WO2014119311A1 - Electrolytic capacitor manufacturing method and electrolytic capacitor - Google Patents

Electrolytic capacitor manufacturing method and electrolytic capacitor Download PDF

Info

Publication number
WO2014119311A1
WO2014119311A1 PCT/JP2014/000474 JP2014000474W WO2014119311A1 WO 2014119311 A1 WO2014119311 A1 WO 2014119311A1 JP 2014000474 W JP2014000474 W JP 2014000474W WO 2014119311 A1 WO2014119311 A1 WO 2014119311A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
liquid composition
capacitor element
electrolytic capacitor
aqueous solvent
Prior art date
Application number
PCT/JP2014/000474
Other languages
French (fr)
Japanese (ja)
Inventor
慶明 石丸
貴行 松本
Original Assignee
三洋電機株式会社
佐賀三洋工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 佐賀三洋工業株式会社 filed Critical 三洋電機株式会社
Priority to JP2014559583A priority Critical patent/JP6326633B2/en
Publication of WO2014119311A1 publication Critical patent/WO2014119311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer

Definitions

  • the present invention relates to an electrolytic capacitor manufacturing method and an electrolytic capacitor, and more particularly to a wound electrolytic capacitor manufacturing method.
  • the capacitors used for them are also required to be small, large in capacity, and have low equivalent series resistance (ESR) in the high frequency range.
  • ESR equivalent series resistance
  • plastic film capacitors, multilayer ceramic capacitors, and the like are frequently used as capacitors for high-frequency regions, but these have a relatively small capacity.
  • an electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline as a cathode material is promising.
  • a capacitor element has been proposed in which a conductive polymer layer is provided as a cathode material on an anode foil on which a dielectric coating is formed.
  • Patent Document 1 proposes to form a conductive polymer layer by immersing a capacitor element in a solution obtained by dissolving a soluble conductive polymer in a solvent and then drying the capacitor element.
  • a conductive polymer layer is formed by immersing a capacitor element in a dispersion obtained by dispersing conductive polymer particles or powder in a dispersion medium and then drying the capacitor element. Propose that. Thereafter, the capacitor element is sealed in the case together with the electrolytic solution, and the electrolytic capacitor is completed through aging.
  • the conductive polymer may dissolve into the electrolyte from the conductive polymer layer, and the conductivity of the conductive polymer layer may gradually decrease. Therefore, the ESR changes with time, and it is difficult to ensure the long-term reliability of the electrolytic capacitor.
  • an object of the present invention is to provide an electrolytic capacitor manufacturing method and an electrolytic capacitor excellent in long-term reliability.
  • One aspect of the present invention includes a step of preparing an anode body having a dielectric coating, a step of preparing a first liquid composition containing a first conductive polymer, and the anode body including the first liquid composition.
  • Forming a capacitor element having a solid electrolyte layer containing the first conductive polymer on the surface of the dielectric coating, impregnating, and then drying, a non-aqueous solvent, and the non-aqueous solvent Preparing a second liquid composition containing a second conductive polymer dissolved in the capacitor, impregnating the capacitor element with the second liquid composition, and impregnating the second liquid composition And a step of accommodating the capacitor element in an outer case.
  • the second conductive polymer is dissolved in the nonaqueous solvent existing around the solid electrolyte layer containing the first conductive polymer, the first conductivity from the solid electrolyte layer is reduced. Dissolution of the polymer into the non-aqueous solvent is suppressed. This is presumably because the dissolution of the first conductive polymer into the non-aqueous solvent has an aspect as an equilibrium reaction.
  • the second conductive polymer may include the same monomer unit as the monomer unit constituting the first conductive polymer. Thereby, the dissolution of the first conductive polymer into the non-aqueous solvent is further suppressed.
  • the boiling point of the nonaqueous solvent in the second liquid composition is preferably 100 ° C. or higher from the viewpoints of heat resistance and reflow resistance.
  • concentration of the 2nd conductive polymer contained in a 2nd liquid composition should just be 0.5 mass% or more and a saturation concentration or less, for example.
  • Another aspect of the present invention includes a capacitor element having an anode body having a dielectric film, a solid electrolyte layer including a first conductive polymer formed on a surface of the dielectric film, a non-aqueous solvent, A liquid composition (second liquid composition) impregnated in the capacitor element, and the second liquid composition impregnated with the second conductive polymer dissolved in the non-aqueous solvent.
  • a capacitor element having an anode body having a dielectric film, a solid electrolyte layer including a first conductive polymer formed on a surface of the dielectric film, a non-aqueous solvent, A liquid composition (second liquid composition) impregnated in the capacitor element, and the second liquid composition impregnated with the second conductive polymer dissolved in the non-aqueous solvent.
  • an outer case containing a capacitor element wherein the concentration of the second conductive polymer contained in the second liquid composition is 0.5 mass% or more and a saturation concentration or less.
  • the dissolution of the first conductive polymer from the solid electrolyte layer into the non-aqueous solvent is suppressed, the change in ESR with time is reduced, and the long-term reliability of the electrolytic capacitor is improved.
  • the anode body having a dielectric film is impregnated with the first liquid composition containing the first conductive polymer, and then dried, so that the surface of the dielectric film is A solid electrolyte layer containing a first conductive polymer is formed.
  • Such a method is easier than a method of generating a conductive polymer by a polymerization reaction. Therefore, it is possible to provide an electrolytic capacitor with low cost, low ESR, and low leakage current.
  • a second liquid composition (hereinafter referred to as a second liquid composition) containing a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent. (Also referred to as a polymer solution) is impregnated in an anode body having a solid electrolyte layer.
  • the dissolution of the conductive polymer from the solid electrolyte layer into the nonaqueous solvent has an aspect as an equilibrium reaction. Therefore, when the conductive polymer is dissolved in the nonaqueous solvent, the dissolution of the conductive polymer from the solid electrolyte layer is suppressed, the change in ESR over time is reduced, and the long-term reliability of the electrolytic capacitor is improved. .
  • FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to the present embodiment
  • FIG. 2 is a schematic diagram in which a part of the capacitor element according to the embodiment is developed
  • FIG. 3 is an anode body in the capacitor element. It is a cross-sectional schematic diagram which shows the principal part structure containing the interface of a solid electrolyte layer.
  • an electrolytic capacitor includes a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, a seat plate 13 that covers the sealing member 12, Lead wires 14A and 14B led out from the sealing member 12 and penetrating the seat plate 13, and lead tabs 15A and 15B connecting the lead wires and the electrodes of the capacitor element 10 are provided.
  • the vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to be crimped to the sealing member 12.
  • the capacitor element 10 includes an anode body 21 connected to the lead tab 15A, a cathode body 22 connected to the lead tab 15B, and a separator 23.
  • the anode body 21 and the cathode body 22 are wound through a separator 23.
  • the outermost periphery of the wound body is fixed by a winding tape 24.
  • FIG. 2 has shown the state by which one part was expand
  • the capacitor element 10 includes an anode body 21 having a dielectric film and a solid electrolyte layer containing a first conductive polymer formed on the surface of the dielectric film.
  • the anode body 21 is preferably made of a metal foil or a metal sintered body having a concave portion on the surface.
  • a dielectric coating 31 is provided on the anode body 21 having a recess.
  • a solid electrolyte layer 32 containing a conductive polymer is provided between the dielectric coating 31 and the separator 23.
  • the capacitor element 10 is impregnated with a second liquid composition 33 containing a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent.
  • the capacitor element impregnated with the second liquid composition 33 is accommodated in the outer case.
  • the concentration of the second conductive polymer contained in the second liquid composition 33 is, for example, not less than 0.5 mass% and not more than the saturation concentration.
  • the surface of the metal foil cut into a predetermined size is roughened.
  • the type of metal is not particularly limited, but it is preferable to use a valve metal such as aluminum, tantalum, or niobium because the dielectric film 31 can be easily formed.
  • a plurality of recesses are formed on the surface of the metal foil.
  • a plurality of recesses can be formed on the surface of the metal foil by etching the metal foil.
  • a dielectric coating 31 is formed on the surface of the roughened anode body 21.
  • the method of forming the dielectric film 31 is not particularly limited.
  • the anode body 21 is made of a valve metal
  • the anode body 21 is subjected to chemical conversion treatment to form the dielectric film 31 on the surface of the anode body 21. can do.
  • the chemical conversion treatment for example, the anode body 21 is immersed in a chemical conversion solution such as an ammonium adipate solution and heat-treated.
  • the voltage may be applied by immersing the anode body 21 in the chemical conversion solution.
  • roughening treatment and chemical conversion treatment are performed on a large-sized valve action metal foil.
  • the anode body 21 can be prepared by cutting the treated metal foil into a desired size.
  • (Ii) Production of wound body Next, a wound body is produced using the anode body 21.
  • the wound body is a semi-finished product of the capacitor element 10 and means that the solid electrolyte layer 32 is not formed between the anode body 21 and the cathode body 22 or the separator 23.
  • the anode body 21 and the cathode body 22 are wound through the separator 23. At this time, by winding the lead tabs 15A and 15B while winding them, the lead tabs 15A and 15B can be planted from the wound body as shown in FIG.
  • the cathode body 22 is made of, for example, a metal foil cut to the same size as the anode body 21.
  • the type of metal is not particularly limited, and for example, a valve metal such as aluminum, tantalum, or niobium can be used. Chemical conversion treatment may be performed on the surface of the cathode body 22 in the same manner as the anode body 21.
  • a nonwoven fabric mainly composed of synthetic cellulose, polyethylene terephthalate, vinylon, aramid fiber, or the like can be used as the material of the separator 23, for example.
  • the material of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
  • the material of the lead wires 14A and 14B connected to each of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
  • the winding tape 24 is disposed on the outer surface of the cathode body 22 located in the outermost layer among the wound anode body 21, cathode body 22 and separator 23, and the end of the cathode body 22 is fastened. Secure with tape 24.
  • a chemical conversion treatment may be further performed on the wound body in order to provide a dielectric coating on the cut surface of the anode body 21. . (Iii) Step of impregnating the wound body with the first liquid composition
  • the anode body 21 is impregnated with the first liquid composition by impregnating the wound body with the first liquid composition.
  • the first liquid composition is, for example, a solution containing a solvent and a first conductive polymer dissolved in the solvent (hereinafter also referred to as a first polymer solution), a dispersion medium, and the dispersion medium.
  • a first polymer solution a solution containing a solvent and a first conductive polymer dissolved in the solvent
  • a dispersion medium a dispersion medium
  • the solvent and the dispersion medium may be water, a mixture of water and a non-aqueous solvent, or a non-aqueous solvent.
  • the non-aqueous solvent is not particularly limited.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, formaldehyde, N-methylacetamide, N, N-dimethylformamide, N-methyl-2 -Amides such as pyrrolidone, esters such as methyl acetate, ethers such as 1,4-dioxane, and ketones such as methyl ethyl ketone.
  • the first conductive polymer contained in the first polymer solution is dissolved in the solvent and is uniformly distributed in the solution. Therefore, the first polymer solution is preferable in that it can easily form a more uniform solid electrolyte layer.
  • the first conductive polymer contained in the first polymer dispersion is dispersed in a dispersion medium in the form of particles or powder. Therefore, even when there is a defect in the dielectric film, it is preferable in that the first conductive polymer does not easily enter the defect and a micro short-circuit hardly occurs.
  • the first polymer dispersion can be obtained, for example, by dispersing the first conductive polymer in the dispersion medium, or by polymerizing the precursor monomer of the first conductive polymer in the dispersion medium. It can be obtained by a method of generating conductive polymer particles.
  • the concentration of the first conductive polymer in the first polymer solution is preferably 0.5 to 10% by mass, and the concentration of the particles or powder of the first conductive polymer in the first polymer dispersion is also The content is preferably 0.5 to 10% by mass.
  • the first polymer solution or dispersion having such a concentration is suitable for forming a solid electrolyte layer having an appropriate thickness, and is easy to be impregnated into the wound body, and is advantageous in improving productivity. is there.
  • the first conductive polymer may be, for example, polypyrrole, polythiophene, polyfuran, polyaniline, or the like.
  • polypyrrole, polythiophene, polyfuran and polyaniline mean polymers having polypyrrole, polythiophene, polyfuran and polyaniline as basic skeletons, respectively.
  • polypyrrole, polythiophene, polyfuran and polyaniline can also include their respective derivatives. These may be used alone or in combination of two or more.
  • the weight average molecular weight of the first conductive polymer is preferably 1000 to 100,000. This is because such a first conductive polymer is easy to form a homogeneous solid electrolyte layer on the dielectric film, and does not easily enter the defects of the dielectric film.
  • the first conductive polymer may have a cross-linked structure.
  • the average particle diameter D50 of the particles or powder is preferably 0.01 to 0.5 ⁇ m, for example.
  • the average particle diameter D50 is a median diameter in a volume particle size distribution obtained by a laser diffraction particle size distribution measuring apparatus.
  • the method for impregnating the wound body with the first liquid composition is not particularly limited, but for example, a method of immersing the wound body in the first liquid composition housed in the container is simple and preferable.
  • the immersion time is, for example, 1 second to 5 hours, preferably 1 minute to 30 minutes, depending on the size of the wound body.
  • the impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa.
  • ultrasonic vibration may be applied to the wound body or the first liquid composition while being immersed in the first liquid composition.
  • Step of drying the wound body to form a solid electrolyte layer Next, the wound body is pulled up from the first liquid composition, and the wound body is dried, whereby the surface of the dielectric coating 31 is formed. 1 A solid electrolyte layer containing a conductive polymer is formed. At this time, a solid electrolyte layer may be formed not only on the surface of the dielectric coating 31 but also on the surfaces of the separator and the cathode foil.
  • the anode body 21 may be heated to promote evaporation of the solvent or the dispersion medium.
  • the temperature for heating the anode body is preferably, for example, 50 to 300 ° C., particularly preferably 100 to 200 ° C.
  • the step (iii) of impregnating the wound body with the first liquid composition and the step (iv) of forming the solid electrolyte layer by drying the wound body may be repeated twice or more. By performing these steps a plurality of times, the coverage of the solid electrolyte layer 32 with respect to the dielectric coating 31 can be increased.
  • the solid electrolyte layer 32 is formed between the anode body 21 and the separator 23, and the capacitor element 10 is manufactured.
  • the solid electrolyte layer formed on the surface of the dielectric film effectively functions as a cathode material. Therefore, the anode body provided with the solid electrolyte layer can be referred to as a capacitor element by itself.
  • the anode body 21 (capacitor element) on which the solid electrolyte layer is formed is coated with a nonaqueous solvent and the second conductive polymer dissolved therein.
  • the second liquid composition 33 is impregnated.
  • the second liquid composition 33 enters the gaps of the capacitor element, particularly the gaps of the solid electrolyte layer 32 formed on the dielectric coating 31. Further, since the second liquid composition 33 can also enter the gaps in the dielectric film 31 that is not covered with the solid electrolyte layer 32, the repair function of the dielectric film 31 is improved. Furthermore, since the second conductive polymer is dissolved in the second liquid composition 33, the dissolution of the first conductive polymer from the solid electrolyte layer into the second liquid composition 33 is suppressed.
  • the second conductive polymer preferably contains the same monomer unit as the monomer unit constituting the first conductive polymer. Thereby, the effect of suppressing the dissolution of the first conductive polymer into the non-aqueous solvent (second liquid composition) is increased. Therefore, when the first conductive polymer is polypyrrole, polythiophene, polyfuran, or polyaniline, the second conductive polymer is preferably polypyrrole, polythiophene, polyfuran, or polyaniline, respectively.
  • the weight average molecular weight of the second conductive polymer is preferably 1000 to 100,000. This is because such a second conductive polymer is easily dissolved in a non-aqueous solvent and does not easily increase the viscosity of the second polymer solution.
  • the non-aqueous solvent in the second liquid composition is not particularly limited as long as it is a solvent that dissolves the second conductive polymer, and examples thereof include propylene glycol, sulfolane, ⁇ -butyrolactone, and ethylene glycol.
  • the boiling point of the non-aqueous solvent is preferably 100 ° C. or higher, and more preferably 200 ° C. or higher. This is because the second liquid composition remains in the capacitor element, so that it is desired to have excellent heat resistance and reflow resistance.
  • the second liquid composition may further contain an electrolyte component such as an organic salt. By containing the electrolyte component, it is easy to obtain an electrolytic capacitor with low ESR and high reliability.
  • the concentration of the second conductive polymer contained in the second liquid composition is high, but when the concentration is high, The viscosity of the second liquid composition increases. Therefore, the concentration of the second conductive polymer contained in the second liquid composition is preferably 0.5% by mass or more and a saturation concentration or less, and preferably 1% by mass or more and 5% by mass or less. . If the concentration of the second conductive polymer is 0.5% by mass or more, the concentration is sufficiently high and the effect of suppressing the dissolution of the first conductive polymer into the second liquid composition is high. Become. When the concentration of the second conductive polymer exceeds the saturation concentration, the second conductive polymer is precipitated in the capacitor element, which may cause an internal short circuit.
  • the method of impregnating the wound liquid body with the second liquid composition is not particularly limited, but a method of immersing the wound body in the second liquid composition housed in the container is simple and preferable.
  • the immersion time is, for example, 1 second to 5 minutes, depending on the size of the wound body.
  • the impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa.
  • the second liquid composition may contain an organic salt as an ionic substance.
  • An organic salt is a salt in which at least one of an anion and a cation contains an organic substance.
  • an organic amine salt is preferable, and a salt of an organic amine and an organic acid is particularly preferable.
  • trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-ethyl imidazole phthalate Linium or the like can be used.
  • the concentration of the organic salt in the second liquid composition can be 5 to 50% by weight, for example.
  • the second liquid composition may be referred to as an electrolytic solution regardless of whether or not the ionic substance is dissolved.
  • Step of sealing the capacitor element the capacitor element 10 is sealed. Specifically, first, the capacitor element 10 is accommodated in the bottomed case 11 so that the lead wires 14 ⁇ / b> A and 14 ⁇ / b> B are positioned on the upper surface where the bottomed case 11 is opened.
  • a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof can be used.
  • the sealing member 12 formed so that the lead wires 14 ⁇ / b> A and 14 ⁇ / b> B penetrate is disposed above the capacitor element 10, and the capacitor element 10 is sealed in the bottomed case 11.
  • the sealing member 12 may be an insulating material.
  • an elastic body is preferable, among which silicone rubber, fluorine rubber, ethylene propylene rubber, hyperon rubber, butyl rubber, isoprene rubber, and the like having high heat resistance are preferable.
  • the wound type electrolytic capacitor has been described.
  • the scope of the present invention is not limited to the above, and other electrolytic capacitors, for example, a chip type electrolytic capacitor using a metal sintered body as an anode body.
  • the present invention can also be applied to a capacitor or a multilayer electrolytic capacitor using a metal plate as an anode body.
  • Example 1 In this example, a wound type electrolytic capacitor ( ⁇ 8.0 mm ⁇ L (length) 12.0 mm) having a rated voltage of 35 V and a rated capacitance of 22 ⁇ F was produced.
  • Step of preparing an anode body First, the aluminum foil was etched to roughen the surface of the aluminum foil. Thereafter, a dielectric coating was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was performed by immersing an aluminum foil in an ammonium adipate solution and applying a voltage thereto. Thereafter, the aluminum foil was cut so that the length ⁇ width was 6 mm ⁇ 120 mm to prepare an anode body.
  • a separator and a cathode body having the same area as the anode body were prepared, and the anode body and the cathode body were wound through the separator while winding the lead tab. Next, the end of the outer surface of the wound body was fixed with a winding tape to produce a wound body.
  • the wound body was immersed in the first liquid composition for 5 minutes in a reduced pressure atmosphere (40 kPa), and then the wound body was pulled up from the first liquid composition.
  • the wound body impregnated with the first liquid composition was dried in a drying furnace at 150 ° C. for 20 minutes to form a solid electrolyte layer containing the first conductive polymer on the dielectric film of the anode body.
  • a ⁇ -butyrolactone solution containing 3% by mass of the same conductive polymer as the first conductive polymer (polyaniline having a weight average molecular weight of 10,000 to 20,000) as the second conductive polymer was prepared as the second liquid composition.
  • the wound body (capacitor element) having the solid electrolyte layer was immersed in the second liquid composition for 5 minutes, and then the wound body was pulled up from the second liquid composition.
  • the capacitor element impregnated with the second liquid composition was sealed to complete the electrolytic capacitor. Specifically, first, the capacitor element is housed in the bottomed case so that the lead wire is positioned on the opening side of the bottomed case, and the rubber packing which is a sealing member formed so that the lead wire penetrates the capacitor The capacitor element was sealed in the bottomed case by placing it above the element. Then, the electrolytic capacitor as shown in FIG.
  • the capacitance and ESR of the obtained electrolytic capacitor were measured. The results are shown in Table 1. Further, a voltage was applied while boosting at a rate of 1.0 V / second, and a breakdown voltage (BDV) in which an overcurrent of 0.5 A flows was measured. Furthermore, in order to evaluate long-term reliability, it was held at 125 ° C. for 1000 hours while applying the rated voltage, and the rate of increase in ESR ( ⁇ ESR) was confirmed. With respect to ⁇ ESR, Table 1 shows the case where ESR after holding for 1000 hours is less than 1.5 times the initial value, and ⁇ where 1.5 times or more. Each characteristic was determined as an average value of 20 samples.
  • Example 2 (Preparation of the first liquid composition) A propylene glycol solution containing 3% by mass of polythiophene, which is a first conductive polymer having a weight average molecular weight of 10,000 to 20,000, was prepared as a first liquid composition. (Preparation of second liquid composition) A propylene glycol solution containing 3% by mass of the same conductive polymer (polythiophene having a weight average molecular weight of 10,000 to 20,000) as the first conductive polymer as a second conductive polymer was prepared as a second liquid composition.
  • the second liquid composition impregnated in the capacitor element is a solution made of a non-aqueous solvent containing a conductive polymer, the ESR is low, the BDV is high, and the long-term reliability is excellent. Understandable.
  • the present invention can be used for an electrolytic capacitor, and in particular, can be suitably used for an electrolytic capacitor using an anode body having a plurality of fine concave portions on the surface.

Abstract

This electrolytic capacitor manufacturing method involves a step for preparing a positive electrode body having a dielectric film, a step for preparing a first liquid composition containing a first conductive polymer, a step for impregnating the positive electrode body with the first liquid composition and thereafter drying the same to form a capacitor element that has a solid electrolyte layer disposed on the surface of the dielectric film and containing the first conductive polymer, a step for preparing a second liquid composition that contains a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent, a step for impregnating the capacitor element with the second composition, and a step for housing the capacitor element impregnated with the second liquid composition in an exterior case.

Description

電解コンデンサの製造方法および電解コンデンサElectrolytic capacitor manufacturing method and electrolytic capacitor
 本発明は、電解コンデンサの製造方法および電解コンデンサに関し、特に、巻回型電解コンデンサの製造方法に関する。 The present invention relates to an electrolytic capacitor manufacturing method and an electrolytic capacitor, and more particularly to a wound electrolytic capacitor manufacturing method.
 電子機器のデジタル化に伴い、それに使用されるコンデンサにも小型、大容量で高周波領域における等価直列抵抗(ESR)の小さいものが求められるようになってきている。 With the digitization of electronic devices, the capacitors used for them are also required to be small, large in capacity, and have low equivalent series resistance (ESR) in the high frequency range.
 従来、高周波領域用のコンデンサとしてはプラスチックフイルムコンデンサ、積層セラミックコンデンサ等が多用されているが、これらは比較的小容量である。 Conventionally, plastic film capacitors, multilayer ceramic capacitors, and the like are frequently used as capacitors for high-frequency regions, but these have a relatively small capacity.
 小型、大容量で低ESRのコンデンサとしては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等の導電性高分子を陰極材として用いた電解コンデンサが有望である。例えば、誘電体被膜を形成した陽極箔に、陰極材として導電性高分子層を設けたコンデンサ素子が提案されている。 As a small-sized, large-capacity, low-ESR capacitor, an electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline as a cathode material is promising. For example, a capacitor element has been proposed in which a conductive polymer layer is provided as a cathode material on an anode foil on which a dielectric coating is formed.
 特許文献1では、可溶性の導電性高分子を溶媒に溶解させて得られた溶液に、コンデンサ素子を浸漬させ、その後、乾燥させることにより、導電性高分子層を形成することを提案している。また、特許文献2では、導電性高分子の粒子または粉末を分散媒に分散させて得られた分散液に、コンデンサ素子を浸漬させ、その後、乾燥させることにより、導電性高分子層を形成することを提案している。その後、コンデンサ素子は電解液とともにケース内に密封され、エージングを経て電解コンデンサが完成する。 Patent Document 1 proposes to form a conductive polymer layer by immersing a capacitor element in a solution obtained by dissolving a soluble conductive polymer in a solvent and then drying the capacitor element. . In Patent Document 2, a conductive polymer layer is formed by immersing a capacitor element in a dispersion obtained by dispersing conductive polymer particles or powder in a dispersion medium and then drying the capacitor element. Propose that. Thereafter, the capacitor element is sealed in the case together with the electrolytic solution, and the electrolytic capacitor is completed through aging.
特開平05-144677号公報Japanese Patent Laid-Open No. 05-144677 特開2008-10657号公報JP 2008-10657 A
 しかし、特許文献1、2では、導電性高分子層から、電解液に導電性高分子が溶け出し、導電性高分子層の導電性が次第に低下することがある。そのため、ESRの経時的変化が大きくなり、電解コンデンサの長期信頼性を確保することが困難である。 However, in Patent Documents 1 and 2, the conductive polymer may dissolve into the electrolyte from the conductive polymer layer, and the conductivity of the conductive polymer layer may gradually decrease. Therefore, the ESR changes with time, and it is difficult to ensure the long-term reliability of the electrolytic capacitor.
 上記に鑑み、本発明は、長期信頼性に優れた電解コンデンサの製造方法および電解コンデンサを提供することを目的とする。 In view of the above, an object of the present invention is to provide an electrolytic capacitor manufacturing method and an electrolytic capacitor excellent in long-term reliability.
 本発明の一局面は、誘電体被膜を有する陽極体を準備する工程と、第1導電性高分子を含む第1液状組成物を準備する工程と、前記陽極体に、前記第1液状組成物を含浸させ、その後、乾燥させることにより、前記誘電体被膜の表面に前記第1導電性高分子を含む固体電解質層を具備するコンデンサ素子を形成する工程と、非水溶媒と、前記非水溶媒に溶解された第2導電性高分子と、を含む第2液状組成物を準備する工程と、前記コンデンサ素子に、前記第2液状組成物を含浸させる工程と、前記第2液状組成物を含浸させたコンデンサ素子を外装ケースに収容する工程と、を含む電解コンデンサの製造方法に関する。 One aspect of the present invention includes a step of preparing an anode body having a dielectric coating, a step of preparing a first liquid composition containing a first conductive polymer, and the anode body including the first liquid composition. Forming a capacitor element having a solid electrolyte layer containing the first conductive polymer on the surface of the dielectric coating, impregnating, and then drying, a non-aqueous solvent, and the non-aqueous solvent Preparing a second liquid composition containing a second conductive polymer dissolved in the capacitor, impregnating the capacitor element with the second liquid composition, and impregnating the second liquid composition And a step of accommodating the capacitor element in an outer case.
 上記方法によれば、第1導電性高分子を含む固体電解質層の周囲に存在する非水溶媒には、第2導電性高分子が溶解しているため、固体電解質層からの第1導電性高分子の非水溶媒への溶け出しが抑制される。これは、第1導電性高分子の非水溶媒への溶け出しが、平衡反応としての側面を有するためと考えられる。 According to the above method, since the second conductive polymer is dissolved in the nonaqueous solvent existing around the solid electrolyte layer containing the first conductive polymer, the first conductivity from the solid electrolyte layer is reduced. Dissolution of the polymer into the non-aqueous solvent is suppressed. This is presumably because the dissolution of the first conductive polymer into the non-aqueous solvent has an aspect as an equilibrium reaction.
 第2導電性高分子は、第1導電性高分子を構成するモノマー単位と同じモノマー単位を含んでもよい。これにより、第1導電性高分子の非水溶媒への溶け出しが更に抑制される。 The second conductive polymer may include the same monomer unit as the monomer unit constituting the first conductive polymer. Thereby, the dissolution of the first conductive polymer into the non-aqueous solvent is further suppressed.
 第2液状組成物における非水溶媒の沸点は、耐熱性や耐リフロー性の観点から、100℃以上であることが好ましい。また、第2液状組成物に含まれる第2導電性高分子の濃度は、例えば0.5質量%以上、飽和濃度以下であればよい。 The boiling point of the nonaqueous solvent in the second liquid composition is preferably 100 ° C. or higher from the viewpoints of heat resistance and reflow resistance. Moreover, the density | concentration of the 2nd conductive polymer contained in a 2nd liquid composition should just be 0.5 mass% or more and a saturation concentration or less, for example.
 本発明の別の局面は、誘電体被膜を有する陽極体と、前記誘電体被膜の表面に形成された第1導電性高分子を含む固体電解質層と、を有するコンデンサ素子と、非水溶媒と、前記非水溶媒に溶解された第2導電性高分子と、を含み、前記コンデンサ素子に含浸された液状組成物(第2液状組成物)と、前記第2液状組成物を含浸させた前記コンデンサ素子を収容する外装ケースと、を具備し、前記第2液状組成物に含まれる前記第2導電性高分子の濃度が、0.5質量%以上、飽和濃度以下である、電解コンデンサに関する。 Another aspect of the present invention includes a capacitor element having an anode body having a dielectric film, a solid electrolyte layer including a first conductive polymer formed on a surface of the dielectric film, a non-aqueous solvent, A liquid composition (second liquid composition) impregnated in the capacitor element, and the second liquid composition impregnated with the second conductive polymer dissolved in the non-aqueous solvent. And an outer case containing a capacitor element, wherein the concentration of the second conductive polymer contained in the second liquid composition is 0.5 mass% or more and a saturation concentration or less.
 本発明によれば、固体電解質層から非水溶媒への第1導電性高分子の溶け出しが抑制されるため、ESRの経時的変化が小さくなり、電解コンデンサの長期信頼性が向上する。 According to the present invention, since the dissolution of the first conductive polymer from the solid electrolyte layer into the non-aqueous solvent is suppressed, the change in ESR with time is reduced, and the long-term reliability of the electrolytic capacitor is improved.
本発明の一実施形態に係る電解コンデンサの断面模式図である。It is a cross-sectional schematic diagram of the electrolytic capacitor which concerns on one Embodiment of this invention. 同実施形態に係るコンデンサ素子の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the capacitor | condenser element which concerns on the same embodiment. 同実施形態に係るコンデンサ素子における要部構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the principal part structure in the capacitor | condenser element which concerns on the same embodiment.
 本発明の電解コンデンサの製造方法では、誘電体被膜を有する陽極体に、第1導電性高分子を含む第1液状組成物を含浸させ、その後、乾燥させることにより、誘電体被膜の表面に、第1導電性高分子を含む固体電解質層を形成する。このような方法は、重合反応により導電性高分子を生成させる方法に比べて容易である。よって、低コストで、ESRが低く、かつ漏れ電流の小さい電解コンデンサを提供することが可能となる。 In the method for producing an electrolytic capacitor of the present invention, the anode body having a dielectric film is impregnated with the first liquid composition containing the first conductive polymer, and then dried, so that the surface of the dielectric film is A solid electrolyte layer containing a first conductive polymer is formed. Such a method is easier than a method of generating a conductive polymer by a polymerization reaction. Therefore, it is possible to provide an electrolytic capacitor with low cost, low ESR, and low leakage current.
 上記のように固体電解質層を形成した陽極体に、非水溶媒を含浸させることにより、電解コンデンサの耐電圧を向上させることが可能であり、かつ誘電体被膜の修復能力も高められる。一方、固体電解質層の周囲に非水溶媒が存在すると、非水溶媒の分子が固体電解質層を攻撃することにより、第1導電性高分子が非水溶媒に溶け出す現象が見られる。長期間にわたってこのような溶け出しが進行すると、固体電解質層の導電性が低下し、ESRが上昇する。そこで、電解コンデンサの長期信頼性を向上させる観点から、本発明では、非水溶媒と、その非水溶媒に溶解させた第2導電性高分子とを含む第2液状組成物(以下、第2高分子溶液とも称する)を、固体電解質層を具備する陽極体に含浸させている。 By impregnating the anode body on which the solid electrolyte layer is formed as described above with a non-aqueous solvent, it is possible to improve the withstand voltage of the electrolytic capacitor and to enhance the repair ability of the dielectric film. On the other hand, when a non-aqueous solvent is present around the solid electrolyte layer, a phenomenon in which the first conductive polymer is dissolved in the non-aqueous solvent is observed due to the molecules of the non-aqueous solvent attacking the solid electrolyte layer. When such elution progresses over a long period of time, the conductivity of the solid electrolyte layer decreases and ESR increases. Therefore, from the viewpoint of improving the long-term reliability of the electrolytic capacitor, in the present invention, a second liquid composition (hereinafter referred to as a second liquid composition) containing a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent. (Also referred to as a polymer solution) is impregnated in an anode body having a solid electrolyte layer.
 固体電解質層からの導電性高分子の非水溶媒への溶け出しは、平衡反応としての側面を有する。よって、非水溶媒に導電性高分子が溶解していると、固体電解質層からの導電性高分子の溶解が抑制され、ESRの経時的変化が小さくなり、電解コンデンサの長期信頼性が向上する。 The dissolution of the conductive polymer from the solid electrolyte layer into the nonaqueous solvent has an aspect as an equilibrium reaction. Therefore, when the conductive polymer is dissolved in the nonaqueous solvent, the dissolution of the conductive polymer from the solid electrolyte layer is suppressed, the change in ESR over time is reduced, and the long-term reliability of the electrolytic capacitor is improved. .
 以下、本発明を実施形態に基づいてより具体的に説明する。ただし、以下の実施形態は本発明を限定するものではない。
≪電解コンデンサ≫
 図1は、本実施形態に係る電解コンデンサの断面模式図であり、図2は、同実施形態に係るコンデンサ素子の一部を展開した概略図であり、図3は、同コンデンサ素子における陽極体と固体電解質層との界面を含む要部構成を示す断面模式図である。
Hereinafter, the present invention will be described more specifically based on embodiments. However, the following embodiments do not limit the present invention.
≪Electrolytic capacitor≫
FIG. 1 is a schematic cross-sectional view of an electrolytic capacitor according to the present embodiment, FIG. 2 is a schematic diagram in which a part of the capacitor element according to the embodiment is developed, and FIG. 3 is an anode body in the capacitor element. It is a cross-sectional schematic diagram which shows the principal part structure containing the interface of a solid electrolyte layer.
 図1において、電解コンデンサは、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14A,14Bと、各リード線とコンデンサ素子10の各電極とを接続するリードタブ15A,15Bと、を備える。有底ケース11の開口端近傍は、内側に絞り加工されており、開口端は封止部材12に加締めるようにカール加工されている。 In FIG. 1, an electrolytic capacitor includes a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, a seat plate 13 that covers the sealing member 12, Lead wires 14A and 14B led out from the sealing member 12 and penetrating the seat plate 13, and lead tabs 15A and 15B connecting the lead wires and the electrodes of the capacitor element 10 are provided. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end is curled so as to be crimped to the sealing member 12.
 コンデンサ素子10は、図2に示すように、リードタブ15Aと接続された陽極体21と、リードタブ15Bと接続された陰極体22と、セパレータ23とを備える。陽極体21および陰極体22は、セパレータ23を介して巻回されている。巻回体の最外周は、巻止めテープ24により固定される。なお、図2は、巻回体の最外周を止める前の、一部が展開された状態を示している。 As shown in FIG. 2, the capacitor element 10 includes an anode body 21 connected to the lead tab 15A, a cathode body 22 connected to the lead tab 15B, and a separator 23. The anode body 21 and the cathode body 22 are wound through a separator 23. The outermost periphery of the wound body is fixed by a winding tape 24. In addition, FIG. 2 has shown the state by which one part was expand | deployed before stopping the outermost periphery of a wound body.
 より具体的には、コンデンサ素子10は、誘電体被膜を有する陽極体21と、誘電体被膜の表面に形成された第1導電性高分子を含む固体電解質層と、を有する。陽極体21は、図3に示すように、表面に凹部を有する金属箔または金属の焼結体からなることが好ましい。そして、凹部を有する陽極体21上に、誘電体被膜31が設けられている。誘電体被膜31とセパレータ23との間には、導電性高分子を含む固体電解質層32が設けられている。 More specifically, the capacitor element 10 includes an anode body 21 having a dielectric film and a solid electrolyte layer containing a first conductive polymer formed on the surface of the dielectric film. As shown in FIG. 3, the anode body 21 is preferably made of a metal foil or a metal sintered body having a concave portion on the surface. A dielectric coating 31 is provided on the anode body 21 having a recess. A solid electrolyte layer 32 containing a conductive polymer is provided between the dielectric coating 31 and the separator 23.
 コンデンサ素子10には、非水溶媒と、非水溶媒に溶解された第2導電性高分子と、を含む第2液状組成物33が含浸されている。また、第2液状組成物33を含浸させたコンデンサ素子は、外装ケースに収容されている。ここで、第2液状組成物33に含まれる第2導電性高分子の濃度は、例えば0.5質量%以上、飽和濃度以下である。
≪電解コンデンサの製造方法≫
 次に、本実施形態に係る電解コンデンサの製造方法の一例について説明する。
(i)誘電体被膜31を具備する陽極体を準備する工程
 まず、誘電体被膜31を具備する陽極体21を準備する。陽極体21としては、金属箔を用いることができる。具体的には、所定の大きさに切断された金属箔の表面を粗面化する。金属の種類は特に限定されないが、誘電体被膜31の形成が容易である点から、アルミニウム、タンタル、ニオブなどの弁作用金属を用いることが好ましい。粗面化では、金属箔の表面に、複数の凹部を形成する。例えば、金属箔をエッチング処理することによって、金属箔の表面に複数の凹部を形成することができる。
The capacitor element 10 is impregnated with a second liquid composition 33 containing a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent. The capacitor element impregnated with the second liquid composition 33 is accommodated in the outer case. Here, the concentration of the second conductive polymer contained in the second liquid composition 33 is, for example, not less than 0.5 mass% and not more than the saturation concentration.
≪Method for manufacturing electrolytic capacitor≫
Next, an example of a method for manufacturing the electrolytic capacitor according to the present embodiment will be described.
(I) Step of Preparing Anode Body Having Dielectric Film 31 First, the anode body 21 having the dielectric film 31 is prepared. As the anode body 21, a metal foil can be used. Specifically, the surface of the metal foil cut into a predetermined size is roughened. The type of metal is not particularly limited, but it is preferable to use a valve metal such as aluminum, tantalum, or niobium because the dielectric film 31 can be easily formed. In roughening, a plurality of recesses are formed on the surface of the metal foil. For example, a plurality of recesses can be formed on the surface of the metal foil by etching the metal foil.
 次に、粗面化された陽極体21の表面に誘電体被膜31を形成する。誘電体被膜31の形成方法は特に限定されないが、例えば、陽極体21が弁作用金属からなる場合には、陽極体21を化成処理することにより、陽極体21の表面に誘電体被膜31を形成することができる。化成処理では、例えば、陽極体21をアジピン酸アンモニウム溶液などの化成液に浸漬して熱処理する。また、陽極体21を化成液に浸漬して電圧を印加してもよい。通常は、量産性の観点から、大判の弁作用金属箔に対して粗面化処理および化成処理が行われる。その場合には、処理後の金属箔を所望の大きさに裁断することによって、陽極体21を準備することができる。
(ii)巻回体の作製
 次に、陽極体21を用いて巻回体を作製する。巻回体とは、コンデンサ素子10の半製品であり、陽極体21と陰極体22もしくはセパレータ23との間に、固体電解質層32が形成されていないものをいう。
Next, a dielectric coating 31 is formed on the surface of the roughened anode body 21. The method of forming the dielectric film 31 is not particularly limited. For example, when the anode body 21 is made of a valve metal, the anode body 21 is subjected to chemical conversion treatment to form the dielectric film 31 on the surface of the anode body 21. can do. In the chemical conversion treatment, for example, the anode body 21 is immersed in a chemical conversion solution such as an ammonium adipate solution and heat-treated. Alternatively, the voltage may be applied by immersing the anode body 21 in the chemical conversion solution. Usually, from the viewpoint of mass productivity, roughening treatment and chemical conversion treatment are performed on a large-sized valve action metal foil. In that case, the anode body 21 can be prepared by cutting the treated metal foil into a desired size.
(Ii) Production of wound body Next, a wound body is produced using the anode body 21. The wound body is a semi-finished product of the capacitor element 10 and means that the solid electrolyte layer 32 is not formed between the anode body 21 and the cathode body 22 or the separator 23.
 まず、陽極体21と陰極体22とを、セパレータ23を介して巻回する。このとき、リードタブ15A,15Bを巻き込みながら巻回することにより、図2に示すように、リードタブ15A,15Bを巻回体から植立させることができる。 First, the anode body 21 and the cathode body 22 are wound through the separator 23. At this time, by winding the lead tabs 15A and 15B while winding them, the lead tabs 15A and 15B can be planted from the wound body as shown in FIG.
 陰極体22は、例えば、陽極体21と同程度の大きさに切断された金属箔からなる。金属の種類は特に限定されず、例えば、アルミニウム、タンタル、ニオブなどの弁作用金属を用いることができる。陰極体22の表面に対し、陽極体21と同様に化成処理を行ってもよい。 The cathode body 22 is made of, for example, a metal foil cut to the same size as the anode body 21. The type of metal is not particularly limited, and for example, a valve metal such as aluminum, tantalum, or niobium can be used. Chemical conversion treatment may be performed on the surface of the cathode body 22 in the same manner as the anode body 21.
 セパレータ23の材料は、例えば、合成セルロース、ポリエチレンテレフタレート、ビニロン、アラミド繊維などを主成分とする不織布を用いることができる。 As the material of the separator 23, for example, a nonwoven fabric mainly composed of synthetic cellulose, polyethylene terephthalate, vinylon, aramid fiber, or the like can be used.
 リードタブ15A,15Bの材料も特に限定されず、導電性材料であればよい。リードタブ15A,15Bの各々に接続されるリード線14A,14Bの材料についても、特に限定されず、導電性材料であればよい。 The material of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material. The material of the lead wires 14A and 14B connected to each of the lead tabs 15A and 15B is not particularly limited as long as it is a conductive material.
 次に、巻回された陽極体21、陰極体22およびセパレータ23のうち、最外層に位置する陰極体22の外側表面に、巻止めテープ24を配置し、陰極体22の端部を巻止めテープ24で固定する。なお、陽極体21を大判の金属箔を裁断することによって準備した場合には、陽極体21の裁断面に誘電体被膜を設けるために、巻回体に対し、さらに化成処理を行ってもよい。
(iii)巻回体に第1液状組成物を含浸させる工程
 次に、巻回体に第1液状組成物を含浸させることにより、陽極体21に第1液状組成物を含浸させる。第1液状組成物とは、例えば、溶媒と、その溶媒に溶解させた第1導電性高分子とを含む溶液(以下、第1高分子溶液とも称する)、または、分散媒と、その分散媒に分散させた第1導電性高分子とを含む分散液(以下、第1高分子分散液とも称する)であればよい。溶媒および分散媒は、水でもよく、水と非水溶媒との混合物でもよく、非水溶媒でもよい。非水溶媒としては、特に限定されないが、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール類、ホルムアルデヒド、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類や、酢酸メチルなどのエステル類、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類などが挙げられる。
Next, the winding tape 24 is disposed on the outer surface of the cathode body 22 located in the outermost layer among the wound anode body 21, cathode body 22 and separator 23, and the end of the cathode body 22 is fastened. Secure with tape 24. When the anode body 21 is prepared by cutting a large metal foil, a chemical conversion treatment may be further performed on the wound body in order to provide a dielectric coating on the cut surface of the anode body 21. .
(Iii) Step of impregnating the wound body with the first liquid composition Next, the anode body 21 is impregnated with the first liquid composition by impregnating the wound body with the first liquid composition. The first liquid composition is, for example, a solution containing a solvent and a first conductive polymer dissolved in the solvent (hereinafter also referred to as a first polymer solution), a dispersion medium, and the dispersion medium. Any dispersion liquid (hereinafter also referred to as a first polymer dispersion liquid) may be used as long as it contains the first conductive polymer dispersed in the liquid crystal. The solvent and the dispersion medium may be water, a mixture of water and a non-aqueous solvent, or a non-aqueous solvent. The non-aqueous solvent is not particularly limited. For example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, formaldehyde, N-methylacetamide, N, N-dimethylformamide, N-methyl-2 -Amides such as pyrrolidone, esters such as methyl acetate, ethers such as 1,4-dioxane, and ketones such as methyl ethyl ketone.
 第1高分子溶液に含まれる第1導電性高分子は、溶媒に溶解しており、溶液中に均一に分布している。よって、第1高分子溶液は、より均一な固体電解質層を形成しやすい点で好ましい。また、第1高分子分散液に含まれる第1導電性高分子は、粒子または粉末の状態で分散媒に分散している。よって、誘電体被膜に欠陥が存在する場合でも、欠陥への第1導電性高分子の侵入が起こりにくく、微小短絡が発生しにくい点で好ましい。第1高分子分散液は、例えば、分散媒に第1導電性高分子を分散させる方法や、分散媒中で第1導電性高分子の前駆体モノマーを重合させて、分散媒中に第1導電性高分子の粒子を生成させる方法などにより得ることができる。 The first conductive polymer contained in the first polymer solution is dissolved in the solvent and is uniformly distributed in the solution. Therefore, the first polymer solution is preferable in that it can easily form a more uniform solid electrolyte layer. The first conductive polymer contained in the first polymer dispersion is dispersed in a dispersion medium in the form of particles or powder. Therefore, even when there is a defect in the dielectric film, it is preferable in that the first conductive polymer does not easily enter the defect and a micro short-circuit hardly occurs. The first polymer dispersion can be obtained, for example, by dispersing the first conductive polymer in the dispersion medium, or by polymerizing the precursor monomer of the first conductive polymer in the dispersion medium. It can be obtained by a method of generating conductive polymer particles.
 第1高分子溶液における第1導電性高分子の濃度は、0.5~10質量%であることが好ましく、第1高分子分散液における第1導電性高分子の粒子または粉末の濃度も、0.5~10質量%であることが好ましい。このような濃度の第1高分子溶液または分散液は、適度な厚みの固体電解質層を形成するのに適するとともに、巻回体に対して含浸されやすいため、生産性を向上させる上でも有利である。 The concentration of the first conductive polymer in the first polymer solution is preferably 0.5 to 10% by mass, and the concentration of the particles or powder of the first conductive polymer in the first polymer dispersion is also The content is preferably 0.5 to 10% by mass. The first polymer solution or dispersion having such a concentration is suitable for forming a solid electrolyte layer having an appropriate thickness, and is easy to be impregnated into the wound body, and is advantageous in improving productivity. is there.
 第1導電性高分子は、例えば、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどであればよい。なお、本明細書では、ポリピロール、ポリチオフェン、ポリフランおよびポリアニリンは、それぞれ、ポリピロール、ポリチオフェン、ポリフランおよびポリアニリンを基本骨格とする高分子を意味する。したがって、ポリピロール、ポリチオフェン、ポリフランおよびポリアニリンには、それぞれの誘導体も含まれ得る。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The first conductive polymer may be, for example, polypyrrole, polythiophene, polyfuran, polyaniline, or the like. In the present specification, polypyrrole, polythiophene, polyfuran and polyaniline mean polymers having polypyrrole, polythiophene, polyfuran and polyaniline as basic skeletons, respectively. Thus, polypyrrole, polythiophene, polyfuran and polyaniline can also include their respective derivatives. These may be used alone or in combination of two or more.
 第1導電性高分子の重量平均分子量は1000~100000であることが好ましい。このような第1導電性高分子は、誘電体被膜に均質な固体電解質層を形成しやすく、かつ誘電体被膜の欠陥に侵入しにくいからである。また、第1導電性高分子は、架橋構造を有してもよい。また、第1導電性高分子が、粒子または粉末の状態で分散媒に分散している場合、その粒子または粉末の平均粒径D50は、例えば0.01~0.5μmであることが好ましい。ここで、平均粒径D50は、レーザー回折式の粒度分布測定装置により求められる体積粒度分布におけるメディアン径である。 The weight average molecular weight of the first conductive polymer is preferably 1000 to 100,000. This is because such a first conductive polymer is easy to form a homogeneous solid electrolyte layer on the dielectric film, and does not easily enter the defects of the dielectric film. The first conductive polymer may have a cross-linked structure. When the first conductive polymer is dispersed in the dispersion medium in the form of particles or powder, the average particle diameter D50 of the particles or powder is preferably 0.01 to 0.5 μm, for example. Here, the average particle diameter D50 is a median diameter in a volume particle size distribution obtained by a laser diffraction particle size distribution measuring apparatus.
 巻回体に第1液状組成物を含浸させる方法は、特に限定されないが、例えば、容器に収容された第1液状組成物に巻回体を浸漬させる方法が簡易で好ましい。浸漬時間は、巻回体のサイズにもよるが、例えば1秒~5時間、好ましくは1分~30分である。また、含浸は、減圧下、例えば10~100kPa、好ましくは40~100kPaの雰囲気で行うことが好ましい。また、第1液状組成物に浸漬させながら、巻回体または第1液状組成物に超音波振動を付与してもよい。
(iv)巻回体を乾燥させて固体電解質層を形成する工程
 次に、第1液状組成物から、巻回体を引き上げ、巻回体を乾燥させることにより、誘電体被膜31の表面に第1導電性高分子を含む固体電解質層を形成する。このとき、誘電体被膜31の表面だけでなく、セパレータや陰極箔の表面にも固体電解質層が形成されてもよい。
The method for impregnating the wound body with the first liquid composition is not particularly limited, but for example, a method of immersing the wound body in the first liquid composition housed in the container is simple and preferable. The immersion time is, for example, 1 second to 5 hours, preferably 1 minute to 30 minutes, depending on the size of the wound body. The impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa. Further, ultrasonic vibration may be applied to the wound body or the first liquid composition while being immersed in the first liquid composition.
(Iv) Step of drying the wound body to form a solid electrolyte layer Next, the wound body is pulled up from the first liquid composition, and the wound body is dried, whereby the surface of the dielectric coating 31 is formed. 1 A solid electrolyte layer containing a conductive polymer is formed. At this time, a solid electrolyte layer may be formed not only on the surface of the dielectric coating 31 but also on the surfaces of the separator and the cathode foil.
 第1液状組成物から巻回体を引上げた後、陽極体21を加熱することにより、溶媒または分散媒の蒸散を促進しもよい。陽極体を加熱する温度は、例えば50~300℃が好ましく、100~200℃が特に好ましい。 After elevating the wound body from the first liquid composition, the anode body 21 may be heated to promote evaporation of the solvent or the dispersion medium. The temperature for heating the anode body is preferably, for example, 50 to 300 ° C., particularly preferably 100 to 200 ° C.
 巻回体に第1液状組成物を含浸させる工程(iii)と、巻回体を乾燥させて固体電解質層を形成する工程(iv)は、2回以上繰り返してもよい。これらの工程を複数回行うことにより、誘電体被膜31に対する固体電解質層32の被覆率を高めることができる。 The step (iii) of impregnating the wound body with the first liquid composition and the step (iv) of forming the solid electrolyte layer by drying the wound body may be repeated twice or more. By performing these steps a plurality of times, the coverage of the solid electrolyte layer 32 with respect to the dielectric coating 31 can be increased.
 以上により、陽極体21とセパレータ23との間に固体電解質層32が形成され、コンデンサ素子10が作製される。なお、誘電体被膜の表面に形成された固体電解質層は、事実上、陰極材料として機能する。よって、固体電解質層を具備する陽極体は、それだけでコンデンサ素子と称することができる。
(v)コンデンサ素子に第2液状組成物を含浸させる工程
 次に、固体電解質層が形成された陽極体21(コンデンサ素子)に、非水溶媒およびこれに溶解された第2導電性高分子を含む第2液状組成物33を含浸させる。これにより、コンデンサ素子が有する隙間、特に誘電体被膜31上に形成された固体電解質層32の隙間に第2液状組成物33が侵入する。また、第2液状組成物33は、固体電解質層32により被覆されていない誘電体被膜31の隙間にも侵入することができるため、誘電体被膜31の修復機能が向上する。更に、第2液状組成物33には第2導電性高分子が溶解しているため、固体電解質層からの第1導電性高分子の第2液状組成物33への溶け出しは抑制される。
Thus, the solid electrolyte layer 32 is formed between the anode body 21 and the separator 23, and the capacitor element 10 is manufactured. Note that the solid electrolyte layer formed on the surface of the dielectric film effectively functions as a cathode material. Therefore, the anode body provided with the solid electrolyte layer can be referred to as a capacitor element by itself.
(V) Step of impregnating the capacitor element with the second liquid composition Next, the anode body 21 (capacitor element) on which the solid electrolyte layer is formed is coated with a nonaqueous solvent and the second conductive polymer dissolved therein. The second liquid composition 33 is impregnated. As a result, the second liquid composition 33 enters the gaps of the capacitor element, particularly the gaps of the solid electrolyte layer 32 formed on the dielectric coating 31. Further, since the second liquid composition 33 can also enter the gaps in the dielectric film 31 that is not covered with the solid electrolyte layer 32, the repair function of the dielectric film 31 is improved. Furthermore, since the second conductive polymer is dissolved in the second liquid composition 33, the dissolution of the first conductive polymer from the solid electrolyte layer into the second liquid composition 33 is suppressed.
 第2導電性高分子は、第1導電性高分子を構成するモノマー単位と同じモノマー単位を含むことが好ましい。これにより、第1導電性高分子の非水溶媒(第2液状組成物)への溶け出しを抑制する効果が大きくなる。よって、第1導電性高分子が、ポリピロール、ポリチオフェン、ポリフランまたはポリアニリンである場合、第2導電性高分子も、それぞれポリピロール、ポリチオフェン、ポリフランまたはポリアニリンであることが好ましい。 The second conductive polymer preferably contains the same monomer unit as the monomer unit constituting the first conductive polymer. Thereby, the effect of suppressing the dissolution of the first conductive polymer into the non-aqueous solvent (second liquid composition) is increased. Therefore, when the first conductive polymer is polypyrrole, polythiophene, polyfuran, or polyaniline, the second conductive polymer is preferably polypyrrole, polythiophene, polyfuran, or polyaniline, respectively.
 第2導電性高分子の重量平均分子量は1000~100000であることが好ましい。このような第2導電性高分子は、非水溶媒に溶解しやすく、かつ第2高分子溶液の粘度を上昇させにくいからである。 The weight average molecular weight of the second conductive polymer is preferably 1000 to 100,000. This is because such a second conductive polymer is easily dissolved in a non-aqueous solvent and does not easily increase the viscosity of the second polymer solution.
 第2液状組成物における非水溶媒は、第2導電性高分子を溶解させる溶媒であれば特に限定されないが、例えば、プロピレングリコール、スルホラン、γ-ブチロラクトン、エチレングリコールなどが挙げられる。非水溶媒の沸点は、100℃以上であることが好ましく、200℃以上であることが更に好ましい。第2液状組成物は、コンデンサ素子内に残留することから、耐熱性や耐リフロー性に優れていることが望まれるからである。第2液状組成物は、更に、有機塩などの電解質成分を含んでもよい。電解質成分を含有することより、ESRが低く、信頼性の高い電解コンデンサを得やすくなる。 The non-aqueous solvent in the second liquid composition is not particularly limited as long as it is a solvent that dissolves the second conductive polymer, and examples thereof include propylene glycol, sulfolane, γ-butyrolactone, and ethylene glycol. The boiling point of the non-aqueous solvent is preferably 100 ° C. or higher, and more preferably 200 ° C. or higher. This is because the second liquid composition remains in the capacitor element, so that it is desired to have excellent heat resistance and reflow resistance. The second liquid composition may further contain an electrolyte component such as an organic salt. By containing the electrolyte component, it is easy to obtain an electrolytic capacitor with low ESR and high reliability.
 第1導電性高分子の第2液状組成物への溶け出しを抑制する観点からは、第2液状組成物含まれる第2導電性高分子の濃度が高い方が望ましいが、濃度が高くなると、第2液状組成物の粘度が上昇する。よって、第2液状組成物に含まれる第2導電性高分子の濃度は、0.5質量%以上、飽和濃度以下であることが好ましく、1質量%以上、5質量%以下であることが好ましい。なお、第2導電性高分子の濃度が0.5質量%以上であれば、十分に高濃度であり、第1導電性高分子の第2液状組成物への溶け出しを抑制する効果も高くなる。第2導電性高分子の濃度が飽和濃度を超えると、コンデンサ素子内で第2導電性高分子が析出するため、内部短絡の原因となる場合がある。 From the viewpoint of suppressing the dissolution of the first conductive polymer into the second liquid composition, it is desirable that the concentration of the second conductive polymer contained in the second liquid composition is high, but when the concentration is high, The viscosity of the second liquid composition increases. Therefore, the concentration of the second conductive polymer contained in the second liquid composition is preferably 0.5% by mass or more and a saturation concentration or less, and preferably 1% by mass or more and 5% by mass or less. . If the concentration of the second conductive polymer is 0.5% by mass or more, the concentration is sufficiently high and the effect of suppressing the dissolution of the first conductive polymer into the second liquid composition is high. Become. When the concentration of the second conductive polymer exceeds the saturation concentration, the second conductive polymer is precipitated in the capacitor element, which may cause an internal short circuit.
 巻回体に第2液状組成物を含浸させる方法も、特に限定されないが、容器に収容された第2液状組成物に巻回体を浸漬させる方法が簡易で好ましい。浸漬時間は、巻回体のサイズにもよるが、例えば1秒~5分である。また、含浸は、減圧下、例えば10~100kPa、好ましくは40~100kPaの雰囲気で行うことが好ましい。 The method of impregnating the wound liquid body with the second liquid composition is not particularly limited, but a method of immersing the wound body in the second liquid composition housed in the container is simple and preferable. The immersion time is, for example, 1 second to 5 minutes, depending on the size of the wound body. The impregnation is preferably performed under reduced pressure, for example, in an atmosphere of 10 to 100 kPa, preferably 40 to 100 kPa.
 なお、第2液状組成物には、イオン性物質として、有機塩を含ませてもよい。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩としては、有機アミン塩が好ましく、特に有機アミンと有機酸との塩が好ましい。具体的には、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどを用いることができる。第2液状組成物中における有機塩の濃度は、例えば5~50重量%とすることができる。なお、第2液状組成物は、イオン性物質を溶解しているか否かにかかわらず、電解液と称されることもある。
(vi)コンデンサ素子を封止する工程
 次に、コンデンサ素子10を封止する。具体的には、まず、リード線14A,14Bが有底ケース11の開口する上面に位置するように、コンデンサ素子10を有底ケース11に収納する。有底ケース11の材料としては、アルミニウム、ステンレス鋼、銅、鉄、真鍮などの金属あるいはこれらの合金を用いることができる。
Note that the second liquid composition may contain an organic salt as an ionic substance. An organic salt is a salt in which at least one of an anion and a cation contains an organic substance. As the organic salt, an organic amine salt is preferable, and a salt of an organic amine and an organic acid is particularly preferable. Specifically, trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono 1,2,3,4-tetramethylimidazolinium phthalate, mono 1,3-dimethyl-2-ethyl imidazole phthalate Linium or the like can be used. The concentration of the organic salt in the second liquid composition can be 5 to 50% by weight, for example. Note that the second liquid composition may be referred to as an electrolytic solution regardless of whether or not the ionic substance is dissolved.
(Vi) Step of sealing the capacitor element Next, the capacitor element 10 is sealed. Specifically, first, the capacitor element 10 is accommodated in the bottomed case 11 so that the lead wires 14 </ b> A and 14 </ b> B are positioned on the upper surface where the bottomed case 11 is opened. As a material of the bottomed case 11, a metal such as aluminum, stainless steel, copper, iron, brass, or an alloy thereof can be used.
 次に、リード線14A,14Bが貫通するように形成された封止部材12を、コンデンサ素子10の上方に配置し、コンデンサ素子10を有底ケース11内に封止する。封止部材12は、絶縁性物質であればよい。絶縁性物質としては弾性体が好ましく、中でも耐熱性の高いシリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、ハイパロンゴム、ブチルゴム、イソプレンゴムなどが好ましい。 Next, the sealing member 12 formed so that the lead wires 14 </ b> A and 14 </ b> B penetrate is disposed above the capacitor element 10, and the capacitor element 10 is sealed in the bottomed case 11. The sealing member 12 may be an insulating material. As the insulating substance, an elastic body is preferable, among which silicone rubber, fluorine rubber, ethylene propylene rubber, hyperon rubber, butyl rubber, isoprene rubber, and the like having high heat resistance are preferable.
 次に、有底ケース11の開口端近傍に、横絞り加工を施し、開口端を封止部材12に加締めてカール加工する。そして、カール部分に座板13を配置することによって、図1に示すような電解コンデンサが完成する。その後、定格電圧を印加しながら、エージング処理を行ってもよい。 Next, lateral drawing is performed in the vicinity of the opening end of the bottomed case 11, and the opening end is crimped to the sealing member 12 for curling. And the electrolytic capacitor as shown in FIG. 1 is completed by arrange | positioning the seat board 13 in a curl part. Then, you may perform an aging process, applying a rated voltage.
 上記の実施形態では、巻回型の電解コンデンサについて説明したが、本発明の適用範囲は上記に限定されず、他の電解コンデンサ、例えば、陽極体として金属の焼結体を用いるチップ型の電解コンデンサや、金属板を陽極体として用いる積層型の電解コンデンサにも適用することができる。
[実施例]
 以下、実施例に基づいて、本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。
《実施例1》
 本実施例では、定格電圧35V、定格静電容量22μFの巻回型の電解コンデンサ(Φ8.0mm×L(長さ)12.0mm)を作製した。以下に、電解コンデンサの具体的な製造方法について説明する。
(i)陽極体を準備する工程
 まず、アルミニウム箔にエッチング処理を行い、アルミニウム箔の表面を粗面化した。その後、該アルミニウム箔の表面に、化成処理により、誘電体被膜を形成した。化成処理は、アジピン酸アンモニウム溶液にアルミニウム箔を浸漬し、これに電圧を印加することにより行った。その後、アルミニウム箔を、縦×横が6mm×120mmとなるように裁断して、陽極体を準備した。
(巻回体の作製)
 次に、陽極体と同程度の面積のセパレータおよび陰極体を準備し、陽極体と陰極体とを、リードタブを巻き込みながら、セパレータを介して巻回した。次に、巻回体の外側表面の端部を巻止めテープで固定して巻回体を作製した。
In the above embodiment, the wound type electrolytic capacitor has been described. However, the scope of the present invention is not limited to the above, and other electrolytic capacitors, for example, a chip type electrolytic capacitor using a metal sintered body as an anode body. The present invention can also be applied to a capacitor or a multilayer electrolytic capacitor using a metal plate as an anode body.
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to an Example.
Example 1
In this example, a wound type electrolytic capacitor (Φ8.0 mm × L (length) 12.0 mm) having a rated voltage of 35 V and a rated capacitance of 22 μF was produced. Below, the specific manufacturing method of an electrolytic capacitor is demonstrated.
(I) Step of preparing an anode body First, the aluminum foil was etched to roughen the surface of the aluminum foil. Thereafter, a dielectric coating was formed on the surface of the aluminum foil by chemical conversion treatment. The chemical conversion treatment was performed by immersing an aluminum foil in an ammonium adipate solution and applying a voltage thereto. Thereafter, the aluminum foil was cut so that the length × width was 6 mm × 120 mm to prepare an anode body.
(Production of wound body)
Next, a separator and a cathode body having the same area as the anode body were prepared, and the anode body and the cathode body were wound through the separator while winding the lead tab. Next, the end of the outer surface of the wound body was fixed with a winding tape to produce a wound body.
 陰極体としてはアルミニウム箔を用い、リードタブの巻回体から突出する端部にはリード線を接続した。そして、作製された巻回体に対して、再度化成処理を行い、陽極体の切断された端部にも誘電体被膜を形成した。
(第1液状組成物の準備)
 重量平均分子量が10000~20000の第1導電性高分子であるポリアニリンを3質量%含むトルエン溶液を、第1液状組成物として準備した。
(第1液状組成物の含浸)
 減圧雰囲気(40kPa)中で第1液状組成物に巻回体を5分間浸漬し、その後、第1液状組成物から巻回体を引き上げた。
(巻回体の乾燥)
 第1液状組成物を含浸した巻回体を、150℃の乾燥炉内で20分間乾燥させ、第1導電性高分子を含む固体電解質層を陽極体の誘電体被膜に形成した。
(第2液状組成物の準備)
 第1導電性高分子と同じ導電性高分子(重量平均分子量10000~20000のポリアニリン)を、第2導電性高分子として3質量%含むγ-ブチロラクトン溶液を、第2液状組成物として準備した。
(第2液状組成物の含浸)
 減圧雰囲気(40kPa)中で、第2液状組成物に、固体電解質層を具備する巻回体(コンデンサ素子)を5分間浸漬し、その後、第2液状組成物から巻回体を引き上げた。
(コンデンサ素子を封止する工程)
 第2液状組成物を含浸させたコンデンサ素子を封止して、電解コンデンサを完成させた。具体的には、まず、有底ケースの開口側にリード線が位置するようにコンデンサ素子を有底ケースに収納し、リード線が貫通するように形成された封止部材であるゴムパッキングをコンデンサ素子の上方に配置して、コンデンサ素子を有底ケース内に封止した。そして、有底ケースの開口端近傍に絞り加工を施し、更に開口端をカール加工し、カール部分に座板を配置することによって、図1に示すような電解コンデンサを完成させた。その後、定格電圧を印加しながら、135℃で2時間エージング処理を行った。
An aluminum foil was used as the cathode body, and a lead wire was connected to the end protruding from the wound body of the lead tab. Then, the formed wound body was subjected to a chemical conversion treatment again, and a dielectric film was formed on the cut end portion of the anode body.
(Preparation of the first liquid composition)
A toluene solution containing 3% by mass of polyaniline, which is a first conductive polymer having a weight average molecular weight of 10,000 to 20,000, was prepared as a first liquid composition.
(Impregnation of the first liquid composition)
The wound body was immersed in the first liquid composition for 5 minutes in a reduced pressure atmosphere (40 kPa), and then the wound body was pulled up from the first liquid composition.
(Drying the wound body)
The wound body impregnated with the first liquid composition was dried in a drying furnace at 150 ° C. for 20 minutes to form a solid electrolyte layer containing the first conductive polymer on the dielectric film of the anode body.
(Preparation of second liquid composition)
A γ-butyrolactone solution containing 3% by mass of the same conductive polymer as the first conductive polymer (polyaniline having a weight average molecular weight of 10,000 to 20,000) as the second conductive polymer was prepared as the second liquid composition.
(Impregnation of the second liquid composition)
In a reduced pressure atmosphere (40 kPa), the wound body (capacitor element) having the solid electrolyte layer was immersed in the second liquid composition for 5 minutes, and then the wound body was pulled up from the second liquid composition.
(Process of sealing the capacitor element)
The capacitor element impregnated with the second liquid composition was sealed to complete the electrolytic capacitor. Specifically, first, the capacitor element is housed in the bottomed case so that the lead wire is positioned on the opening side of the bottomed case, and the rubber packing which is a sealing member formed so that the lead wire penetrates the capacitor The capacitor element was sealed in the bottomed case by placing it above the element. Then, the electrolytic capacitor as shown in FIG. 1 was completed by drawing the vicinity of the open end of the bottomed case, curling the open end, and arranging a seat plate on the curled portion. Thereafter, an aging treatment was performed at 135 ° C. for 2 hours while applying a rated voltage.
 得られた電解コンデンサについて、静電容量およびESRを測定した。その結果を表1に示す。また、1.0V/秒のレートで昇圧しながら電圧を印加し、0.5Aの過電流が流れる破壊電圧(BDV)を測定した。更に、長期信頼性を評価するために、定格電圧を印加しながら125℃で1000時間保持し、ESRの増加率(ΔESR)を確認した。ΔESRについては、1000時間保持後のESRが初期値の1.5倍未満の場合を○、1.5倍以上の場合を×と表1に表示した。それぞれの特性を20個の試料の平均値として求めた。 The capacitance and ESR of the obtained electrolytic capacitor were measured. The results are shown in Table 1. Further, a voltage was applied while boosting at a rate of 1.0 V / second, and a breakdown voltage (BDV) in which an overcurrent of 0.5 A flows was measured. Furthermore, in order to evaluate long-term reliability, it was held at 125 ° C. for 1000 hours while applying the rated voltage, and the rate of increase in ESR (ΔESR) was confirmed. With respect to ΔESR, Table 1 shows the case where ESR after holding for 1000 hours is less than 1.5 times the initial value, and × where 1.5 times or more. Each characteristic was determined as an average value of 20 samples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《実施例2》
(第1液状組成物の準備)
 重量平均分子量が10000~20000の第1導電性高分子であるポリチオフェンを3質量%含むプロピレングリコール溶液を、第1液状組成物として準備した。
(第2液状組成物の準備)
 第1導電性高分子と同じ導電性高分子(重量平均分子量10000~20000のポリチオフェン)を、第2導電性高分子として3質量%含むプロピレングリコール溶液を、第2液状組成物として準備した。
Example 2
(Preparation of the first liquid composition)
A propylene glycol solution containing 3% by mass of polythiophene, which is a first conductive polymer having a weight average molecular weight of 10,000 to 20,000, was prepared as a first liquid composition.
(Preparation of second liquid composition)
A propylene glycol solution containing 3% by mass of the same conductive polymer (polythiophene having a weight average molecular weight of 10,000 to 20,000) as the first conductive polymer as a second conductive polymer was prepared as a second liquid composition.
 上記第1および第2液状組成物を用いたこと以外、実施例1と同様に、電解コンデンサを作製し、同様に評価した。結果を表1に示す。
《比較例1》
(第2液状組成物の準備)
 マレイン酸トリメチルアミンを20質量%含むγ-ブチロラクトン溶液を準備した。
An electrolytic capacitor was prepared and evaluated in the same manner as in Example 1 except that the first and second liquid compositions were used. The results are shown in Table 1.
<< Comparative Example 1 >>
(Preparation of second liquid composition)
A γ-butyrolactone solution containing 20% by mass of trimethylamine maleate was prepared.
 上記第2液状組成物を用いたこと以外、実施例1と同様に、電解コンデンサを作製し、同様に評価した。結果を表1に示す。
《比較例2》
 比較例1と同じ第2液状組成物を用いたこと以外、実施例2と同様に、電解コンデンサを作製し、同様に評価した。結果を表1に示す。
An electrolytic capacitor was prepared and evaluated in the same manner as in Example 1 except that the second liquid composition was used. The results are shown in Table 1.
<< Comparative Example 2 >>
An electrolytic capacitor was prepared and evaluated in the same manner as in Example 2 except that the same second liquid composition as in Comparative Example 1 was used. The results are shown in Table 1.
 表1より、コンデンサ素子に含浸させる第2液状組成物が、導電性高分子を含む非水溶媒からなる溶液である場合、ESRが低く、BDVが高く、かつ長期信頼性に優れていることが理解できる。 From Table 1, when the second liquid composition impregnated in the capacitor element is a solution made of a non-aqueous solvent containing a conductive polymer, the ESR is low, the BDV is high, and the long-term reliability is excellent. Understandable.
 本発明は、電解コンデンサに利用することができ、特に、表面に微細な凹部が複数存在する陽極体を用いた電解コンデンサに好適に利用できる。 The present invention can be used for an electrolytic capacitor, and in particular, can be suitably used for an electrolytic capacitor using an anode body having a plurality of fine concave portions on the surface.
 10:コンデンサ素子、11:有底ケース、12:封止部材、13:座板、14A,14B:リード線、15A,15B:リードタブ、21:陽極体、22:陰極体、23:セパレータ、24:巻止めテープ、31:誘電体被膜、32:固体電解質層、33:第2液状組成物 10: capacitor element, 11: bottomed case, 12: sealing member, 13: seat plate, 14A, 14B: lead wire, 15A, 15B: lead tab, 21: anode body, 22: cathode body, 23: separator, 24 : Winding tape, 31: dielectric coating, 32: solid electrolyte layer, 33: second liquid composition

Claims (6)

  1.  誘電体被膜を有する陽極体を準備する工程と、
     第1導電性高分子を含む第1液状組成物を準備する工程と、
     前記陽極体に、前記第1液状組成物を含浸させ、その後、乾燥させることにより、前記誘電体被膜の表面に前記第1導電性高分子を含む固体電解質層を具備するコンデンサ素子を形成する工程と、
     非水溶媒と、前記非水溶媒に溶解された第2導電性高分子と、を含む第2液状組成物を準備する工程と、
     前記コンデンサ素子に、前記第2液状組成物を含浸させる工程と、
     前記第2液状組成物を含浸させたコンデンサ素子を外装ケースに収容する工程と、を含む電解コンデンサの製造方法。
    Preparing an anode body having a dielectric coating;
    Preparing a first liquid composition containing a first conductive polymer;
    A step of forming a capacitor element having a solid electrolyte layer containing the first conductive polymer on the surface of the dielectric coating by impregnating the anode body with the first liquid composition and then drying. When,
    Preparing a second liquid composition comprising a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent;
    Impregnating the capacitor element with the second liquid composition;
    And a step of housing the capacitor element impregnated with the second liquid composition in an outer case.
  2.  前記第2導電性高分子が、前記第1導電性高分子を構成するモノマー単位と同じモノマー単位を含む、請求項1に記載の電解コンデンサの製造方法。 The method for producing an electrolytic capacitor according to claim 1, wherein the second conductive polymer includes the same monomer unit as the monomer unit constituting the first conductive polymer.
  3.  前記第1導電性高分子が、ポリアニリンおよびポリアニリン誘導体よりなる群から選択される少なくとも1種を含む、請求項1または2に記載の電解コンデンサの製造方法。 The method for producing an electrolytic capacitor according to claim 1 or 2, wherein the first conductive polymer includes at least one selected from the group consisting of polyaniline and a polyaniline derivative.
  4.  前記非水溶媒の沸点が、100℃以上である、請求項1~3のいずれか1項に記載の電解コンデンサの製造方法。 The method for producing an electrolytic capacitor according to any one of claims 1 to 3, wherein a boiling point of the non-aqueous solvent is 100 ° C or higher.
  5.  前記第2液状組成物に含まれる前記第2導電性高分子の濃度が、0.5質量%以上、飽和濃度以下である、請求項1~4のいずれか1項に記載の電解コンデンサの製造方法。 The production of the electrolytic capacitor according to any one of claims 1 to 4, wherein a concentration of the second conductive polymer contained in the second liquid composition is 0.5 mass% or more and a saturation concentration or less. Method.
  6.  誘電体被膜を有する陽極体と、前記誘電体被膜の表面に形成された第1導電性高分子を含む固体電解質層と、を有するコンデンサ素子と、
     非水溶媒と、前記非水溶媒に溶解された第2導電性高分子と、を含み、前記コンデンサ素子に含浸された液状組成物と、
     前記液状組成物を含浸させた前記コンデンサ素子を収容する外装ケースと、
    を具備し、
     前記液状組成物に含まれる前記第2導電性高分子の濃度が、0.5質量%以上、飽和濃度以下である、電解コンデンサ。
    A capacitor element comprising: an anode body having a dielectric coating; and a solid electrolyte layer containing a first conductive polymer formed on a surface of the dielectric coating;
    A liquid composition comprising a non-aqueous solvent and a second conductive polymer dissolved in the non-aqueous solvent, and impregnating the capacitor element;
    An outer case containing the capacitor element impregnated with the liquid composition;
    Comprising
    The electrolytic capacitor whose density | concentration of the said 2nd conductive polymer contained in the said liquid composition is 0.5 mass% or more and a saturated concentration or less.
PCT/JP2014/000474 2013-01-31 2014-01-30 Electrolytic capacitor manufacturing method and electrolytic capacitor WO2014119311A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559583A JP6326633B2 (en) 2013-01-31 2014-01-30 Electrolytic capacitor manufacturing method and electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-017639 2013-01-31
JP2013017639 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014119311A1 true WO2014119311A1 (en) 2014-08-07

Family

ID=51262026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000474 WO2014119311A1 (en) 2013-01-31 2014-01-30 Electrolytic capacitor manufacturing method and electrolytic capacitor

Country Status (2)

Country Link
JP (1) JP6326633B2 (en)
WO (1) WO2014119311A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114730666A (en) * 2019-11-29 2022-07-08 松下知识产权经营株式会社 Cathode foil for electrolytic capacitor, and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144677A (en) * 1991-11-18 1993-06-11 Rubycon Corp Aluminum electrolytic capacitor
JPH118161A (en) * 1997-06-18 1999-01-12 Nitto Denko Corp Sold-state electrolytic capacitor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144677A (en) * 1991-11-18 1993-06-11 Rubycon Corp Aluminum electrolytic capacitor
JPH118161A (en) * 1997-06-18 1999-01-12 Nitto Denko Corp Sold-state electrolytic capacitor and manufacture thereof

Also Published As

Publication number Publication date
JPWO2014119311A1 (en) 2017-01-26
JP6326633B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP7033705B2 (en) How to manufacture electrolytic capacitors
JP6589142B2 (en) Electrolytic capacitor manufacturing method
US10121599B2 (en) Method for producing electrolytic capacitor
WO2017163725A1 (en) Electrolytic capacitor and manufacturing method therefor
JP6803519B2 (en) Manufacturing method of electrolytic capacitors
US10121598B2 (en) Method for producing electrolytic capacitor
JP2016082053A (en) Electrolytic capacitor
JP2019110322A (en) Manufacturing method of electrolytic capacitor
JP6497563B2 (en) Electrolytic capacitor manufacturing method
WO2016157693A1 (en) Electrolytic capacitor
JP6868848B2 (en) Electrolytic capacitor
JP6326633B2 (en) Electrolytic capacitor manufacturing method and electrolytic capacitor
JP6604497B2 (en) Electrolytic capacitor manufacturing method
WO2014132632A1 (en) Electrolytic capacitor and manufacturing method therefor
JP2017175091A (en) Electrolytic capacitor and manufacturing method thereof
JP7407371B2 (en) Electrolytic capacitor
JP2023029570A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745678

Country of ref document: EP

Kind code of ref document: A1