JPH031816B2 - - Google Patents

Info

Publication number
JPH031816B2
JPH031816B2 JP13646385A JP13646385A JPH031816B2 JP H031816 B2 JPH031816 B2 JP H031816B2 JP 13646385 A JP13646385 A JP 13646385A JP 13646385 A JP13646385 A JP 13646385A JP H031816 B2 JPH031816 B2 JP H031816B2
Authority
JP
Japan
Prior art keywords
foil
capacitor
anode
capacitor element
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13646385A
Other languages
Japanese (ja)
Other versions
JPS61294808A (en
Inventor
Hiroshi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP13646385A priority Critical patent/JPS61294808A/en
Publication of JPS61294808A publication Critical patent/JPS61294808A/en
Publication of JPH031816B2 publication Critical patent/JPH031816B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] この発明は陽極箔および/または陰極箔に多孔
性薄膜を形成することによつて、コンデンサ紙を
不要とした電解コンデンサに関する。 [発明の技術的背景とその問題点] 従来、アルミニウム箔形乾式電解コンデンサ
は、粗面化し誘電体酸化皮膜を形成した陽極箔と
粗面化した陰極箔との間に、クラフト紙などのコ
ンデンサ紙を介在させて巻回してコンデンサ素子
を構成し、該コンデンサ素子に駆動用電解液を含
浸させ、これをケースに収凾−密閉した構造から
なつていた。前記コンデンサ紙は陽極箔と陰極箔
との隔離と駆動用電解液を保持するという二つの
作用を有するが、抄紙技術上およびコンデンサの
製造工程上、たとえば陽・陰極箔を所要寸法に切
断するときのバリなどの発生によつて、陽・陰極
箔と同等またはそれ以上の厚さを必要とし、tanδ
の増大や、小形化を阻害する要因となつていた。
これらの欠点を除くために、コンデンサ紙の代替
として陽極箔と陰極箔との間に開孔密度の高いプ
ラスチツク単一薄膜を介在させたり、あるいは
陽・陰極箔の表面に多孔プラスチツク薄膜を析出
させたり、イオン透過性薄膜を形成させてコンデ
ンサ紙を不要とする方法も提案されている。しか
しながら、多孔性プラスチツク単一薄膜は引張強
度が小さくて実用できず、ボリビニルアルコー
ル、メチルセルローズ、ゼラチン等の水溶性ポリ
マーを電極箔上に形成したものは電解液中の水分
に溶解するので安定した特性が得られず、また非
水溶性ポリマーとイオン交換体を含有するイオン
性半透膜を塗布したものでは、十分な導電性が得
られず著しいtanδの増大や静電容量の減少をひき
起す欠点がある。さらにポリマーを混合溶剤に溶
解し電極に塗布したのち溶剤の沸点差または水な
どへの拡散速度差を利用して形成した多孔膜は、
高温時電解液に再溶解あるいは膨潤してしまう問
題点がある。 [発明の目的] この発明は陽・陰極箔間に介在したコンデンサ
紙に代えて完全鹸化ポリビニルアルコール水溶液
に分解性発泡剤を加え、これを塗布後加熱発泡さ
せて形成した多孔性薄膜を使用することよつて
tanδ特性を向上させ、大幅な小形化を図ることが
できる電解コンデンサを提供するものである。 [発明の概要] この発明になる電解コンデンサは、鹸化度98%
以上の完全鹸化ポリビニルアルコール水溶液に分
解性発泡剤を加え、これを陽極箔および/または
陽極箔に塗布後加熱して多孔性薄膜を形成し、該
陽極箔および陰極箔を巻回してコンデンサ素子と
し、該コンデンサ素子に駆動用電解液を含浸した
ことを特徴とするものである。 [発明の実施例] 完全鹸化ポリビニルアルコール30%水溶液に、
NN′−ジニトロソペンタメチレンテトラミンを
添加・溶解させる。該NN′−ジニトロソペンタ
メチレンテトラミンの量は前記ポリビニルアルコ
ールの20wt%とした。この水溶液をロールコータ
ーやバーコータにより陰極箔上に均一に塗布した
のち105℃で乾燥し、次いで160℃で再加熱しポリ
ビニルアルコールの結晶化と発泡剤の分解を行な
い、多孔性薄膜を形成する。この陰極箔と誘電体
酸化皮膜を形成した陽極箔とを重ね合せて巻回し
てコンデンサ素子を形成し、該コンデンサ素子に
エチレングリコール−アジピン酸アンモニウム系
電解液を含浸したのち、アルミニウムケースに収
凾−密閉して得た電解コンデンサ(定格10V−
100μFおよび50V−22μFの2種)について、コン
デンサ素子寸法、特性を従来例と対比した結果を
下表に、また、定格10V−100μFの電解コンデン
サについて105℃中における10V印加の負荷寿命
試験のtanδ特性を第1図に、同じく静電容量変化
率を第2図に示した。なお、本発明は曲線A、従
来例1は曲線Bで陽極箔と陰極箔との間にコンデ
ンサ紙を介在させたもの、従来例2は曲線Cで混
合溶剤の選択抽出法により陰極箔に多孔薄膜を形
成したものである。
[Technical Field of the Invention] The present invention relates to an electrolytic capacitor that eliminates the need for capacitor paper by forming a porous thin film on an anode foil and/or a cathode foil. [Technical background of the invention and its problems] Conventionally, aluminum foil type dry electrolytic capacitors have a capacitor made of kraft paper or the like between the anode foil, which has a roughened surface and a dielectric oxide film, and the roughened cathode foil. The structure was such that a capacitor element was constructed by winding the capacitor with paper interposed therebetween, impregnating the capacitor element with a driving electrolyte, and enclosing and sealing the capacitor element in a case. The capacitor paper has two functions: isolating the anode and cathode foils and retaining the driving electrolyte. However, in terms of paper making technology and capacitor manufacturing process, for example, when cutting the anode and cathode foils to the required size, Due to the occurrence of burrs etc., the thickness of the anode and cathode foils must be equal to or greater than that of the anode and cathode foils.
This was a factor that hindered the increase in size and miniaturization.
In order to eliminate these drawbacks, as an alternative to capacitor paper, a single thin film of plastic with a high pore density is interposed between the anode foil and the cathode foil, or a porous thin film of plastic is deposited on the surfaces of the anode and cathode foils. Alternatively, a method has been proposed in which an ion-permeable thin film is formed to eliminate the need for capacitor paper. However, a single thin film of porous plastic is not practical due to its low tensile strength, and electrode foils made of water-soluble polymers such as polyvinyl alcohol, methyl cellulose, and gelatin are stable because they dissolve in the water in the electrolyte. However, if an ionic semipermeable membrane containing a water-insoluble polymer and an ion exchanger is coated, sufficient conductivity cannot be obtained, resulting in a significant increase in tanδ and decrease in capacitance. There are drawbacks to this. Furthermore, a porous membrane is formed by dissolving the polymer in a mixed solvent and applying it to the electrode, using the difference in the boiling point of the solvent or the difference in the rate of diffusion into water.
There is a problem that it redissolves or swells in the electrolyte at high temperatures. [Purpose of the Invention] This invention uses a porous thin film formed by adding a decomposable foaming agent to a completely saponified polyvinyl alcohol aqueous solution and heating and foaming it after application, instead of the capacitor paper interposed between the anode and cathode foils. In other words
The present invention provides an electrolytic capacitor that has improved tanδ characteristics and can be significantly downsized. [Summary of the invention] The electrolytic capacitor of this invention has a saponification degree of 98%.
A decomposable foaming agent is added to the above fully saponified polyvinyl alcohol aqueous solution, and this is coated on an anode foil and/or anode foil, heated to form a porous thin film, and the anode foil and cathode foil are wound to form a capacitor element. , the capacitor element is impregnated with a driving electrolyte. [Embodiment of the invention] In a 30% aqueous solution of completely saponified polyvinyl alcohol,
Add and dissolve NN′-dinitrosopentamethylenetetramine. The amount of NN'-dinitrosopentamethylenetetramine was 20 wt % of the polyvinyl alcohol. This aqueous solution is uniformly applied onto the cathode foil using a roll coater or bar coater, dried at 105°C, and then reheated at 160°C to crystallize the polyvinyl alcohol and decompose the blowing agent, forming a porous thin film. This cathode foil and the anode foil on which a dielectric oxide film has been formed are overlapped and wound to form a capacitor element, and the capacitor element is impregnated with an ethylene glycol-ammonium adipate electrolyte and then housed in an aluminum case. −Hermetically sealed electrolytic capacitor (rated 10V−
The table below shows the results of a comparison of capacitor element dimensions and characteristics with conventional examples for two types (100μF and 50V-22μF), and the tan δ of a load life test with 10V applied at 105℃ for electrolytic capacitors with a rating of 10V-100μF. The characteristics are shown in FIG. 1, and the capacitance change rate is shown in FIG. 2. The present invention is curve A, the conventional example 1 is curve B, in which capacitor paper is interposed between the anode foil and the cathode foil, and the conventional example 2 is curve C, in which porous holes are formed in the cathode foil by selective extraction of a mixed solvent. A thin film is formed.

【表】 この結果から明らかなように、本発明では陰極
箔に直接多孔性ポリビニルアルコール薄膜を形成
するので、従来のコンデンサ紙の厚さの1/5〜1/1
0にすることができ、よつて巻回したコンデンサ
素子の体積を従来例1の約75%程度に減少でき
る。またtanδも約1/2に低下させることができる。
また従来例2と対比すれば、第1図および第2図
から高温負荷寿命特性が優れていることが明らか
である。 なお、前記実施例では分解性発泡剤として
NN′−ジニトロソペンタメチレンテトラミンを
用いた場合について述べたが、重炭酸ナトリウ
ム、アゾジカルボンアミド、ベンゼン1.3ジスル
ホヒドラジドなどの無機化合物、アゾ化合物、ス
ルホヒドラジド化合物、ニトロソ化合物など、い
ずれも使用できるが、分解温度が140〜150℃以上
のものが適している。 また、実施例ではポリビニルアルコールの多孔
薄膜を陰極箔に形成した場合について述べたが、
陽極箔に形成しても、あるいは陽・陰極箔両方に
形成してもよい。ただし、陽極箔のみに形成する
場合には耐電圧特性上、陽極箔の裁断面まで形成
させることが望ましい。 [発明の効果] セパレータとしてのコンデンサ紙を不要とし、
分解性発泡剤を加えたポリビニルアルコールを用
いて多孔薄膜を陽極箔および/または陰極箔に形
成することにより、小形化およびtanδの優れた電
解コンデンサを得ることができる。
[Table] As is clear from this result, in the present invention, since a porous polyvinyl alcohol thin film is formed directly on the cathode foil, the thickness is 1/5 to 1/1 of the thickness of conventional capacitor paper.
Therefore, the volume of the wound capacitor element can be reduced to approximately 75% of that of Conventional Example 1. Furthermore, tan δ can also be reduced to about 1/2.
Furthermore, when compared with Conventional Example 2, it is clear from FIGS. 1 and 2 that the high temperature load life characteristics are excellent. In addition, in the above examples, as a decomposable blowing agent,
Although we have described the case where NN'-dinitrosopentamethylenetetramine is used, any inorganic compound such as sodium bicarbonate, azodicarbonamide, benzene 1.3 disulfohydrazide, an azo compound, a sulfohydrazide compound, a nitroso compound, etc. can be used. However, those with a decomposition temperature of 140 to 150°C or higher are suitable. In addition, in the example, a case was described in which a porous thin film of polyvinyl alcohol was formed on the cathode foil.
It may be formed on the anode foil or on both the anode and cathode foils. However, when forming only on the anode foil, it is desirable to form it on the cut surface of the anode foil due to voltage resistance characteristics. [Effect of the invention] Eliminates the need for capacitor paper as a separator,
By forming a porous thin film on the anode foil and/or the cathode foil using polyvinyl alcohol to which a decomposable foaming agent has been added, an electrolytic capacitor that is compact and has an excellent tan δ can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は高温負荷寿命特性を示すもので、第1図
はtanδ特性を示す曲線図、第2図は静電容量変化
率を示す曲線図である。 曲線A……本発明、曲線B……従来例1、曲線
C……従来例2。
The drawings show the high temperature load life characteristics; FIG. 1 is a curve diagram showing the tan δ characteristics, and FIG. 2 is a curve diagram showing the capacitance change rate. Curve A: Present invention, Curve B: Conventional example 1, Curve C: Conventional example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 鹸化度98%以上の完全鹸化ポリビニルアルコ
ール水溶液に分解性発泡剤を加え、これを陽極箔
および/または陰極箔に塗布後加熱して多孔性薄
膜を形成し、該陽極箔および陰極箔を巻回してコ
ンデンサ素子とし、該コンデンサ素子に駆動用電
解液を含浸したことを特徴とする電解コンデン
サ。
1 Add a decomposable foaming agent to a fully saponified polyvinyl alcohol aqueous solution with a degree of saponification of 98% or more, apply this to an anode foil and/or a cathode foil, heat it to form a porous thin film, and wrap the anode foil and cathode foil. 1. An electrolytic capacitor characterized in that the capacitor element is turned into a capacitor element, and the capacitor element is impregnated with a driving electrolyte.
JP13646385A 1985-06-22 1985-06-22 Electrolytic capacitor Granted JPS61294808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13646385A JPS61294808A (en) 1985-06-22 1985-06-22 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13646385A JPS61294808A (en) 1985-06-22 1985-06-22 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61294808A JPS61294808A (en) 1986-12-25
JPH031816B2 true JPH031816B2 (en) 1991-01-11

Family

ID=15175699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13646385A Granted JPS61294808A (en) 1985-06-22 1985-06-22 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61294808A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205190A (en) * 2007-02-20 2008-09-04 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
JP5506434B2 (en) * 2010-01-29 2014-05-28 日立エーアイシー株式会社 Aluminum electrolytic capacitor
WO2018212125A1 (en) * 2017-05-16 2018-11-22 株式会社村田製作所 Electrolytic capacitor

Also Published As

Publication number Publication date
JPS61294808A (en) 1986-12-25

Similar Documents

Publication Publication Date Title
JPWO2008139619A1 (en) Power storage device separator and power storage device
US4099218A (en) Method of making porous polymer containing separators for electrolytic electrical devices
JPH031816B2 (en)
WO2016002175A1 (en) Method for producing electrolytic capacitor
JPH04162510A (en) Electric double layer capacitor
US4151581A (en) Spacer-electrolyte composite in electrolytic capacitors
US2199447A (en) Electrolytic condenser
US4231076A (en) Tantalum foil capacitor with strong acid electrolyte
JPH031815B2 (en)
JPH03280518A (en) Electric double layer capacitor and manufacture thereof
JP2950575B2 (en) Electrolytic capacitor
JP3332254B2 (en) Aluminum electrolytic capacitor
JP3304436B2 (en) Aluminum electrolytic capacitor
JP2810679B2 (en) Solid electrolytic capacitor and method of manufacturing the same
WO2022210513A1 (en) Method for manufacturing electrolytic capacitor
JPH07312328A (en) Separator for capacitor
JP3170589B2 (en) Electrolytic capacitor and method of manufacturing the same
US2178970A (en) Electrolytic condenser
WO2014119311A1 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
US2117874A (en) Electric capacitor
JP2760186B2 (en) Electrolytic capacitor and method of manufacturing the same
JPS6354208B2 (en)
JP2943289B2 (en) Aluminum electrolytic capacitor
JP2000173873A (en) Drive electrolyte solution of electric double layer capacitor
JPS5832772B2 (en) Electrolytic capacitor and its manufacturing method