tough ceramics
JPS59190270A (en) Silicon nitride sintered body and manufacture
JPS6340767A (en) Silicon nitride sintered body and manufacture
US4810678A (en) Gas pressure sintering of silicon nitride with addition of rare earth oxides
JPS59190274A (en) Silicon nitride sintered body and manufacture
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
KR890002158B1 (en) Silicon mitride ceramic sintered body and the method for producing the same
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPS60145960A (en) Anticorrosive ceramic sintered body
JPS6337075B2 (en)
EP0219885A2 (en) Sintered silicon nitride having improved density and mechanical strength and process for producing the same
JP4383225B2 (en) Ceramic sintered body, cutting insert, cutting tool and manufacturing method thereof
JPS61266358A (en) Silicon nitride sintered body and manufacture
EP0475775A1 (en) Method of heat-treating a silicon nitride sintered body
JPS644990B2 (en)