JPH03178563A - Dc power supply - Google Patents

Dc power supply

Info

Publication number
JPH03178563A
JPH03178563A JP31455689A JP31455689A JPH03178563A JP H03178563 A JPH03178563 A JP H03178563A JP 31455689 A JP31455689 A JP 31455689A JP 31455689 A JP31455689 A JP 31455689A JP H03178563 A JPH03178563 A JP H03178563A
Authority
JP
Japan
Prior art keywords
voltage
current
switching element
diode
choke coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31455689A
Other languages
Japanese (ja)
Inventor
Masaoki Sekine
正興 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP31455689A priority Critical patent/JPH03178563A/en
Publication of JPH03178563A publication Critical patent/JPH03178563A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To convert an input current to a sine wave, to reduce harmonic components, and to improve its power factor by providing two switching elements to hold a choke coil therebetween, and using the elements according to a high or low input voltage. CONSTITUTION:A reference sine wave voltage Vr is output from the output voltage of a rectifier 2. A voltage Vii is formed from a current Ii of a current transformer 1 and a current from a diode 11. A current I3 of a choke coil 3 is controlled by ON/OFF of an FET 9, an FET 4 by using the voltages Vr, Vii. That is, the FET 9 is held ON in a zone in which the momentary value of an AC power supply is lower than an output voltage E0, only the FET 4 is switched, and the current Ii is fallen between the upper limit and the lower limit of the reference value. The FET 4 is held ON in a zone in which the momentary value of the AC power supply is higher than the voltage E0, only the FET 9 is switched, and the sum of the current Ii and the current of the diode 11 is fallen between the upper limit and the lower limit of the reference value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は入力端子を近似的に正弦波化することにより、
入力端子の高調波成分の低減と力率の改善を行いあわせ
て制御された出力電圧を得ることのできる直流電源装置
に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides the following advantages by converting the input terminal into an approximate sine wave.
The present invention relates to a DC power supply device that can obtain a controlled output voltage by reducing harmonic components of an input terminal and improving the power factor.

〔従来の技術〕[Conventional technology]

交流電源より直流出力を得る直流電源装置としては、単
に整流器を用いただけでは、入力電流波形が断続的で力
率と効率が低く好ましくない。そのため入力電流を近似
的に正弦波化することにより、入力電流の高調波成分の
低減と力率の改善を行う直流電源装置が提案されており
1例えば特願昭63−233970号がある。
For a DC power supply device that obtains DC output from an AC power supply, simply using a rectifier is not preferable because the input current waveform is intermittent and the power factor and efficiency are low. Therefore, a DC power supply device has been proposed that reduces harmonic components of the input current and improves the power factor by approximately converting the input current into a sine wave.

すなわち、入力交流電源に両波整流器を接続し。In other words, connect a double wave rectifier to the input AC power supply.

その出力にチョークコイルとスイッチング素子を接続す
るとともに、そのチョークコイルにダイオードを介して
負荷に直流電力を供給する主回路構成とする。そして制
御方式として、負荷の電圧の比例値と基準電圧との差電
圧を得る手段と、入力交流電源の電圧の絶対値の比例値
との乗算手段を備えて、主回路のチョークコイルの電流
の絶対値の比例値と前記の乗算信号とを履歴特性を有す
る電圧比較器により主回路のスイッチング素子を駆動す
るものである。
The main circuit has a main circuit configuration in which a choke coil and a switching element are connected to the output, and DC power is supplied to the choke coil through a diode. The control method includes means for obtaining the difference voltage between the proportional value of the voltage of the load and the reference voltage, and means for multiplying by the proportional value of the absolute value of the voltage of the input AC power supply. The switching element of the main circuit is driven by a voltage comparator having a history characteristic using the proportional value of the absolute value and the above multiplied signal.

したがって、負荷の電圧の比例値と基準電圧との差電圧
を得る手段により、所望の出力設定値に対応する制御信
号が得られる。ついで入力文i電源の電圧の絶対値の比
例値との乗算手段により。
Therefore, by means of obtaining the difference voltage between the proportional value of the voltage of the load and the reference voltage, a control signal corresponding to the desired output setting value can be obtained. Then, input statement i is multiplied by a proportional value of the absolute value of the voltage of the power source.

振幅制御できる基準の正弦波電圧が得られる。そして、
主回路のチョークコイルの電流の大きさに比例した電圧
をその基準正弦波電圧とを比較し。
A reference sine wave voltage whose amplitude can be controlled is obtained. and,
Compare the voltage proportional to the current magnitude of the choke coil in the main circuit with its reference sine wave voltage.

その基準正弦波電圧にほぼ比例した履旋幅を持つ電圧比
較器でチョークコイルの電流変化幅をその履歴幅の中に
制限するように主回路のスイッチング素子を駆動するも
のである。
A voltage comparator having a rotation width approximately proportional to the reference sine wave voltage drives the switching element of the main circuit so as to limit the current variation width of the choke coil within its history width.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の直流電源装置にあって
は入力電流波形を電圧波形とほとんど相似形にできるが
、昇圧チョッパーで構成しているため出力電圧を入力電
圧の予想される最大値のピーク値より高く設計しなけれ
ばならないため、整流回路の次段に接続されるコンバー
タの設計が困難となる。
However, although such conventional DC power supplies can make the input current waveform almost similar to the voltage waveform, since they are configured with a step-up chopper, the output voltage can be adjusted to the peak value of the expected maximum value of the input voltage. Since it has to be designed higher, it becomes difficult to design a converter connected to the next stage of the rectifier circuit.

すなわちコンバータの入力電圧が高いと、耐電圧の高い
スイッチング素子を使用する必要があり。
In other words, if the input voltage of the converter is high, it is necessary to use switching elements with high withstand voltage.

スイッチングスピードが遅くなり、スイッチング損失が
増加したり導通時の損失が増加するばかりでなく高価と
なりスイッチング時のノイズやプリント配線する時の絶
縁距離を大きくとらなければならない等の問題があった
Not only does the switching speed become slow, switching loss increases, and conduction loss increases, but it also becomes expensive and has problems such as noise during switching and the need to provide a large insulation distance during printed wiring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では1以上のべた問題点を解決するため。 The present invention solves one or more of the above problems.

昇圧チョッパーと降圧チョッパーとを組合せ、出力電圧
を入力電圧のピーク値より下げ入力電圧が出力より低い
期間は昇圧チョッパー、高い期間は降圧チョッパーを動
作させるものである。
A step-up chopper and a step-down chopper are combined, and the output voltage is lowered below the peak value of the input voltage, and the step-up chopper is operated during the period when the input voltage is lower than the output, and the step-down chopper is operated during the period when the input voltage is higher than the output.

〔実施例〕〔Example〕

第1図は本発明に係る直流電源装置の一実施例の接続図
である。同図において、交流電源10をラインフィルタ
14と変流器lとを介して、ダイオード・ブリッジの整
流回路2の交流入力側へ接続し。
FIG. 1 is a connection diagram of an embodiment of a DC power supply device according to the present invention. In the figure, an AC power supply 10 is connected to the AC input side of a diode bridge rectifier circuit 2 via a line filter 14 and a current transformer l.

整流回路2の直流出力端子間に第1のスイッチング素子
であるFET9.チョークコイル3.第2のスイッチン
グ素子であるFET4の直列回路を(妾続し、FET4
の両端にダイオード5と平滑用コンデンサC1との直列
回路を接続し、平滑用コンデンサCtの両端から直流電
圧を取り出して、出力端子12.13に接続された負荷
RLに供給される。FET9とチョークコイル3の接続
点とFET4と平滑用コンデンサC1の接続点との間に
3m列接続されたダイオード11と変流517を接続し
、ダイオードHの電流を変流器17で検出している。
A FET 9, which is a first switching element, is connected between the DC output terminals of the rectifier circuit 2. Choke coil 3. A series circuit of FET4, which is the second switching element, is
A series circuit of a diode 5 and a smoothing capacitor C1 is connected to both ends of the smoothing capacitor Ct, and a DC voltage is taken out from both ends of the smoothing capacitor Ct and supplied to a load RL connected to an output terminal 12.13. A diode 11 and a current transformer 517 connected in a 3 m series are connected between the connection point of FET 9 and the choke coil 3 and the connection point of FET 4 and the smoothing capacitor C1, and the current of the diode H is detected by the current transformer 17. There is.

ここで整流回路2の出力である脈流電圧は抵抗器R1,
R2により分圧された価基と出力電圧と基型電圧源16
との誤差を誤差増幅器6により増幅した値0を乗算器7
により基準正弦波電圧Vrとして取り出す。この基準正
弦波電圧Vrは負荷状態によって振幅制御ができ、エネ
ルギーの制・御を可能にしている。次に変流器lによっ
て検出される入力文流電流目の比例値を整流回路15を
介してその絶対値を得ると共にダイオード11の電流を
変流器17で検出し、ダイオード21で整流された値を
重畳して。
Here, the pulsating voltage that is the output of the rectifier circuit 2 is connected to the resistor R1,
The valence group divided by R2, the output voltage, and the basic voltage source 16
The value 0 amplified by the error amplifier 6 is applied to the multiplier 7.
It is extracted as a reference sine wave voltage Vr. The amplitude of this reference sine wave voltage Vr can be controlled depending on the load condition, making it possible to control the energy. Next, the proportional value of the input current detected by the current transformer l is passed through the rectifier circuit 15 to obtain its absolute value, and the current of the diode 11 is detected by the current transformer 17 and rectified by the diode 21. Superimpose the values.

抵抗器R6の両端にこれらの対応する電圧′シヘ、′ 
 を発生させる。
These corresponding voltages 'Shi,' across resistor R6
to occur.

この電圧値を抵抗器R7,R8とコンパレータ8により
交流入力電圧値 にほぼ比例したヒステリシス幅を作り
、そのヒステリシス幅の中でのしきい値において駆動出
力信号を遷移する。すなわちコンパレータ8により前記
の基準正弦波電圧V「と比較し1例えば第2図に示すよ
うにt=tlで電流比例値’tz7 fが基準正弦波電
圧V「の下限値に達するとFET4の駆動を行い、 1
=12で電流比例値v、゛Cが基準正弦波電圧Vrの上
限値に達するとFET4の駆動を遮断する。FET4が
オンしている区間ではチョークコイル3にエネルギーが
蓄積され、FET9がオフするとチョークコイル3に蓄
積されたエネルギーはダイオード5を介して負荷RLに
放出供給される。
A hysteresis width approximately proportional to the AC input voltage value is created using resistors R7 and R8 and a comparator 8 for this voltage value, and the drive output signal transitions at a threshold within the hysteresis width. In other words, the comparator 8 compares it with the reference sine wave voltage V'' and, for example, as shown in FIG. 1.
When the current proportional value v, ゛C reaches the upper limit value of the reference sine wave voltage Vr at =12, the drive of the FET 4 is cut off. Energy is accumulated in the choke coil 3 during the section where the FET 4 is on, and when the FET 9 is turned off, the energy accumulated in the choke coil 3 is released and supplied to the load RL via the diode 5.

このようなFET4のスイッチングにより入力電圧波形
を高周波三角波形の連続とし、電流降下値の包絡線と電
流ピーク値の包絡線はそれぞれ正弦波となる。したがっ
て、交流入力電圧波形の谷点に対応するt=0.1=T
/2の付近のスイッチング周波数はその波形の頂点t=
t2付近のスイッチング周波数と比較して高くなる。
Such switching of the FET 4 makes the input voltage waveform a continuous high-frequency triangular waveform, and the envelope of the current drop value and the envelope of the current peak value each become a sine wave. Therefore, t=0.1=T corresponding to the trough of the AC input voltage waveform
The switching frequency near /2 is the peak of the waveform t=
The switching frequency becomes higher compared to the switching frequency near t2.

入力交流?!! ’tM l iの平均値は各サイクル
の電流波形は正弦波の下限値に三角波を重畳したもので
あるから三角波形のP−P値の中央となり、正弦波形と
なり。さらに人力のフィルタにより変調周波数成分を減
衰することにより高周波成分を減少させて力率の改善も
図っている。
Input AC? ! ! Since the current waveform of each cycle is a triangular wave superimposed on the lower limit value of a sine wave, the average value of 'tM l i becomes the center of the P-P value of the triangular waveform, and becomes a sine waveform. Furthermore, by attenuating the modulated frequency components using a manually operated filter, high frequency components are reduced and the power factor is improved.

交広電FIIOの瞬時絶対値1e、fが出力電圧Eoよ
り低い期間、すなわち第2図に示すへ区間では、抵抗器
R4° と抵抗器R5° とにより検出した出力電圧E
oの比例値と抵抗器R1“ と抵抗1WR2°とにより
検出した入力電圧ei  の比例値をコンパレータI8
で比較して、論理回路22は0信号を発生し、論理回路
23はコンパレータ8の信号に従った信号を発生する。
During the period in which the instantaneous absolute values 1e, f of the AC and wide electric current FIIO are lower than the output voltage Eo, that is, in the section shown in FIG. 2, the output voltage E detected by the resistor R4° and the resistor R5°
The proportional value of the input voltage ei detected by the resistor R1" and the resistor 1WR2° is determined by the comparator I8.
, the logic circuit 22 generates a 0 signal, and the logic circuit 23 generates a signal according to the signal of the comparator 8.

これにより駆動回路20は1信号を発生し。This causes the drive circuit 20 to generate one signal.

駆動回路19は前述のコンパレータ8のオンオフ信号に
したがった信号を発生する。従って、FET9の導通を
保ったままFET4をスイッチング・オンオフさせ、入
力端子を交流人力重圧の比例値である基準値に設けた上
限値と下限値の範囲内におさまるようにする。
The drive circuit 19 generates a signal according to the on/off signal of the comparator 8 described above. Therefore, the FET 4 is switched on and off while the FET 9 remains conductive, so that the input terminal falls within the range between the upper limit and the lower limit set to the reference value, which is a proportional value of the AC manual pressure.

交流電源lOの瞬時絶対値1e、Iが出力電圧Eoより
高い期間、B区間では、逆に第2のスイッチング素子で
あるFET4をオフしたままとし、第1のスイッチング
素子であるFET9をスイッチングさせ、入力電流と第
2のダイオード11の電流の和が前に述べた基準値に設
けた上限値と下限値の範囲内におさまるよう制御する。
In the period B, during which the instantaneous absolute value 1e, I of the AC power supply lO is higher than the output voltage Eo, conversely, the second switching element, FET4, is kept off, and the first switching element, FET9, is switched, Control is performed so that the sum of the input current and the current of the second diode 11 falls within the range of the upper and lower limits set for the reference value mentioned above.

第2図に動作波形を示し1図を参照し、さらに詳細に説
明する。Ie、lがEoより小さい期間Aでは昇圧チョ
ッパ動作で第2のスイッチング素子であるFET4が導
通すると交流電源10c+整流器2→FET9==>チ
ョークコイル3180FET4eO整流器2→交流電源
lOの閉ループに電流が流れ、その時の電流iはチョー
クコイル3のインダクタンス値をLとし平滑用コンデン
サC1の容量が充分大きいと となり l e+”K の傾きで上昇する。lotはオ
ン直前のチョークコイル3の電流で下限値である。
FIG. 2 shows operating waveforms, and further details will be explained with reference to FIG. 1. During period A when Ie and l are smaller than Eo, when FET4, which is the second switching element, conducts during boost chopper operation, current flows in the closed loop of AC power supply 10c + rectifier 2 → FET9 = => choke coil 3180FET4eO rectifier 2 → AC power supply lO. , the current i at that time will rise with a slope of l e + "K if the inductance value of the choke coil 3 is L and the capacitance of the smoothing capacitor C1 is sufficiently large. lot is the current of the choke coil 3 immediately before turning on, and is the lower limit value. be.

入力電流が上昇し上限値に達すると、FET4をオフさ
せ、交流電源lOユ整流器2=>FET9ゆチョークコ
イル3ゆダイオード5ゆ平滑用コンデンサC1=!>整
流器2=+交流電源lOの閉ループに電流が流れ、その
時の電流は となり。
When the input current increases and reaches the upper limit value, FET4 is turned off and AC power source 10 rectifier 2=>FET9 choke coil 3 diode 5 smoothing capacitor C1=! > Rectifier 2 = + Current flows in the closed loop of AC power supply lO, and the current at that time is.

する。do.

1o2はオフ直前のチョークコイルの電流で上限値であ
る。入力電流が減少し下限値に達するとスイッチング素
子6を導通させ、この動作を繰り返すことにより入力電
流波形を入力電圧波形と相似形にさせる。なお、コンデ
ンサC2は高周波フィルター用の小容量のもので、交流
電源lOの基本波成分には影響はない。入力電圧が上昇
し、出力電圧より大きくなる期間Bでは降圧チョッパ動
作で第2のスイッチング素子であるFET4はオフさせ
たままとし、第1のスイッチング素子であるFET9を
導通させると、交流電源10−0整流器2<F ET9
<チョークコイル3ゆダイオード5ゆ平滑用コンデンサ
C1→整流器2=0交流電源lOの閉ループで電流が流
れ、電流iは 前のチョークコイル5の電流値である。入力電流が上昇
し、上限値に達すると第1のスイッチング素子をオフさ
せる。すると入力電流は遮断され。
1o2 is the current in the choke coil immediately before turning off, which is the upper limit value. When the input current decreases and reaches the lower limit value, the switching element 6 is made conductive, and this operation is repeated to make the input current waveform similar to the input voltage waveform. Note that the capacitor C2 has a small capacity for use as a high frequency filter, and has no effect on the fundamental wave component of the AC power source IO. During period B when the input voltage rises and becomes larger than the output voltage, the second switching element FET4 is kept off in step-down chopper operation, and the first switching element FET9 is made conductive, so that the AC power supply 10- 0 rectifier 2<F ET9
<Choke coil 3 Diode 5 Smoothing capacitor C1 → Rectifier 2 = 0 Current flows in a closed loop of AC power supply lO, and current i is the current value of the previous choke coil 5. When the input current increases and reaches an upper limit value, the first switching element is turned off. Then the input current is cut off.

チョークコイル3に蓄えられたエネルギーは。What is the energy stored in choke coil 3?

チョークコイル3=0ダイオード5時平滑用コンデンサ
C1==5ダイオード目→チョークコイル3の閉ループ
に電流を流す。この電流iは。
Choke coil 3=0 diode 5 Smoothing capacitor C1==5th diode → Current flows through the closed loop of choke coil 3. This current i is.

104はオフ直前のチョークコイル3の電流値である。104 is the current value of the choke coil 3 immediately before turning off.

チョークコイルが減少し下限値に達すると再び第1のス
イッチング素子であるFET9を導通させる。FET9
がオフの期間は入力電流が遮断されるため、それまで入
力電流が基準値の上限値と下限値の範囲内に入っていた
のを逸脱することになり、第2図のチョークコイル3の
電流からダイオード11に流れる電流を差し引いた波形
となる。
When the choke coil decreases and reaches the lower limit value, the FET 9, which is the first switching element, is made conductive again. FET9
Since the input current is cut off during the period when is off, the input current, which had been within the range of the upper and lower limits of the reference value, will deviate from the range, and the current of choke coil 3 in Figure 2 will change. The waveform is obtained by subtracting the current flowing through the diode 11 from .

しかしながら(3)式(4)式から期間Bのデユーティ
比は 巨□/rfiHで表され期間Bの平均デユーティ
比はかなり大きな値となり、入力電流から高周波成分を
取り除いた基本波成分はピーク付近が若干つぶれた波形
となる。
However, from equations (3) and (4), the duty ratio in period B is expressed as □/rfiH, and the average duty ratio in period B is a fairly large value, and the fundamental wave component obtained by removing the high frequency component from the input current is near the peak. The waveform becomes slightly distorted.

電流検出手段としては変流器lに限らず、チョークコイ
ル3の電流を検出できれば他の方法でもよい。例えばチ
ョークコイル3に直列に低抵抗を挿入する方法でもよい
。また、チョークコイル3の電i%t13はスイッチ索
子4の電流14とフライホイールダイオード5の電流1
5の和であるので、チョークコイル3とスイッチ素子4
とのそれぞれに直流変mWあるいは低抵抗を挿入してそ
れらの信号を加算する方法でもよい。
The current detection means is not limited to the current transformer 1, but may be any other method as long as it can detect the current of the choke coil 3. For example, a method of inserting a low resistance in series with the choke coil 3 may be used. In addition, the electric current i%t13 of the choke coil 3 is the electric current 14 of the switch cable 4 and the electric current 1 of the flywheel diode 5.
5, choke coil 3 and switch element 4
It is also possible to insert a DC variable mW or low resistance into each of the signals and add those signals.

また電圧検出手段としては、交流電源lOから直接整流
回路を介して得ることもできる。その場合は絶縁手段と
して小型変圧器あるいは光結合素子を間に挿入する必要
がある。
Further, the voltage detection means can also be obtained directly from the AC power source IO via a rectifier circuit. In that case, it is necessary to insert a small transformer or an optical coupling element between them as an insulating means.

整流回路2とFET4.9とダイオード5,11とのそ
れぞれの極性を入れ換えることにより同様の作用をする
。そしてダイオード5は一方向性スイッチング素子であ
れば3通常のダイオードに限らず、ショットキーダイオ
ードでもよ<、FET4.9は電界効果トランジスタ以
外に、バイポーラトランジスタ、 IGBT等のスイッ
チング素子が使える。
A similar effect can be obtained by switching the polarities of the rectifier circuit 2, FET 4.9, and diodes 5 and 11. The diode 5 is not limited to a normal diode, but may be a Schottky diode as long as it is a unidirectional switching element.For the FET 4.9, a switching element such as a bipolar transistor or an IGBT can be used in addition to a field effect transistor.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、昇圧チョッパーと降圧チョ
ッパーの絹合せにより、入力電圧が出力電圧より低い期
間は昇圧チaツバ−動作、入力端子が出力電圧より高い
期間は降圧チョッパー動作としたため、出力電圧を最大
入力端子のピーク値より低くでき2次段に接続されるコ
ンバータのスイッチング素子の耐電圧を下げられ、電圧
が高いことによる障害がさけられる。
As described above, in the present invention, by combining a step-up chopper and a step-down chopper, the step-up chopper operates during the period when the input voltage is lower than the output voltage, and the step-down chopper operates during the period when the input terminal is higher than the output voltage. The output voltage can be made lower than the peak value of the maximum input terminal, the withstand voltage of the switching element of the converter connected to the secondary stage can be lowered, and troubles caused by high voltage can be avoided.

さらに本発明では入力電圧と出力電圧の瞬時値を常に監
視すると同時に入力電流とダイオード9の瞬時電流をも
監視しているため、突入防止回路やソフトスタート回路
等の特別な起動回路が必要なくしかも入力交流電源の瞬
断や出力短絡に対しでも充分保護できる効果も有する。
Furthermore, since the present invention constantly monitors the instantaneous values of the input voltage and output voltage, and at the same time monitors the input current and the instantaneous current of diode 9, there is no need for a special startup circuit such as an inrush prevention circuit or a soft start circuit. It also has the effect of providing sufficient protection against instantaneous interruptions in the input AC power supply and output short circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る直流電源装置の実施例を示し、第
2図はその動作を説明するための各部の波形図を示す。 ■・−・変流器、2・・・整流回路、3・・・チョーク
コイル4・・・FET、5・・・ダイオード、6・・・
誤差増幅器。 7・・・乗算器、8・・・コンパレータ、9・・・FE
T1O・・・交流電源、 +1・・・ダイオード。 12、13・・・出力端子、 14・・・ラインフィル
タ。 15・・・整流回路、 +6・・・基準電圧源、 17
・・・変流器。 18・・・コンパレータ、 19.20・・・駆動回路
。 21・・・ダイオード、 22.23・・−論理回路。
FIG. 1 shows an embodiment of the DC power supply device according to the present invention, and FIG. 2 shows waveform diagrams of various parts for explaining its operation. ■--Current transformer, 2... Rectifier circuit, 3... Choke coil 4... FET, 5... Diode, 6...
error amplifier. 7... Multiplier, 8... Comparator, 9... FE
T1O...AC power supply, +1...diode. 12, 13... Output terminal, 14... Line filter. 15... Rectifier circuit, +6... Reference voltage source, 17
···Current transformer. 18... Comparator, 19.20... Drive circuit. 21...Diode, 22.23...-Logic circuit.

Claims (1)

【特許請求の範囲】 交流電圧を全波整流するダイオード・ブリッジの出力端
子間に第1のスイッチング素子とチョークコイルと第2
のスイッチング素子の直列回路を接続し、前記第2のス
イッチング素子の両端に第1の整流ダイオードと平滑用
コンデンサの直列体を接続し、前記第1のスイッチング
素子とチョークコイルとの接続点と前記第2のスイッチ
ング素子と前記平滑コンデンサとの接続点との間に第2
のダイオードを接続し、前記平滑コンデンサの両端から
直流電圧を取り出す直流電源装置において、前記ダイオ
ードブリッジの出力電圧が、前記平滑用コンデンサの電
圧より低い期間は前記第1のスイッチング素子を導通さ
せかつ前記第2のスイッチング素子をスイッチングさせ
て、入力電流を入力電圧波形に比例した基準値に上限値
と下限値を設けた範囲におさまるよう制御し、 前記ダイオードブリッジの出力電圧が前記平滑用コンデ
ンサの電圧より高い期間は前記第2のスイッチング素子
をオフさせ、前記第2のダイオードの電流と入力電流の
絶対値の和が入力電圧波形に比例した基準値に上限値と
下限値を設けた範囲内におさまるよう第1のスイッチン
グ素子をスイッチング制御することを特徴とする直流電
源装置。
[Claims] A first switching element, a choke coil, and a second switching element are connected between the output terminals of a diode bridge that full-wave rectifies an AC voltage.
A series circuit of switching elements is connected, a series body of a first rectifier diode and a smoothing capacitor is connected to both ends of the second switching element, and a connection point between the first switching element and the choke coil is connected to the connection point of the first switching element and the choke coil. A second switching element is connected between the second switching element and the connection point of the smoothing capacitor.
In a DC power supply device that connects a diode and extracts a DC voltage from both ends of the smoothing capacitor, the first switching element is made conductive during a period in which the output voltage of the diode bridge is lower than the voltage of the smoothing capacitor, and the The second switching element is switched to control the input current so that it falls within a range with an upper limit value and a lower limit value set to a reference value proportional to the input voltage waveform, and the output voltage of the diode bridge is the voltage of the smoothing capacitor. During the higher period, the second switching element is turned off, and the sum of the absolute value of the current of the second diode and the input current is within a range with an upper limit value and a lower limit value set to a reference value proportional to the input voltage waveform. A DC power supply device characterized by controlling switching of a first switching element so that the first switching element is controlled.
JP31455689A 1989-12-04 1989-12-04 Dc power supply Pending JPH03178563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31455689A JPH03178563A (en) 1989-12-04 1989-12-04 Dc power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31455689A JPH03178563A (en) 1989-12-04 1989-12-04 Dc power supply

Publications (1)

Publication Number Publication Date
JPH03178563A true JPH03178563A (en) 1991-08-02

Family

ID=18054711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31455689A Pending JPH03178563A (en) 1989-12-04 1989-12-04 Dc power supply

Country Status (1)

Country Link
JP (1) JPH03178563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252550A (en) * 2009-04-16 2010-11-04 Hitachi Displays Ltd Power circuit, and display device using the same
JP2012085397A (en) * 2010-10-07 2012-04-26 Nippon Soken Inc Power conversion device
KR200481359Y1 (en) * 2015-03-30 2016-09-20 (주)아이앤유앤아이 Brassiere

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252550A (en) * 2009-04-16 2010-11-04 Hitachi Displays Ltd Power circuit, and display device using the same
JP2012085397A (en) * 2010-10-07 2012-04-26 Nippon Soken Inc Power conversion device
KR200481359Y1 (en) * 2015-03-30 2016-09-20 (주)아이앤유앤아이 Brassiere

Similar Documents

Publication Publication Date Title
US5801935A (en) Digital power factor correction circuit
EP0779700B1 (en) DC power supply with enhanced input power factor
US6344986B1 (en) Topology and control method for power factor correction
US7489116B2 (en) Power factor correction control circuit
CA2122307C (en) Constant voltage circuit and a stabilized power supply unit
US4412277A (en) AC-DC Converter having an improved power factor
Kim et al. New modulated carrier controlled PFC boost converter
JP2004509587A (en) Power factor correction control circuit and power supply including the same
US5862043A (en) Switch coupled active forward converter for obtaining a high power factor at a single power stage
EP1102387A2 (en) DC power supply apparatus
JPH06508257A (en) Switch-mode power delivery with reduced input current distortion
JP3484904B2 (en) Power factor improvement circuit
JP2801621B2 (en) Power supply device by PWM control
JPH0284069A (en) Dc power device
JPH03178563A (en) Dc power supply
JPH11150952A (en) Switching dc power supply equipment
KR940003774B1 (en) Power supply circuit
KR100420964B1 (en) Single-stage converter compensating power factor
JP2000125548A (en) Switching power unit
JPH02168864A (en) Dc power supply device
JP3139682B2 (en) Power supply
JPH0686553A (en) Power supply circuit
JP2001086737A (en) Power supply
JP2550325B2 (en) Power supply
JP3163655B2 (en) Inverter device