JPS59190270A - Silicon nitride sintered body and manufacture - Google Patents

Silicon nitride sintered body and manufacture

Info

Publication number
JPS59190270A
JPS59190270A JP58063980A JP6398083A JPS59190270A JP S59190270 A JPS59190270 A JP S59190270A JP 58063980 A JP58063980 A JP 58063980A JP 6398083 A JP6398083 A JP 6398083A JP S59190270 A JPS59190270 A JP S59190270A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
oxide
powder
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58063980A
Other languages
Japanese (ja)
Other versions
JPS6131071B2 (en
Inventor
晃 山川
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58063980A priority Critical patent/JPS59190270A/en
Publication of JPS59190270A publication Critical patent/JPS59190270A/en
Publication of JPS6131071B2 publication Critical patent/JPS6131071B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術分野 この発明は高密度、高停度にすぐ′i″Lだ窒化けい素
質焼結体およびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a silicon nitride sintered body that has a high density and high hardness, and a method for producing the same.

(ロ)技術背景 従来から高温構造部材に使用するエンジニアリングセラ
ミックの1つとして、窒化けい素質焼結体が注目されて
いるが、窒化けい素(S’3N4)単独では焼結が困難
であるため、低融点化合物71i−焼結助剤に使用して
焼結することがイ1なわれ用きノL =Cおり、現在ま
でにアルミニウム(A/?)、マクネシウム(Δ1g)
、イツトリウム(Y)やランタン(La) 、セリウム
(Ce )などのランタニド系布上Nh 元素、ベリリ
ウム(J3e)、ジルコニウム(Lr、l なとの酸化
物のl t!litたは2種以上を流力1)乙方法が知
られている。
(b) Technical background Silicon nitride sintered bodies have traditionally attracted attention as one of the engineering ceramics used for high-temperature structural members, but silicon nitride (S'3N4) alone is difficult to sinter. , low melting point compound 71i - can be used as a sintering aid for sintering.
, oxides of Nh elements, beryllium (J3e), zirconium (Lr, L) or two or more on lanthanide-based fabrics such as yttrium (Y), lanthanum (La), and cerium (Ce). Flow power 1) Otsu method is known.

−i Ic、このほかに上記した元素の窒化物、酸型化
物を焼結助蒼11とし、て用いる方法も提案さり。
In addition to this, a method has also been proposed in which nitrides and oxides of the above-mentioned elements are used as the sintering aid 11.

ている。ing.

しかしながら」二記の何rしの場合におい=Cも高い抗
折強度と高い硬度を同時に綿たすことは困難であるばか
りでなく、緻密な焼結lV4:を得るためにU−ホット
プレスなど加圧焼結する必要があるなどの問題点が指摘
されているのである。
However, in any of the above cases, it is not only difficult to simultaneously achieve high flexural strength and high hardness, but also to obtain a dense sintered lV4: U-hot press, etc. Problems such as the need for pressure sintering have been pointed out.

t rc 酸化ジルコニウム(Z r O□)と酸化ア
ルミニウム(A、d□03)を助剤として用いることは
、銘股らによって検討され(窯業協会誌82 (12)
 、 1976)、焼結性向上に効果のあることが認め
られているが、ZrO2の原粕として単斜晶形の高純度
ZrO,。
t rc The use of zirconium oxide (Z r O
, 1976), high-purity monoclinic ZrO, which has been recognized to be effective in improving sinterability, is used as the raw material for ZrO2.

全使用しており、特性値は/J<されていないが、原料
純度、得られた焼結体中のZrO2の結晶形から判断し
てZ r’02の+r+ 2 aによる特性の劣化が予
セされ、@夾本発明者らの実験によってその劣化が確認
された。
Although the characteristic values are not /J<, judging from the raw material purity and the crystal form of ZrO2 in the obtained sintered body, it is predicted that the characteristics will deteriorate due to +r+2a of Zr'02. The deterioration was confirmed by experiments conducted by the present inventors.

e→ 発明の開示 本発明者らは、上記の点に鑑みてSi 3N、の焼結助
剤について種々検討した結果、S + 3 N4 焼結
における焼結助剤としてZrO2として結晶形が立方晶
形の安定化ZrO2’?l:使用し、さらにAで、Y、
ランタニド系希土類元素の酸化物(i−焼結助剤として
使用することによって、焼結性にすぐれた高強度の窒化
けい素質焼結体が得られることを見出し、この発明に至
ったものである。
e→ Disclosure of the Invention In view of the above points, the present inventors have conducted various studies on sintering aids for Si 3N, and have found that ZrO2, which has a cubic crystal shape, can be used as a sintering aid in S + 3N4 sintering. Stabilization of ZrO2'? l: Use, then A, Y,
The present invention was based on the discovery that a high-strength silicon nitride sintered body with excellent sinterability can be obtained by using oxides of lanthanide rare earth elements (i- as a sintering aid). .

即ち、この発明はS+ 3 N 4を主成分とし、これ
にCaO、Δigo、 Y2O3の少くとも1種で安定
化した立方晶形のZr0zk生成焼結体中に1〜25体
積%含むような量と、Al2O3、Y2O3、ランタニ
ド系希土類元素の酸化物の1種または2種以上をこ?L
らの元素としての焼結体中の含有量か1〜15車量%と
なる量を含有することからなる窒化けい素質焼結体、お
よび上記の混合粉末金屋素ガヌ雰囲気中で焼結すること
によってSi3N4の大部分がβ+[]で、平均粒径が
2μ以下の焼結体を得る窒化けい素質焼結体の製造法を
提供するものである。
That is, this invention contains S+3N4 as a main component, and an amount of 1 to 25% by volume in a cubic Zr0zk-generating sintered body stabilized with at least one of CaO, Δigo, and Y2O3. , Al2O3, Y2O3, and one or more oxides of lanthanide rare earth elements. L
A silicon nitride sintered body containing the above elements in an amount of 1 to 15% by weight, and the above-mentioned mixed powder is sintered in an atmosphere of Kanya Soganu. This provides a method for producing a silicon nitride sintered body in which most of the Si3N4 is β+[] and the average grain size is 2 μm or less.

この発明において、立方晶形1 r 02の生成焼結体
中に占める量は1体積%以下では該ZrO2添加の効果
が小さく、また25体積%以上になると焼結体強度の低
下が著しくなることから1〜25体槓%体積囲が個当で
ある。
In this invention, if the amount of cubic 1r02 in the produced sintered body is less than 1% by volume, the effect of adding ZrO2 will be small, and if it exceeds 25% by volume, the strength of the sintered body will decrease significantly. The individual weight range is 1 to 25%.

ZrO□を立方晶形に安定化S<るにはCaO1M、g
O,Y2O3の何れを用いても同じ効果を奏し、安定化
物質の種類による影響(ri小さい。
Stabilizing ZrO□ in the cubic form S < CaO1M, g
The same effect can be achieved by using either O or Y2O3, and the influence (ri) of the type of stabilizing substance is small.

焼結助剤としてのhe2o、、Y、0.、、ランタニド
系希土類元素の酸化物は必ずしもこれに限定されるもの
ではなく、それらの元素の窒化物であっても同等の効果
は得られるが、取扱い上の容易宴から上記の1′1り化
物が重重しい。
he2o,,Y,0. as a sintering aid. Oxides of lanthanide rare earth elements are not necessarily limited to these, and nitrides of these elements can also have the same effect, but due to ease of handling, the above 1'1 The monster is heavy.

そしてこれらの1俊化斗勿(は、1オセを/こは2才・
lj l;、1上でも同様の効果が得らり、るが、その
力tはA(1’、−4゜ Y、Laなどの]C素焼結体中((日?ける含有量とし
て規定され、その昂がl lir 二FIJ(%以下で
は焼結体の緻密化が困ρ゛11であり、またI5車量%
レヒでは焼結体における強)ylの低下が著1−7くな
るので1〜15重茸%含んでいることが好捷しい。
And these two-year-olds
A similar effect can be obtained on lj l;, 1, but the force t is defined as the content of A (1', -4°Y, La, etc.) in the C plain sintered body (((day?) If the concentration is less than 2 FIJ (%), it will be difficult to densify the sintered body, and
In case of lech, the decrease of yl in the sintered body is markedly 1-7, so it is preferable to contain 1 to 15% of heavy mushroom.

以上詳述のように、との発明(は従来から知られている
焼結助剤とともに立方晶、IIらの安定化Zr U 2
るのである。
As described in detail above, the invention of (2008) is a stabilized Zr U 2 of cubic crystal, II et al.
It is.

以下、天施゛例によりこの発明ケ、i′1泊11に商1
明する。
Hereinafter, as an example of this invention, i'1 night 11 and quotient 1
I will clarify.

実施例1゜ 第1表に示した焼結体ホ]I我となる。ζうVこ、/7
−8i3N4粉末、市thのMgO安定化、zr 02
粉末、Al2O3粉末、Y2O3粉末、L a 203
粉末、Ce 02粉禾を混合したのち、1t/cmのh
二カで静圧成形した。
Example 1 The sintered body shown in Table 1 was obtained. ζU Vko, /7
-8i3N4 powder, city th MgO stabilization, zr 02
Powder, Al2O3 powder, Y2O3 powder, L a 203
After mixing powder and Ce 02 powder, 1t/cm h
It was static pressure molded using two tools.

さらにこの成形体から6MM X 6 Mm X 40
 MMO大きさに切出した成形体を1750°CX2気
圧の窒素ガス中で2時間リム結した。
Furthermore, from this molded body, 6MM x 6Mm x 40
The molded body cut into MMO size was rim-solidified in nitrogen gas at 1750° C. and 2 atm for 2 hours.

得られた焼結体について密度、減量率、(+iJj度、
t’iu折力などを41(1定じたどころ、H< 1表
の結果が得られ、この発明の4用性が認められンこ。
Regarding the obtained sintered body, density, weight loss rate, (+iJj degrees,
Even though the t'iu rupture force was determined to be 41 (1), the results shown in the table H<1 were obtained, confirming the utility of this invention.

なお本実施例に鰺いて焼結体生成のだめの配合、tri
の1例を第1表の番号]のものについて示すと、tri
 g O安定化、Z r’ 02粉末5.5 ’fj 
泣%、k1203粉末9.5重(11%、残部α−8i
3N4粉末であり、これによ−ンて第1表に圧す組成の
焼結体′を11トだものである。
In addition, in this example, the formulation for producing a sintered body, tri
An example of the number in Table 1 is shown below.
g O stabilized, Z r' 02 powder 5.5'fj
%, k1203 powder 9.5 weight (11%, remainder α-8i
3N4 powder, which produced 11 sintered bodies having the composition shown in Table 1.

・151表中*印の番号のものは、この発明の請求範囲
外の組成であり、j6]2.13 Il;に比軟例であ
る。
・Those with numbers marked * in Table 151 are compositions outside the scope of the claims of this invention, and are comparative examples to j6]2.13 Il;.

実施例 第1表に示した番号のうち2,8,9,10,12の混
合物について1750℃、1貿圧窒素中、200Icq
/clの圧力下で1時間ホットプレスを行って焼結体を
得た。
Examples For mixtures of numbers 2, 8, 9, 10, and 12 among the numbers shown in Table 1, 200 Icq at 1750°C in 1 trade pressure of nitrogen.
A sintered body was obtained by hot pressing for 1 hour under a pressure of /cl.

得られた焼結体について実施例Iと同様のテヌ(・全行
い′7if 2表の結果を得た1、第2表 実施例3゜ 第1表の′MfM2O3合物について、zro2として
結晶形が単斜晶で2次粒子径が平均5μのzrO2粉末
を用いて実施例1の条件で焼結したところ、得らrした
焼結体にヘアクラックが発生し、Jl jtiな焼結体
が得られないことがわかった。
The obtained sintered body was subjected to the same procedure as in Example I. All the results shown in Table 2 were obtained. When sintering was carried out under the conditions of Example 1 using ZrO2 powder, which was monoclinic and had an average secondary particle size of 5μ, hair cracks occurred in the obtained sintered body, and the sintered body was Jl jti. I found out that I can't get it.

Claims (4)

【特許請求の範囲】[Claims] (1)窒化けい素を主成分とし、これに立方晶の酸化ジ
ルコニウムを生成焼結体中に1〜25体積%、およびア
ルミニウム、イツトリウム、ランクニド系希土類元素の
1種咬たけ2種以上を生成焼結体中に1〜15重量%含
有せしめるようにしたこと全特徴とする窒化けい素質焼
結体。
(1) Silicon nitride is the main component, and cubic zirconium oxide is generated in the sintered body at 1 to 25% by volume, as well as one or more of aluminum, yttrium, and ranknidic rare earth elements. A silicon nitride sintered body, characterized in that the content is 1 to 15% by weight in the sintered body.
(2)  立方晶酸化ジルコニウムは酸化カルシウム、
酸化マグネシウム、酸化イ・ノトリウムの少くトも1種
により安定化さすもだものを用いることを特徴とする特
R′1精求の範囲第1項記載の窒化けい素質焼結体。
(2) Cubic zirconium oxide is calcium oxide,
The silicon nitride sintered body according to item 1 of the scope of the specification R'1, characterized in that the sintered body is stabilized by at least one of magnesium oxide and inotrium oxide.
(3)生成焼結体中における含有量が1〜25体積%と
なる量の立方晶酸化ジルコニウム粉末と、酸化アルミニ
ウム、酸化イツトリウム、ランクニド系希土類元素の酸
化物粉末の1種才たは2種以」二を使用元素量に換算し
て1〜15重量%となる量および残部が窒化けい素粉末
よりなる混合粉末を窒素ガヌ雰囲気中で焼結し、窒化け
い素の大部分がβ札で平均粒径が2μ以下の焼結体を得
ることを特徴とする窒化けい素質焼結体の1(2進法。
(3) Cubic zirconium oxide powder in an amount such that the content in the generated sintered body is 1 to 25% by volume, and one or two types of oxide powder of aluminum oxide, yttrium oxide, and ranknidic rare earth elements. A mixed powder consisting of 1 to 15% by weight of the above elements and the remainder being silicon nitride powder is sintered in a nitrogen gas atmosphere, and most of the silicon nitride is β-tag. 1 (binary system) of a silicon nitride sintered body characterized by obtaining a sintered body with an average grain size of 2μ or less.
(4)立方晶酸化ジルコニウムは酸化カルシウム、酸化
マグネシウム、酸化イツトリウムの少なくとも1種によ
り安定化されたものを用いることを特徴とする特許請求
の範囲第3項記載の窒化けい素質焼結体の製酌法。
(4) Production of the silicon nitride sintered body according to claim 3, wherein the cubic zirconium oxide is stabilized with at least one of calcium oxide, magnesium oxide, and yttrium oxide. Drink law.
JP58063980A 1983-04-12 1983-04-12 Silicon nitride sintered body and manufacture Granted JPS59190270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58063980A JPS59190270A (en) 1983-04-12 1983-04-12 Silicon nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58063980A JPS59190270A (en) 1983-04-12 1983-04-12 Silicon nitride sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS59190270A true JPS59190270A (en) 1984-10-29
JPS6131071B2 JPS6131071B2 (en) 1986-07-17

Family

ID=13244935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58063980A Granted JPS59190270A (en) 1983-04-12 1983-04-12 Silicon nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS59190270A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183965A2 (en) * 1984-10-23 1986-06-11 Sumitomo Electric Industries Limited Composite sintered silicon nitride material and cutting tool made therefrom
JPS6246966A (en) * 1985-08-23 1987-02-28 株式会社豊田中央研究所 Manufacture of silicon nitride sintered body
EP0219885A2 (en) * 1985-10-25 1987-04-29 Sumitomo Electric Industries Limited Sintered silicon nitride having improved density and mechanical strength and process for producing the same
JPS62256768A (en) * 1986-04-30 1987-11-09 株式会社日立製作所 Silicon nitride sintered body
EP0262654A1 (en) * 1986-09-30 1988-04-06 Sumitomo Electric Industries Limited Silicon nitride sintered material for cutting tools and process for making the same
JPS6395161A (en) * 1986-10-06 1988-04-26 住友電気工業株式会社 Ceramic composite body and manufacture
US4764490A (en) * 1985-04-08 1988-08-16 Sumitomo Electric Industries, Ltd. Process for preparation of sintered silicon nitride
JPS6451379A (en) * 1987-08-24 1989-02-27 Sumitomo Electric Industries Silicon nitride sintered body
US4891342A (en) * 1985-11-20 1990-01-02 Kyocera Corporation Process for preparing a silicon nitride sintered body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771871A (en) * 1980-10-20 1982-05-04 Sumitomo Electric Industries Tenacious ceramic tool material and manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771871A (en) * 1980-10-20 1982-05-04 Sumitomo Electric Industries Tenacious ceramic tool material and manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183965A2 (en) * 1984-10-23 1986-06-11 Sumitomo Electric Industries Limited Composite sintered silicon nitride material and cutting tool made therefrom
US4764490A (en) * 1985-04-08 1988-08-16 Sumitomo Electric Industries, Ltd. Process for preparation of sintered silicon nitride
JPS6246966A (en) * 1985-08-23 1987-02-28 株式会社豊田中央研究所 Manufacture of silicon nitride sintered body
EP0219885A2 (en) * 1985-10-25 1987-04-29 Sumitomo Electric Industries Limited Sintered silicon nitride having improved density and mechanical strength and process for producing the same
US4891342A (en) * 1985-11-20 1990-01-02 Kyocera Corporation Process for preparing a silicon nitride sintered body
JPS62256768A (en) * 1986-04-30 1987-11-09 株式会社日立製作所 Silicon nitride sintered body
JPH0449509B2 (en) * 1986-04-30 1992-08-11 Hitachi Ltd
EP0262654A1 (en) * 1986-09-30 1988-04-06 Sumitomo Electric Industries Limited Silicon nitride sintered material for cutting tools and process for making the same
JPS6395161A (en) * 1986-10-06 1988-04-26 住友電気工業株式会社 Ceramic composite body and manufacture
JPS6451379A (en) * 1987-08-24 1989-02-27 Sumitomo Electric Industries Silicon nitride sintered body

Also Published As

Publication number Publication date
JPS6131071B2 (en) 1986-07-17

Similar Documents

Publication Publication Date Title
EP0739326B1 (en) Low temperature, pressureless sintering of silicon nitride
US4753902A (en) Transformation toughened zirconia-titania-yttria ceramic alloys
Lewis et al. Nitrogen ceramics: liquid phase sintering
JPS59190270A (en) Silicon nitride sintered body and manufacture
JPS63185863A (en) Silicon nitride-base sintered body and manufacture
JPH0280373A (en) High-strength high-toughness tib2 ceramics
JPS59190272A (en) Manufacture of silicon nitride sintered body
JPH0755855B2 (en) Spinel ceramics
US5316988A (en) Sialon ceramic compositions and methods of fabrication
JPS62256768A (en) Silicon nitride sintered body
JPS59190274A (en) Silicon nitride sintered body and manufacture
JPS6316359B2 (en)
JPS61266358A (en) Silicon nitride sintered body and manufacture
JP2792095B2 (en) Method for producing high-strength silicon nitride sintered body
JPH066512B2 (en) High toughness silicon nitride sintered body and method for producing the same
JPS61117153A (en) Manufacture of alumina sintered body
JPS62207766A (en) Manufacture of silicon nitride sintered body
JPH089743B2 (en) Composite ceramic sintered body and manufacturing method thereof
JPS623073A (en) Silicon nitride base sintered body
JP3007370B2 (en) Silicon oxynitride based sintered body
JPH07115928B2 (en) Method for producing fiber-reinforced silicon oxynitride sintered body
JPS6270263A (en) Silicon nitride sintered body
JPS59232970A (en) Abrasion resistant sialon base ceramics
JPS63307168A (en) Sintered aluminum nitride
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body