JPS5832772B2 - Electrolytic capacitor and its manufacturing method - Google Patents

Electrolytic capacitor and its manufacturing method

Info

Publication number
JPS5832772B2
JPS5832772B2 JP52033796A JP3379677A JPS5832772B2 JP S5832772 B2 JPS5832772 B2 JP S5832772B2 JP 52033796 A JP52033796 A JP 52033796A JP 3379677 A JP3379677 A JP 3379677A JP S5832772 B2 JPS5832772 B2 JP S5832772B2
Authority
JP
Japan
Prior art keywords
pulp
pulp fiber
fiber layer
foil
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52033796A
Other languages
Japanese (ja)
Other versions
JPS53118763A (en
Inventor
俊朗 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP52033796A priority Critical patent/JPS5832772B2/en
Publication of JPS53118763A publication Critical patent/JPS53118763A/en
Publication of JPS5832772B2 publication Critical patent/JPS5832772B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明はスペーサを廃止した小形で特性の良好な電解コ
ンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a small electrolytic capacitor with good characteristics without the need for a spacer.

従来の乾式箔形電解コンデンサはアルミニウムタンタル
、チタン、ニオブなどの弁作用金属からなる一対の電極
箔に同じく弁作用金属からなる引出端子をそれぞれ接続
し、前記一対の電極箔相互間にクラフト紙からなるスペ
ーサを介在させて巻回したのち、ペースト電解液を含浸
し容器に収納し密封してなるものである。
A conventional dry foil type electrolytic capacitor has a pair of electrode foils made of a valve metal such as aluminum tantalum, titanium, or niobium, each connected to a lead-out terminal also made of a valve metal. After the coil is wound with a spacer interposed therebetween, it is impregnated with a paste electrolyte, and then stored in a container and sealed.

一般にスペーサの主な役目は一対の電極箔相互間の絶縁
隔離とペースト電解液の保持であり、電解コンデンサ内
部抵抗を小さくするには極力低密度で、かつ極力薄いク
ラフト紙が望ましいが、実際には密度0.4〜0.9
g /crtl、厚さ15〜90μのクラフト紙が用い
られており、密度0.4g/crt1未満のクラフト紙
は実用されていない。
In general, the main role of a spacer is to insulate and isolate a pair of electrode foils from each other and to hold the paste electrolyte.In order to reduce the internal resistance of an electrolytic capacitor, it is desirable to use kraft paper with as low density as possible and as thin as possible. has a density of 0.4 to 0.9
Kraft paper with a density of 15 to 90 μg/crtl is used, and kraft paper with a density of less than 0.4 g/crtl is not put into practical use.

したがって、密度0.4g/crAのクラフト紙を用い
た場合でも純粋なセルローズの密度は1.2g/cfl
であるから空隙率は66.6%程度である。
Therefore, even when using kraft paper with a density of 0.4 g/crA, the density of pure cellulose is 1.2 g/cfl
Therefore, the porosity is about 66.6%.

これ以上空隙率の大きなりラフト紙は実用されていない
Raft paper with a higher porosity is not in practical use.

また、クラフト紙の抄紙工程で含有される微小な欠陥部
、たとえば導電性微粒子などに起因する短絡や端電圧の
低下を避さるため、クラフト紙を複数枚重ね合わせるか
、あるいは一枚ならば厚いクラフト紙を用いなければな
らないため、計算上の空隙率よりも実際は小さくなる。
In addition, in order to avoid short circuits and drops in terminal voltage caused by minute defects such as conductive particles contained in the paper-making process of kraft paper, it is necessary to overlap multiple sheets of kraft paper, or if it is a single sheet, it is thick. Since kraft paper must be used, the actual porosity is smaller than the calculated porosity.

また、クラフト紙自体交叉したセルローズからなってい
るため、空隙が屈曲した状態になっており両電極間の実
質距離がそれだけ長くなる。
Furthermore, since the kraft paper itself is made of crossed cellulose, the gap is in a bent state, and the actual distance between the two electrodes becomes correspondingly longer.

このため電荷担体の移動が困難で電解コンデンサの損失
が大きくなり、しかもコンデンサ素子を構成するクラフ
ト紙の占拠率が電極箔のそれと同等またはそれ以上とな
るなどの欠点を有している。
For this reason, it is difficult to move charge carriers, resulting in large losses in the electrolytic capacitor, and the occupancy rate of the kraft paper constituting the capacitor element is equal to or higher than that of the electrode foil.

クラフト紙より密度が小さいものにマニラ紙(密度0.
3g/cyd)があり、マニラ繊維はクラフト繊維に比
し柔軟強靭で繊維の長さも長いため、密度を下げても抄
紙後の物理的強度をある程度保つことができるため、電
解コンデンサのスペーサとしてマニラ紙を用い電荷担体
の移動を容易ならしめ損失を改善する方法も一部で採用
されているが、マニラ紙はクラフト紙に比べて価格が6
〜8倍高いことや、抄紙後の強度をコンデンサの製造工
程に耐えうる一定値以上に保つためには、紙厚を30μ
以下にすることができず比較的厚手のものしか得られな
い欠点がある。
Manila paper (density 0.
3g/cyd), Manila fibers are more flexible and strong than kraft fibers, and have longer fiber lengths, so even if the density is lowered, the physical strength after papermaking can be maintained to a certain extent, so Manila fibers are used as spacers for electrolytic capacitors. Some methods have been adopted to improve loss by making it easier for charge carriers to move using paper, but Manila paper costs 60% more than kraft paper.
~8 times higher, and in order to keep the strength after papermaking above a certain value that can withstand the capacitor manufacturing process, the paper thickness must be 30 μm.
There is a drawback that only relatively thick products can be obtained because it cannot be made smaller than the following.

また、電解コンデンサのスペーサとして多孔質のプラス
チックフィルムやレーヨン混抄紙を用いるという提案も
なされているが、スペーサとしての各種条件をことごと
く満足するものは得難くまた実用化されていない。
There have also been proposals to use porous plastic films or rayon-mixed paper as spacers for electrolytic capacitors, but it is difficult to find a spacer that satisfies all the various conditions, and these have not been put to practical use.

さらに、電極箔の表面に直接有機半透膜や微孔性膜を塗
布してスペーサの代用にするという提案もなされている
が、有機半透膜の場合は孔径が数10λ以下の孔が多数
集まった膜であり、膜を厚くすればイオン電導性がいち
ぢるしく悪くなり、0.5μ以下のきわめて薄い膜でな
ければ電導性が悪く実用に供し得るものではなく、微孔
性膜の場合には膜自体の製作がきわめて困難であり、し
かも両者とも膜厚が薄いので電極箔の巻回時に傷が発生
しやすく少しの傷でも両電極が短絡し、かつまた高温で
の使用中にも膜が溶解し短絡したり、使用電圧もせいぜ
い50V程度までのコく低電圧域でしかも使用できない
という致命的欠点を有しており、とおてい実用化しうる
ものではなかった。
Furthermore, proposals have been made to coat an organic semipermeable membrane or a microporous membrane directly on the surface of the electrode foil as a substitute for a spacer, but in the case of an organic semipermeable membrane, there are many pores with pore diameters of several tens of λ or less. If the membrane is made thicker, its ionic conductivity will deteriorate significantly, and unless it is an extremely thin membrane of 0.5μ or less, the conductivity will be poor and it cannot be used for practical use. In some cases, it is extremely difficult to manufacture the membrane itself, and since both membranes are thin, scratches easily occur when winding the electrode foil, and even a slight scratch can short-circuit both electrodes. It has the fatal disadvantages of dissolving the membrane and causing short circuits, and that it can only be used in a low voltage range of about 50 V at most, so it cannot be put to practical use at all.

本発明は上記のような欠点に鑑みてなされたものでアル
ミニウム、タンタル、チタン、ニオブなどの弁作用金属
からなる一対の電極箔の表面にそれぞれパルプ繊維層を
形成し、該パルプ繊維層により両電極を隔離しスペーサ
を一切用いないで電気的緒特性良好にして大幅な小形軽
量化をはかり得る電解コンデンサの製造方法を提供せん
とするものである。
The present invention has been made in view of the above-mentioned drawbacks, and involves forming a pulp fiber layer on each surface of a pair of electrode foils made of a valve metal such as aluminum, tantalum, titanium, or niobium. It is an object of the present invention to provide a method for manufacturing an electrolytic capacitor that isolates electrodes, has good electrical characteristics without using any spacers, and can be significantly reduced in size and weight.

以下、本発明の一実施例につき詳細に説明する。Hereinafter, one embodiment of the present invention will be described in detail.

すなわち、本発明はスペーサとしてクラフト紙や多孔質
プラスチックフィルムなどを一切使用しないで電解コン
デンサを構成するものであり、まず第1図および第2図
に示すようにアルミニウム、タンタル、チタン、ニオブ
などの弁作用金属からなる一方の電極箔(以下陽極箔と
いう)1の表面を塩酸、食塩、苛性ソーダなどの腐食性
水溶液中で電気的、化学的または電気化学的方法で粗面
化して粗面化ビット2を形威し、前記陽極箔1の実質的
な表面積を数倍から数十倍に拡大したのち、ホウ酸、酒
石酸、クエン酸、コハク酸など、あるいはこれらのナト
リウム塩、カリウム塩、アンモニウム塩などの単独また
は混合水溶液中で陽極酸化処理を施し陽極酸化皮膜3を
生成する。
That is, the present invention constructs an electrolytic capacitor without using any craft paper or porous plastic film as a spacer. First, as shown in Figures 1 and 2, aluminum, tantalum, titanium, niobium, etc. The surface of one electrode foil (hereinafter referred to as anode foil) 1 made of a valve metal is roughened by an electrical, chemical or electrochemical method in a corrosive aqueous solution such as hydrochloric acid, common salt, or caustic soda. 2 and expand the substantial surface area of the anode foil 1 from several times to several tens of times, and then add boric acid, tartaric acid, citric acid, succinic acid, etc., or their sodium salts, potassium salts, and ammonium salts. The anodic oxide film 3 is produced by performing anodization treatment in an aqueous solution of these alone or in a mixed solution.

ついで該陽極酸化皮膜3を生成した陽極箔1をパルプ繊
維懸濁液に浸漬するか、あるいはローラ塗布し前記陽極
酸化皮膜3の表面にパルプ繊維を付着させ、これを乾燥
してパルプ繊維層4を積層して形成する。
Next, the anode foil 1 on which the anodic oxide film 3 has been formed is dipped in a pulp fiber suspension or coated with a roller to adhere pulp fibers to the surface of the anodic oxide film 3, and then dried to form the pulp fiber layer 4. Formed by laminating.

また、第3図および第4図に示すようにアルミニウム、
タンタル、チタン、ニオブなどの弁作用金属からなる他
方の電極箔(以下陰極箔という)5の表面を前記陽極箔
1と同様に塩酸、食塩、苛性ソーダなどの腐食性水溶液
中で電気的、化学的または電気化学的方法で粗面化し粗
面化ビット6を形威し表面積を拡大したのち、前記と同
様にパルプ繊維懸濁液中に浸漬するかあるいはローラで
塗布し、表面積を拡大した陰極箔5の表面にパルプ繊維
を付着させ、これを乾燥し陰極箔5表面にもパルプ繊維
層7を一体に積層する。
Additionally, as shown in Figures 3 and 4, aluminum,
The surface of the other electrode foil (hereinafter referred to as cathode foil) 5 made of a valve metal such as tantalum, titanium, or niobium is electrically and chemically treated in a corrosive aqueous solution such as hydrochloric acid, common salt, or caustic soda in the same manner as the anode foil 1. Or a cathode foil whose surface is roughened by an electrochemical method to form a roughened bit 6 to enlarge its surface area, and then dipped in a pulp fiber suspension or coated with a roller to enlarge its surface area in the same manner as above. Pulp fibers are attached to the surface of the cathode foil 5 and dried, and a pulp fiber layer 7 is also integrally laminated on the surface of the cathode foil 5.

前記パルプ繊維は長さ0.1〜100關、幅1〜100
μ程度のクラフトパルプ、サルファイドパルプ、マニラ
パルプ、亜麻パルプ、麻パルプ、エスパルトパルプ、黄
麻パルプ、葦パルプ、バガスパルプ、ソーダパルプ、ケ
ミカルパルプ、砕木パルプ、コウゾ、ミツマタなどの単
繊維またはこれらの数種類を組み合わせて配合したもの
を、繊維層の厚みと空隙率に応じてジョルダン、パルプ
リハイナなどの叩解機を用いて極当に叩解し、これを純
水に懸濁させ0.01〜15%(重量比)の懸濁液にし
て陽極箔1および陰極箔5に塗布し付着させるもので、
パルプ繊維の蒸解温度以下の温度で乾燥する。
The pulp fiber has a length of 0.1 to 100 mm and a width of 1 to 100 mm.
Single fibers such as micro-sized kraft pulp, sulfide pulp, manila pulp, flax pulp, hemp pulp, esparto pulp, jute pulp, reed pulp, bagasse pulp, soda pulp, chemical pulp, groundwood pulp, paper mulberry, mitsumata, etc., or several types thereof Depending on the thickness and porosity of the fiber layer, a mixture of ratio) is made into a suspension and applied to the anode foil 1 and cathode foil 5.
Drying at a temperature below the cooking temperature of pulp fibers.

上記パルプ繊維懸濁液への浸漬またはローラ塗布→乾燥
の操作−回につき形成されるパルプ繊維層4゜7の厚さ
は0.1〜25μ程度であるためごく低電圧用の場合は
一回だけでもよいが、通常用途の場合には2〜15回ぐ
らい前記操作を繰り返し行ない、パルプ繊維層4,7を
1〜150μの厚さに積層形成する。
The thickness of the pulp fiber layer 4゜7 formed each time is about 0.1 to 25 μm, so in the case of extremely low voltage applications, it is necessary to perform the operation of dipping in the above-mentioned pulp fiber suspension or applying with a roller → drying. However, in the case of normal use, the above operation is repeated about 2 to 15 times to form the pulp fiber layers 4 and 7 to a thickness of 1 to 150 μm.

このようにして表面積を拡大し陽極酸化皮膜3を生成し
、パルプ繊維層4を形成した陽極箔1と、表面積を拡大
しパルプ繊維層7を形成した陰極箔5とをスペーサを用
いることなく直接対向させて巻回しコンデンサ素子を構
成し、これにペースト電解液を含浸して電解コンデンサ
を得るものである。
In this way, the anode foil 1 whose surface area has been expanded to generate an anodic oxide film 3 and a pulp fiber layer 4 formed thereon, and the cathode foil 5 whose surface area has been expanded and whose pulp fiber layer 7 has been formed are directly connected without using a spacer. A capacitor element is formed by winding the capacitor elements facing each other, and this is impregnated with a paste electrolyte to obtain an electrolytic capacitor.

上記のように陽極箔1および陰極箔5の表面にそれぞれ
パルプ繊維層4,7を直接形成したので、これまでのよ
うに紙の強度を必要とせず極低密度化、薄膜化が可能と
なり、かつスペーサを一切用いないため巻回作業もきわ
めて簡便となり、自動巻回機の単純化をもはかることが
できる。
As described above, since the pulp fiber layers 4 and 7 are directly formed on the surfaces of the anode foil 1 and the cathode foil 5, it is possible to achieve extremely low density and thin films without requiring the strength of paper as in the past. In addition, since no spacers are used, the winding operation is extremely simple, and the automatic winding machine can be simplified.

上記実施例では陰極箔5を粗面化してからパルプ繊維層
7を形成したが粗面化せず、原表面に直接パルプ繊維層
7を形成してもよい。
In the above embodiment, the pulp fiber layer 7 was formed after roughening the cathode foil 5, but the pulp fiber layer 7 may be formed directly on the original surface without roughening.

さらにパルプ繊維層4,7は電極箔1,5の片面だけ形
成してもよいし両面全体に形成してもよい。
Further, the pulp fiber layers 4 and 7 may be formed on only one side of the electrode foils 1 and 5, or may be formed on the entire both sides.

また、パルプ繊維層4,7を形成する電極箔1゜5は広
幅の箔にパルプ繊維層4,7を形成してから所定寸法幅
に裁断してもよいし、あらかじめ所定寸法幅に裁断して
からパルプ繊維層4,7を形成してもよい。
Further, the electrode foil 1゜5 forming the pulp fiber layers 4, 7 may be formed by forming the pulp fiber layers 4, 7 on a wide foil and then cutting it into a predetermined size width, or by cutting it into a predetermined size width in advance. After that, the pulp fiber layers 4 and 7 may be formed.

その場合裁断断面にまでパルプ繊維が付着するので絶縁
効果を高めることができる。
In this case, the pulp fibers adhere to the cut cross section, thereby increasing the insulation effect.

つぎに本発明の実施例と従来の参考例との比較の一例を
示す。
Next, an example of comparison between an embodiment of the present invention and a conventional reference example will be shown.

実施例 定格25V、DC−100μ の電解コンデンサA
※※ アルミニウム
箔の表面を塩酸水溶液中で粗面化し表面積を拡大Llc
(Dちホウ酸アンモニウム水溶液中で陽極酸化皮膜を生
成した陽極箔と、アルミニニウム基の表面を塩酸水溶液
中で粗面化し表面積を拡大した陰極箔とをそれぞれ01
5%のクラフトパルプ繊維懸濁液をローラ塗布し、95
℃の温度で乾燥し、この塗布→乾燥を4回繰り返し、陽
極箔および陰極箔の表面にそれぞれ厚さ20μのパルプ
繊維層を形成し、直接重ね合わせて巻回したもの。
Example rated 25V, DC-100μ electrolytic capacitor A
※※ Roughen the surface of aluminum foil in an aqueous hydrochloric acid solution to increase the surface area Llc
(D) An anode foil with an anodized film formed in an aqueous solution of ammonium diborate and a cathode foil with an aluminum base roughened in an aqueous solution of hydrochloric acid to increase the surface area.
Apply a 5% kraft pulp fiber suspension with a roller and
The product was dried at a temperature of °C, and this coating and drying process was repeated four times to form a pulp fiber layer with a thickness of 20μ on each of the surfaces of the anode foil and cathode foil, which were directly stacked and wound.

参考例 定格35V、 DC−100μFの電解コンデンサB アルミニウム箔を塩酸水溶液中で粗面化したのち、ホウ
酸アンモニウム水溶液中で陽極酸化皮膜を生成した陽極
箔と、アルミニウム箔を塩酸水溶液中で粗面化した陰極
箔とを厚さ40μのクラフト紙からなるスペーサを介し
て重ね合わせて巻回したもの。
Reference example Electrolytic capacitor B with a rating of 35 V and DC-100 μF An anode foil whose surface was roughened in an aqueous hydrochloric acid solution and an anodized film formed in an aqueous ammonium borate solution, and an anode foil whose surface was roughened in an aqueous hydrochloric acid solution. This product is made by overlapping and winding a 40μ thick kraft paper spacer with a 40 μm thick kraft paper.

表1から明らかなように、本発明に係る実施例Aの電解
コンデンサは従来の参考例Bと比較して体積を約315
に小形化することができる。
As is clear from Table 1, the electrolytic capacitor of Example A according to the present invention has a volume of about 315% compared to the conventional Reference Example B.
It can be made smaller.

また、直列抵抗弁となってコンデンサのtanδを大き
くさせる原因となっているスペーサを廃止したことによ
りtanδを約1/2に激減することができる。
Furthermore, by eliminating the spacer, which acts as a series resistance valve and causes an increase in tan δ of the capacitor, tan δ can be drastically reduced to about 1/2.

また、上記実施例Aおよび参考例Bの電解コンデンサを
それぞれ85℃の高温雰囲気中で定格電圧を印加して2
000時間放置した場合の高温負荷特性を第5図〜第7
図に示す。
Further, the electrolytic capacitors of Example A and Reference Example B were each applied with a rated voltage in a high temperature atmosphere of 85°C.
Figures 5 to 7 show the high temperature load characteristics when left for 000 hours.
As shown in the figure.

すなわち、第5図は静電容量の変化率を示し、第6図は
漏れ電流の変化、第7図はtanδの変化を示し、いず
れも85℃での初期値のほか途中500時間毎にとりだ
して測定したものである。
That is, Fig. 5 shows the rate of change in capacitance, Fig. 6 shows the change in leakage current, and Fig. 7 shows the change in tan δ, all of which are measured every 500 hours in addition to the initial value at 85°C. It was measured using

これらから、いずれの特性においても実施例Aは参考例
Bより変化がなく、かつその絶対値も小さく長時間の使
用に際しても安定していることがわかる。
From these results, it can be seen that Example A has no change in any of the characteristics compared to Reference Example B, and its absolute value is also small and stable even when used for a long time.

以上、詳述したように本発明によればアルミニウム、タ
ンタル、チタン、ニオブなどの弁作用金属からなる一対
の電極箔の表面にそれぞれパルプ繊維層を形成し、該パ
ルプ繊維層により両電極を隔離したことによって電極箔
表面にパルプ繊維層を直接形成したので、これまでのよ
うな紙の強度を必要とせず、極低密度化、薄膜化が可能
となりスペーサを一切用いないで電気的特性、とくにt
anδ特性の良好な、しかも大幅な小形軽量化をはかり
得、かつ巻回機の単純化をもはかりうる電解コンデンサ
の製造方法を提供することができる。
As detailed above, according to the present invention, a pulp fiber layer is formed on each surface of a pair of electrode foils made of a valve metal such as aluminum, tantalum, titanium, or niobium, and the two electrodes are isolated by the pulp fiber layer. As a result, a pulp fiber layer is directly formed on the surface of the electrode foil, which eliminates the need for the strength of conventional paper, making it possible to achieve extremely low density and thin films, and improve electrical properties, especially without using any spacers. t
It is possible to provide a method for manufacturing an electrolytic capacitor that has good an δ characteristics, can be significantly reduced in size and weight, and can also simplify the winding machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による電解コンデンサに使用
するパルプ繊維層を形成した陽極箔を示す拡大断面図、
第2図は第1図の陽極箔の斜視図、第3図はパルプ繊維
層を形成した陰極箔を示す拡大断面図、第4図は第3図
の陰極箔の斜視図、第5図〜第7図は本発明の実施例A
と従来の参考例Bとの比較を示す高温負荷特性曲線図で
、第5図は静電容量変化率を示す曲線図、第6図は漏れ
電流の変化を示す曲線図、第7図はtanδの変化を示
す曲線図である。 1・・・・・・陽極箔、2,6・・・・・・粗面化ビッ
ト、3・・・・・・陽極酸化皮膜、4,7・・・・・・
パルプ繊維層、5・・・・・・陰極箔、A・・・・・・
本発明の実施例、B・・・・・・従来の参考例。
FIG. 1 is an enlarged sectional view showing an anode foil with a pulp fiber layer formed thereon used in an electrolytic capacitor according to an embodiment of the present invention;
FIG. 2 is a perspective view of the anode foil in FIG. 1, FIG. 3 is an enlarged sectional view showing the cathode foil with a pulp fiber layer formed thereon, FIG. 4 is a perspective view of the cathode foil in FIG. 3, and FIGS. FIG. 7 is an embodiment A of the present invention.
Figure 5 is a curve diagram showing the capacitance change rate, Figure 6 is a curve diagram showing changes in leakage current, and Figure 7 is a curve diagram showing tan δ. FIG. 1... Anode foil, 2, 6... Roughened bit, 3... Anodized film, 4, 7...
Pulp fiber layer, 5... Cathode foil, A...
Example of the present invention, B...Conventional reference example.

Claims (1)

【特許請求の範囲】[Claims] 1 弁作用金属からなる陽極箔を粗面化し粗面化ビット
を形成する手段と、該手段ののち陽極酸化処理を施し陽
極酸化皮膜を生成する手段と、該手段ののちパルプ繊維
懸濁液に浸漬するかあるいはローラ塗布して前記陽極酸
化皮膜の表面にパルプ繊維を付着させる手段と、該手段
ののち前記パルプ繊維の蒸解温度以下の温度で乾燥しパ
ルプ繊維層を形成する手段と、弁作用金属からなる陰極
箔をパルプ懸濁液に浸漬するかあるいはローラ塗布して
表面にパルプ繊維を付着させ、該パルプ繊維の蒸解温度
以下の温度で乾燥し陰極箔表面にパルプ繊維層を形成す
る手段と、該手段で形成したパルプ繊維層および前記陽
極箔に形成したパルプ繊維層を介して、前記陽極箔と陰
極箔とを直接対向させて巻回しコンデンサ素子を構成す
る手段と、該手段で構成したコンデンサ素子にペースト
電解液を含浸する手段とを具備したことを特徴とする電
解コンデンサの製造方法。
1. A means for roughening an anode foil made of a valve metal to form a roughened bit, a means for performing an anodizing treatment after the means to form an anodized film, and a means for forming an anodized film on a pulp fiber suspension after the means. means for attaching pulp fibers to the surface of the anodic oxide film by dipping or roller coating; means for drying the pulp fibers at a temperature below the cooking temperature of the pulp fibers to form a pulp fiber layer; and valve action. A means for attaching pulp fibers to the surface of a cathode foil made of metal by immersing it in a pulp suspension or coating it with a roller, and drying it at a temperature below the cooking temperature of the pulp fibers to form a pulp fiber layer on the surface of the cathode foil. and a means for configuring a wound capacitor element by directly facing the anode foil and the cathode foil via the pulp fiber layer formed by the means and the pulp fiber layer formed on the anode foil, and 1. A method for manufacturing an electrolytic capacitor, comprising means for impregnating a paste electrolyte into a capacitor element.
JP52033796A 1977-03-26 1977-03-26 Electrolytic capacitor and its manufacturing method Expired JPS5832772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52033796A JPS5832772B2 (en) 1977-03-26 1977-03-26 Electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52033796A JPS5832772B2 (en) 1977-03-26 1977-03-26 Electrolytic capacitor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS53118763A JPS53118763A (en) 1978-10-17
JPS5832772B2 true JPS5832772B2 (en) 1983-07-15

Family

ID=12396423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52033796A Expired JPS5832772B2 (en) 1977-03-26 1977-03-26 Electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5832772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655561U (en) * 1993-01-08 1994-08-02 株式会社泉精器製作所 Electric razor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517810A (en) * 1974-06-03 1976-01-22 Hewlett Packard Yokogawa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517810A (en) * 1974-06-03 1976-01-22 Hewlett Packard Yokogawa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0655561U (en) * 1993-01-08 1994-08-02 株式会社泉精器製作所 Electric razor

Also Published As

Publication number Publication date
JPS53118763A (en) 1978-10-17

Similar Documents

Publication Publication Date Title
JP4587996B2 (en) Electrolytic capacitor
US7780835B2 (en) Method of making a capacitor by anodizing aluminum foil in a glycerine-phosphate electrolyte without a pre-anodizing hydration step
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
JPH06168848A (en) Electrolytic capacitor
JP2009064959A (en) Aluminum electrolytic capacitor
JPS5832772B2 (en) Electrolytic capacitor and its manufacturing method
JPS5832770B2 (en) Electrolytic capacitor and its manufacturing method
JPS5832771B2 (en) Electrolytic capacitor and its manufacturing method
JPS5832773B2 (en) Electrolytic capacitor and its manufacturing method
JP2964345B2 (en) Method for manufacturing solid electrolytic capacitor
US2199446A (en) Electrolytic condenser
JP2009064958A (en) Aluminum electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
US2196057A (en) Electric capacitor
WO2024143346A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
JPS61294808A (en) Electrolytic capacitor
JPH0451466Y2 (en)
JPH0572093B2 (en)
JPH07312328A (en) Separator for capacitor
JPH0395911A (en) Solid electrolytic capacitor
JPS63107A (en) Electrolytic capacitor
KR100280296B1 (en) Aging film making method an electrolyte for Al electrolytic condenser
JP2531589B2 (en) Solid electrolytic capacitor
JPS60194515A (en) Electrolytic condenser
JPH11145003A (en) Electrolytic capacitor and its manufacture