JP2801621B2 - Power supply device by PWM control - Google Patents

Power supply device by PWM control

Info

Publication number
JP2801621B2
JP2801621B2 JP1016174A JP1617489A JP2801621B2 JP 2801621 B2 JP2801621 B2 JP 2801621B2 JP 1016174 A JP1016174 A JP 1016174A JP 1617489 A JP1617489 A JP 1617489A JP 2801621 B2 JP2801621 B2 JP 2801621B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
pwm control
negative
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1016174A
Other languages
Japanese (ja)
Other versions
JPH02168867A (en
Inventor
嘉孝 秦
成敏 桧垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP89116439A priority Critical patent/EP0358191B1/en
Priority to DE68922049T priority patent/DE68922049T2/en
Priority to US07/403,467 priority patent/US5045989A/en
Priority to KR8912874A priority patent/KR920001945B1/en
Publication of JPH02168867A publication Critical patent/JPH02168867A/en
Application granted granted Critical
Publication of JP2801621B2 publication Critical patent/JP2801621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/451Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Dc-Dc Converters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、PWM制御による電源装置に係り、特に出力
側の対地電位に高周波成分が含まれないように改良した
PWM制御による電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention] (Industrial application field) The present invention relates to a power supply device by PWM control, and in particular, has been improved so that a high-frequency component is not included in the ground potential on the output side.
The present invention relates to a power supply device by PWM control.

(従来の技術) 従来の基本的な定電圧定周波数電源装置の主回路部を
第7図に示す。
(Prior Art) FIG. 7 shows a main circuit section of a conventional basic constant voltage / constant frequency power supply device.

一線が接地された単相交流電源1の電圧は、ダイオー
ド21〜24からなる整流器20により整流され、DCリアクト
ル31、スイッチング素子32、ダイオード33からなる昇圧
形チョッパ30及び平滑コンデンサ50で昇圧して平滑さ
れ、所定の直流電圧E0に変換される。この直流電圧E
0は、ブリッジ状に構成されたスイッチング素子41〜44
からなるインバータ回路40のパルス幅変調制御(PWM制
御)により再び交流に変換され、リアクトル71、コンデ
ンサ72よりなるL形フィルタ7を通して高周波成分が除
却され、滑らかな正弦波電圧に変換されて負荷8に給電
されている。
The voltage of the single-phase AC power supply 1 whose one line is grounded is rectified by a rectifier 20 composed of diodes 21 to 24 and boosted by a boosting chopper 30 composed of a DC reactor 31, a switching element 32, and a diode 33 and a smoothing capacitor 50. It is smoothed and converted into a predetermined DC voltage E 0. This DC voltage E
0 is a switching element 41 to 44 configured in a bridge shape
Is converted again by the pulse width modulation control (PWM control) of the inverter circuit 40, and the high frequency component is removed through the L-shaped filter 7 composed of the reactor 71 and the capacitor 72, and is converted into a smooth sinusoidal voltage. Power is supplied to

昇圧形チョッパ30は、出力の交流電圧を入力の電源電
圧と等しい値とするために、直流電圧を上げる必要があ
るために入れたものであり、他の手法、例えばトランス
により昇圧後整流する等の手法を用いる場合もある。
The step-up chopper 30 is inserted because it is necessary to increase the DC voltage in order to make the output AC voltage equal to the input power supply voltage. Other methods, such as rectification after step-up by a transformer, etc. Method may be used in some cases.

このような装置は、負荷に供給される電圧は高周波成
分が除去されているが、対地電圧はPWM制御による高周
波成分が発生する。
In such a device, a high frequency component is removed from the voltage supplied to the load, but a high frequency component is generated from the ground voltage by PWM control.

以下、第8図に各部の対地電圧を示しその理由を説明
する。電源電圧(L−N間電圧)をV1とすると、電源1
の接地側Nの対地電圧υはυ=0となり非接地側L
の対地電圧υはυ=V1となる。整流器20の直流出力
の負側DNの対地電圧υDNはダイオード22,24の導通によ
って定まり、電源電圧V1が正の期間はダイオード24が導
通するためυDN=0となる。またV1が負の期間はダイオ
ード22が導通するためυDN=V1となる。従って、直流電
圧をE0とすると、その正側の対地電圧はυDPは、 υDP=υDN+E0 (ただし、E0は、ほぼ一定とする。) となる。
FIG. 8 shows the ground voltage of each part, and the reason will be described. When the power supply voltage (voltage between L-N) and V 1, the power supply 1
The ground voltage N on the ground side N of becomes υ N = 0 and the non-ground side L
Is the ground voltage υ L becomes υ L = V 1. Ground voltage upsilon DN negative side DN DC output of the rectifier 20 is determined by the conduction of diodes 22 and 24, the power supply voltage V 1 is positive period is upsilon DN = 0 because the diode 24 becomes conductive. The V 1 is negative period is upsilon DN = V 1 the diode 22 becomes conductive. Therefore, assuming that the DC voltage is E 0 , the positive side ground voltage is υ DP , where υ DP = υ DN + E 0 (where E 0 is almost constant).

インバータ回路40の交流出力V相の対地電圧υは、
スイッチング素子43,44のオン,オフによって定まり、
スイッチング素子43がオンの時は、υ=υDP、44がオ
ンのときはυ=υDNとなる。通常、これらのスイッチ
ング素子はPWM制御によって高速でオン,オフを繰り返
すのでυには、υDPとυDNを包絡線としてPWM制御に
もとずく高周波成分が発生する。また、フィルタ7を介
した交流出力のU相の対地電圧υは、交流出力電圧V
01とすると、 υ=υ+v01 となる。
The ground voltage 相V of the AC output V phase of the inverter circuit 40 is
It is determined by the on and off of the switching elements 43 and 44,
When the switching element 43 is on, υ V = υ DP, 44 is when on the υ V = υ DN. Usually, these switching elements are turned on at high speed by the PWM control, the upsilon V since repeated off, based Nuisance high frequency component is generated in the PWM control upsilon DP and upsilon DN as an envelope. The U-phase ground voltage U U of the AC output through the filter 7 is equal to the AC output voltage V
When 01, the υ U = υ V + v 01 .

従って、交流出力電圧V01が電源電圧V1と等しく同相
の場合、対地電圧υは第8図(4)に示す波形とな
り、υの場合と同様に高周波成分が含まれる。また、
υの最大値υU(max)は υU(max)=V01ピーク値+E0 となり、V01の電圧レベルに比べかなり高い値となる。
Thus, the AC output voltage V 01 when equally in phase with the supply voltage V 1, the voltage to ground upsilon U has a waveform shown in Figure 8 (4), which contains high frequency components as in the case of upsilon V. Also,
the maximum value of υ U υ U (max) becomes a considerably higher value than the voltage level of υ U (max) = V 01 peak + E 0 becomes, V 01.

交流出力電圧V01が電源電圧V1に等しく逆位相の場
合、対地電圧υは第8図(5)に示す波形となり、こ
の場合もυと同様な高周波成分が含まれる。
When the AC output voltage V 01 is equal and opposite phase to the supply voltage V 1, the voltage to ground upsilon U has a waveform shown in Figure 8 (5), in this case also includes a similar frequency components and upsilon V.

(発明が解決しようとする課題) 以上説明のように、従来のPWM制御による電源装置で
は、出力端での対アース電位変動に、インバータの高速
スイッチングに基ずく高周波成分が含まれるため、例え
ば計算機のように、高周波ノイズに弱いとされている負
荷への適用にあたっては、大かがりなラインフィルタ等
を入れて、完全に上記高周波成分を除去する必要があっ
た。また、負荷側に、誘導雷や開閉サージ等を吸収する
サージサプレッサが対アース間に設置されている場合、
サージサプレッサを焼損させる危険性があり、その定格
電圧には特に注意しなければならない等の問題がある。
(Problems to be Solved by the Invention) As described above, in the conventional power supply device based on PWM control, a high-frequency component based on the high-speed switching of the inverter is included in the fluctuation with respect to the ground potential at the output terminal. As described above, when applied to a load that is considered to be weak against high-frequency noise, it is necessary to completely remove the high-frequency component by inserting a large-scale line filter or the like. Also, if a surge suppressor that absorbs induced lightning and switching surge is installed on the load side between ground and
There is a risk that the surge suppressor may be burned out, and there is a problem that the rated voltage of the surge suppressor requires special attention.

本発明の目的は、出力端における対地電圧に、PWMの
高速スイッチングによる高周波成分を含まず、かつその
最大値も小さくした電源装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a power supply device in which a ground voltage at an output terminal does not include a high-frequency component due to high-speed switching of PWM and has a reduced maximum value.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上記目的を達成するため、本発明は、交流電圧を直流
電圧に変換し、この直流電圧をPWM制御して再び第2の
交流電圧に逆変換する装置において、交流電圧の一端を
共通電位とし、他端の電圧の正の半サイクルから正の直
流電圧を得ると共に負の半サイクルから負の直流電圧を
得る変換回路と、上記正と負の直流電圧が入力され上記
共通電位との間にPWM制御による第2の交流電圧を出力
するインバータ主回路を設けPWM制御による電源装置を
構成する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an apparatus for converting an AC voltage into a DC voltage, performing PWM control on the DC voltage and inversely converting the DC voltage back into a second AC voltage. A conversion circuit that has one end of the AC voltage as a common potential, obtains a positive DC voltage from a positive half cycle of the voltage at the other end, and obtains a negative DC voltage from a negative half cycle, and receives the positive and negative DC voltages as input. An inverter main circuit for outputting a second AC voltage by PWM control between the common potential and the common potential is provided to constitute a power supply device by PWM control.

(作用) 入力される交流電圧の接地側の線を共通電位とするこ
とにより正と負の直流電圧の中性点の対地電位は零とな
る。インバータ主回路は上記中性点に対し正負対称にPW
M制御による第2の交流電圧を出力する。従って、第2
の交流電圧の対地電圧にPWM制御による高周波成分は含
まれない。
(Operation) By setting the ground side line of the input AC voltage to the common potential, the ground potential at the neutral point of the positive and negative DC voltages becomes zero. The inverter main circuit is PW symmetrical with respect to the neutral point.
The second AC voltage is output by the M control. Therefore, the second
The high-frequency component by the PWM control is not included in the ground voltage of the AC voltage.

(実施例) 本発明による一実施例を第1図に示す。(Embodiment) An embodiment according to the present invention is shown in FIG.

第1図において、2,3はダイオード、4,5はコンデンサ
で交流電源1がダイオード2と3の直列接続点とコンデ
ンサ4と5の直列接続点に加えられ変換回路を構成す
る。この場合、交流電源1の接地されている側の線をコ
ンデンサ4と5の直列接続点へ接続する。6はインバー
タ主回路でスイッチング素子61と62が直列接続され、そ
れぞれの素子にはダイオード63と64が逆並列に接続され
て構成されている。インバータの出力電圧はスイッチン
グ素子61と62の接続点とコンデンサ4と5の接続点間に
発生し、この出力電圧がフィルタ7を介して負荷8に加
えられる。なお、9はインバータ主回路6をPWM制御す
る回路である。また、フィルタ7はインダクタンス71と
コンデンサ72から成るL形フィルタの例で示したがこれ
に限定するものではない。
In FIG. 1, reference numerals 2 and 3 denote diodes, and reference numerals 4 and 5 denote capacitors. An AC power supply 1 is added to a series connection point of the diodes 2 and 3 and a series connection point of the capacitors 4 and 5 to constitute a conversion circuit. In this case, the grounded line of the AC power supply 1 is connected to the series connection point of the capacitors 4 and 5. Reference numeral 6 denotes an inverter main circuit in which switching elements 61 and 62 are connected in series, and diodes 63 and 64 are connected in anti-parallel to the respective elements. The output voltage of the inverter is generated between the connection point between the switching elements 61 and 62 and the connection point between the capacitors 4 and 5, and this output voltage is applied to the load 8 via the filter 7. Reference numeral 9 denotes a circuit for controlling the inverter main circuit 6 by PWM. Further, the filter 7 is described as an example of an L-shaped filter including an inductance 71 and a capacitor 72, but is not limited thereto.

上記構成において、交流電源1の電圧V1が図示の極性
で、正のときダイオード2を介してコンデンサ4がE1
充電され、V1が負のときダイオード3を介してコンデン
サ5がE2に充電される。各充電々圧E1,E2はほぼ電源電
圧V1の最大値 に充電され、謂、倍電圧整流回路として作用する。これ
らの直流電圧がインバータ主回路6に入力されPWM制御
により交流電圧に変換される状態を第2図を用いて説明
する。
In the above configuration, when the voltage V 1 of the AC power supply 1 has the polarity shown in the figure and is positive, the capacitor 4 is charged to E 1 via the diode 2, and when V 1 is negative, the capacitor 5 is connected to E 2 via the diode 3. Is charged. Each charging voltage E 1 , E 2 is almost the maximum value of the power supply voltage V 1 And acts as a so-called voltage doubler rectifier circuit. The state in which these DC voltages are input to the inverter main circuit 6 and converted into AC voltages by PWM control will be described with reference to FIG.

インバータ主回路6のスイッチング素子61,62はPWM制
御回路9の制御指令によりオン,オフを繰り返し、第2
図のV0に示すようにPWM制御された電圧を出力する。す
なわち、電源電圧V1が正の半サイクル(T0/2)期間はス
イッチング素子62がオン,オフするようにPWM制御され
る。
The switching elements 61 and 62 of the inverter main circuit 6 are repeatedly turned on and off by the control command of the PWM control circuit 9, and the second
And it outputs a PWM control voltage as shown in V 0 which FIG. That is, PWM control is performed so that the switching element 62 is turned on and off during a positive half cycle (T 0/2 ) of the power supply voltage V 1 .

正の半サイクル期間において、スイッチング素子61が
パルス幅t1だけオンとするとコンデンサ4に蓄えられた
充電々圧E1が出力電圧V0として現れる。また、パルス幅
t2だけオフすると負荷電流がダイオード64を介して還流
しコンデンサ5の充電々圧−E2が出力電圧V0として現れ
る。
In the positive half cycle, charge people pressure E 1 stored in the capacitor 4 when the switching element 61 is turned on only the pulse width t 1 appears as an output voltage V 0. Also, the pulse width
a load current t 2 just off appears as a charging s pressure -E 2 is the output voltage V 0 which capacitor 5 is refluxed through the diode 64.

また、負の半サイクル期間において、スイッチング素
子62がパルス幅t3だけオンするとコンデンサ5の充電々
圧−E2が出力電圧V0として現れ、パルス幅t4だけオフす
るとダイオード63を介して流れる還流電流によりコンデ
ンサ4の充電々圧E1が出力電圧V0として現れる。なお、
スイッチング素子61と62のオン・オフの関係は互いに反
対の論理関係で動作させ、負荷8の力率が変化しても電
圧波形に影響しないようにしている。このようにインバ
ータ6の出力電圧V0はE1と−E2の波高値のパルス電圧と
して出力されその平均値が正弦波の電圧基準V2 となる
ようにPWM制御される。
Further, in the negative half cycle, the switching element 62 is turned on only the pulse width t 3 appear as the charging people pressure -E 2 is the output voltage V 0 which capacitor 5 flows through the diode 63 is turned off by the pulse width t 4 charging s pressure E 1 of the capacitor 4 appears as an output voltage V 0 by the return current. In addition,
The on / off relations of the switching elements 61 and 62 are operated in the opposite logical relations so that even if the power factor of the load 8 changes, the voltage waveform is not affected. This output voltage V 0 which the inverter 6, as is PWM controlled to E 1 and is output as a pulse voltage peak value of -E 2 average value thereof becomes the voltage reference V 2 * of the sine wave.

通常、E1とE2は等しく、出力電圧V0は正負対称の波形
となる。この出力電圧V0はフィルタ7を介すことにより
変調周波数等の高周波成分が除去されV2に示すように滑
らかな正弦波の出力電圧が得られる。
Usually, E 1 and E 2 are equal, the output voltage V 0 is a waveform of the positive-negative symmetrical. The output voltage V 0 is filtered through the filter 7 to remove high-frequency components such as the modulation frequency, so that a smooth sine wave output voltage V 2 is obtained.

以上の説明から明らかなように出力電圧V0はコンデン
サ4と5の接続点を零電位として動作し、交流電源4の
接地側の線がこの点に接続されているのでこの点(Nま
たはV)の対地電圧υは零となる。従って、もう一方
の出力点Uの対地電圧はV2となる。
As is clear from the above description, the output voltage V 0 operates with the connection point of the capacitors 4 and 5 at zero potential, and since the ground line of the AC power supply 4 is connected to this point, this point (N or V ground voltage υ V of) is zero. Therefore, the voltage to ground of the other output point U becomes V 2.

また、本実施例によれば、第3図に示すようにバッテ
リー10とダイオード11の直列回路をコンデンサ4と5の
直列回路に並列接続し、容易に無停電々源装置とするこ
とが可能となる。
Further, according to the present embodiment, as shown in FIG. 3, a series circuit of the battery 10 and the diode 11 can be connected in parallel to the series circuit of the capacitors 4 and 5 to easily provide an uninterruptible power supply. Become.

なお、このような電源装置の出力側に昇圧変圧器を設
けることは容易に実施することができる。
Providing a step-up transformer on the output side of such a power supply device can be easily implemented.

また、本発明の他の実施例としてチョッパ回路12を付
加した例を第4図に示す。
FIG. 4 shows another embodiment of the present invention in which a chopper circuit 12 is added.

チョッパ回路12はリアクトル13、ダイオード14〜17、
スイッチング素子18,19から成り、スイッチング素子18,
19は図示しないチョッパ制御回路によりオン,オフ制御
される。すなわち、電源電圧V1の正の半サイクル期間は
スイッチング素子18が高い周波数でオン・オフ制御さ
れ、負の半サイクル期間はスイッチング素子19がオン・
オフ制御される。スイッチング素子18または19のオンに
よりリアクトル13にエネルギーが蓄積され、オフにより
コンデンサ4または5が充電される。充電々圧は図示し
ないチョッパ制御回路によりオン・オフの時間を調節し
所望の電圧に制御することが可能である。
The chopper circuit 12 includes a reactor 13, diodes 14 to 17,
It consists of switching elements 18 and 19,
19 is turned on and off by a chopper control circuit (not shown). That is, the positive half cycle of the power supply voltages V 1 is controlled to be turned on and off at a frequency switching element 18 is high, the negative half-cycle period switching device 19 is ON
Controlled off. When the switching element 18 or 19 is turned on, energy is accumulated in the reactor 13, and when the switching element 18 or 19 is turned off, the capacitor 4 or 5 is charged. The charging voltage can be controlled to a desired voltage by adjusting the on / off time by a chopper control circuit (not shown).

本実施例の場合もインバータ出力電圧V2の一端(V
点)の対地電圧υは零となりPWM制御による高周波成
分は除去される。
One end of the inverter output voltage V 2 in the case of this embodiment (V
The ground voltage ΔV at the point) becomes zero, and the high frequency component by the PWM control is removed.

また、本実施例によれば変圧器を用いることなく高電
圧を得ることが可能となり小形化に寄与することができ
る。
Further, according to this embodiment, a high voltage can be obtained without using a transformer, which can contribute to downsizing.

(他の実施例) さらに、合理的な構成の実施例を第5図に示す。(Other Embodiments) Further, an embodiment having a reasonable configuration is shown in FIG.

この構成は第4図の構成からダイオード2,3,14,15を
除き、スイッチング素子18と19の直列接続した点にリア
クトル13を接続し合理的な回路構成としている。
In this configuration, a reactor 13 is connected to a point where the switching elements 18 and 19 are connected in series, except for the diodes 2, 3, 14, and 15 from the configuration of FIG.

上記構成において、交流電源1の正の半サイクルの期
間では、スイッチング素子19をオンさせ、交流電源1−
リアクトル13−素子19−コンデンサ5−交流電源1の経
路に通電してリアクトル13にエネルギーを蓄積する。次
に素子19をオフしてリアクトル13に蓄積したエネルギー
をリアクトル13−ダイオード16−コンデンサ4−交流電
源1−リアクトル13の経路に放電してコンデンサ4を充
電する。また、交流電源1の負の半サイクルでは、スイ
ッチング素子18をオン・オフ制御することにより同様に
コンデンサ5を充電する。このようにしてリアクトル13
に流れる電流を交流電源に同相の正弦波状に制御するこ
とにより、入力電流の高調波抑制及び高力率制御を可能
にするとともに、直流母線電圧(E1+E2)を所定の電圧
(E0)に制御する。コンデンサ4,5の共通電位の対地電
圧υ=0なので、直流母線DP及びDNの対地電圧υDP,
υDNはそれぞれ υDP≒E0/2,υDN≒−E0/2 となる。
In the above configuration, during the positive half cycle of the AC power supply 1, the switching element 19 is turned on, and the AC power supply 1-
Electric power is supplied to the path of the reactor 13, the element 19, the capacitor 5, and the AC power supply 1 to store energy in the reactor 13. Next, the element 19 is turned off, and the energy stored in the reactor 13 is discharged to the path of the reactor 13-diode 16-capacitor 4-AC power supply 1-reactor 13 to charge the capacitor 4. In the negative half cycle of the AC power supply 1, the capacitor 5 is similarly charged by controlling the on / off of the switching element 18. Thus reactor 13
By controlling the current flowing through the AC power supply into a sine wave in the same phase as the AC power supply, it is possible to suppress the harmonics of the input current and control the high power factor, and to reduce the DC bus voltage (E 1 + E 2 ) to a predetermined voltage (E 0 ). Since the ground voltage of the common potential of the capacitors 4 and 5 V V = 0, the ground voltage of the DC buses DP and DN υ DP ,
upsilon DN Each υ DP ≒ E 0/2, a υ DN ≒ -E 0/2.

インバータ主回路6は前述と同様に動作し、フィルタ
7を介したインバータ出力電圧を一定電圧の正弦波にPW
M制御する。
The inverter main circuit 6 operates in the same manner as described above, and converts the inverter output voltage via the filter 7 into a constant voltage sine wave by PW.
M control.

本実施例によればダイオードによる損失か少なくな
り、高効率で経済的な電源装置が得られる。
According to this embodiment, the loss due to the diode is reduced, and a highly efficient and economical power supply device can be obtained.

また、本実施例の構成において、直流母線にバッテリ
ーを接続することにより無停電電源装置を構成すること
ができる。この場合、バッテリー電圧を直流母線電圧に
ほぼ合せる必要があるため、バッテリー選定の自由度が
限定される。
In the configuration of the present embodiment, an uninterruptible power supply can be configured by connecting a battery to the DC bus. In this case, it is necessary to make the battery voltage substantially match the DC bus voltage, so that the degree of freedom in battery selection is limited.

第6図はこの点を考慮した実施例である。同図におい
て、切換スイッチ101は停電検出回路100からの指令によ
り交流電源1とバッテリー10を切換えるものである。バ
ッテリー10の正側は切換スイッチ101に接続され負側は
直流母線DNに接続される。
FIG. 6 shows an embodiment taking this point into account. In FIG. 1, a changeover switch 101 switches between the AC power supply 1 and the battery 10 according to a command from the power failure detection circuit 100. The positive side of the battery 10 is connected to the changeover switch 101, and the negative side is connected to the DC bus DN.

上記の構成において、交流電源1が正常のとき切換ス
イッチ101は交流電源の方に切換えられている。交流電
源が停電すると停電検出回路100の指令により切換スイ
ッチ101はバッテリーの方に切換えられる。バッテリー
に切換えられたときチョッパ回路12は、昇圧回路として
動作し、バッテリーの電圧から所定の直流電圧(E0)を
得る。この場合リアクトル13へのエネルギー蓄積は、ス
イッチング素子19をオンすることで行い素子19をオフし
て、リアクトル13に蓄積されたエネルギーの一部をダイ
オード16を通して放電し、コンデンサ4と5を充電す
る。
In the above configuration, when the AC power supply 1 is normal, the changeover switch 101 is switched to the AC power supply. When the AC power supply fails, the switch 101 is switched to the battery in response to a command from the power failure detection circuit 100. When switched to a battery, the chopper circuit 12 operates as a booster circuit, and obtains a predetermined DC voltage (E 0 ) from the voltage of the battery. In this case, the energy storage in the reactor 13 is performed by turning on the switching element 19, turning off the element 19, discharging a part of the energy stored in the reactor 13 through the diode 16, and charging the capacitors 4 and 5. .

本実施例によれば、バッテリー電圧からの昇圧が可能
となりバッテリー選定の自由度が大巾に改善される。
According to the present embodiment, the voltage can be boosted from the battery voltage, and the degree of freedom in battery selection can be greatly improved.

〔発明の効果〕〔The invention's effect〕

本発明によれば、非絶縁形の電源装置の交流出力側の
対地電位に、計算機等の電子機器の負荷にとって有害な
PWM制御の高速スイッチングによる高周波成分が含まれ
ず、ノイズフィルタを小型にでき、また場合により省略
も可能である。またPWM制御による高周波成分が負荷側
に影響を与えないため、更に高速スイッチングが可能で
ある。また、対地電位を低くすることができ安全で信頼
性の高いPWM制御の電源装置を得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the earth | ground potential of the AC output side of a non-insulated power supply apparatus is harmful to loads of electronic devices, such as a computer.
High-frequency components due to high-speed switching by PWM control are not included, so that the noise filter can be reduced in size and can be omitted in some cases. Further, since high-frequency components due to PWM control do not affect the load side, higher-speed switching is possible. In addition, a ground potential can be reduced, and a safe and reliable PWM control power supply device can be obtained.

また、合理的な主回路構成により、小形化,軽量化,
高効率化が可能である。
In addition, with a reasonable main circuit configuration, miniaturization, weight reduction,
Higher efficiency is possible.

また、必要に応じてバッテリーと、簡単な回路を付加
して無停電電源装置とすることができ、汎用電源として
広く応用することができる。
In addition, a battery and a simple circuit can be added as necessary to provide an uninterruptible power supply, and can be widely applied as a general-purpose power supply.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例図、第2図は本発明の作用を
説明する為の波形図、第3図はバッテリーを付加し無停
電電源装置とした実施例図、第4図,第5図はチョッパ
回路を付加した本発明の他の実施例図、第6図はチョッ
パ回路とバッテリーを付加し無停電電源装置とした他の
実施例図、第7図は従来の回路構成図、第8図は従来の
回路構成の問題点を説明する為の波形図である。 1……交流電源、2,3……ダイオード 4,5,72……コンデンサ 6……インバータ主回路、7……フィルタ回路 8……負荷、9……PWM制御回路 10……バッテリー 11,14〜17,63,64……ダイオード 12……チョッパ回路、13……リアクトル 18,19,61,62……スイッチング素子 71……インダクタンス、100……停電検出回路 101……切換スイッチ
FIG. 1 is a diagram of an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation of the present invention, FIG. 3 is an embodiment diagram of an uninterruptible power supply with a battery added, FIG. FIG. 5 is another embodiment of the present invention in which a chopper circuit is added, FIG. 6 is another embodiment of an uninterruptible power supply in which a chopper circuit and a battery are added, and FIG. 7 is a conventional circuit configuration diagram. FIG. 8 is a waveform diagram for explaining the problem of the conventional circuit configuration. 1 ... AC power supply, 2,3 ... Diode 4,5,72 ... Capacitor 6 ... Inverter main circuit, 7 ... Filter circuit 8 ... Load, 9 ... PWM control circuit 10 ... Battery 11,14 ~ 17, 63, 64 ... Diode 12 ... Chopper circuit, 13 ... Reactor 18, 19, 61, 62 ... Switching element 71 ... Inductance, 100 ... Power failure detection circuit 101 ... Changeover switch

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電圧を直流電圧に変換し、この直流電
圧をPWM制御して再び第2の交流電圧に逆変換する装置
において、交流電圧の接地された一端を共通電位とし、
他端の電圧の正の半サイクルから正の直流電圧を得ると
共に負の半サイクルから負の直流電圧を得る変換回路
と、上記正と負の直流電圧が入力され上記共通電位との
間にPWM制御による第2の交流電圧を出力するインバー
タ主回路を設けたことを特徴とするPWM制御による電源
装置。
An apparatus for converting an AC voltage into a DC voltage, performing PWM control on the DC voltage and inverting the DC voltage again to a second AC voltage, wherein one end of the AC voltage grounded is set to a common potential,
A conversion circuit that obtains a positive DC voltage from the positive half cycle of the voltage at the other end and obtains a negative DC voltage from the negative half cycle, and a PWM circuit in which the positive and negative DC voltages are input and between the common potential A power supply device based on PWM control, comprising an inverter main circuit that outputs a second AC voltage under control.
【請求項2】上記(1)項において、正と負の直流電圧
間にバッテリーを設け、無停電々源装置としたことを特
徴とするPWM制御による電源装置。
2. The power supply device according to claim 1, wherein a battery is provided between the positive and negative DC voltages to provide an uninterruptible power supply device.
【請求項3】上記(1)項において、前記交流電圧の他
端の電圧をインダクタンスを介して入力し、該電圧の正
の半サイクル期間をPWM制御して正の直流電圧を得ると
共に負の半サイクル期間をPWM制御して負の直流電圧を
得るチョッパ回路を設け、所望の出力電圧を得るように
したことを特徴とするPWM制御による電源装置。
3. In the above item (1), a voltage at the other end of the AC voltage is input via an inductance, and a positive half cycle period of the voltage is PWM-controlled to obtain a positive DC voltage and a negative DC voltage. A power supply device by PWM control, comprising a chopper circuit for obtaining a negative DC voltage by performing PWM control for a half cycle period to obtain a desired output voltage.
【請求項4】交流電圧を直流電圧に変換し、この直流電
圧をPWM制御して再び第2の交流電圧に変換する装置に
おいて、 ダイオードが逆並列に接続された第1のスイッチング素
子及び第2スイッチング素子を直列接続したチョッパ手
段と、 このチョッパ手段に並列接続された直列の2個のコンデ
ンサと、 前記第1のスイッチング素子び第2スイッチング素子の
直列接続点に一端が接続されたリアクトルと、 このリアクトルの他端と前記2個のコンデンサの直列接
続点間に加えられた接地された交流電源と、 前記リアクトルの他端と第2のスイッチング素子との間
に設けられたバッテリーと、 前記交流電源の停電を検出する停電検出回路と、 前記リアクトルの他端に設けられ、前記検出回路が停電
を検出した際に、前記リアトルの他端を前記交流電源側
から前記バッテリー側に切り替える切替スイッチと有す
る無停電電源装置としたことを特徴とするPWM制御によ
る電源装置。
4. An apparatus for converting an AC voltage into a DC voltage, performing PWM control on the DC voltage and converting it again into a second AC voltage, wherein the first switching element and the second switching element are connected in anti-parallel with a diode. A chopper means in which switching elements are connected in series; two capacitors in series connected in parallel to the chopper means; a reactor having one end connected to a series connection point of the first switching element and the second switching element; A grounded AC power supply applied between the other end of the reactor and a series connection point of the two capacitors; a battery provided between the other end of the reactor and a second switching element; A power failure detection circuit for detecting a power failure of the power supply, provided at the other end of the reactor, and when the detection circuit detects a power failure, the other end of the reactor An uninterruptible power supply having a changeover switch for switching from an AC power supply to the battery, and a power supply by PWM control.
JP1016174A 1988-09-06 1989-01-27 Power supply device by PWM control Expired - Lifetime JP2801621B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP89116439A EP0358191B1 (en) 1988-09-06 1989-09-06 PWM-controlled power supply capable of eliminating modulation-frequency signal components from ground potentials
DE68922049T DE68922049T2 (en) 1988-09-06 1989-09-06 Pulse-width modulated power supply with the ability to suppress modulation frequency signal components of earth potentials.
US07/403,467 US5045989A (en) 1988-09-06 1989-09-06 PWM power supply eliminating modulation-frequency components from ground potentials
KR8912874A KR920001945B1 (en) 1988-09-06 1989-09-06 Pwm-control power source with eliminating earth voltage modulation frequence signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP22125588 1988-09-06
JP63-221255 1988-09-06

Publications (2)

Publication Number Publication Date
JPH02168867A JPH02168867A (en) 1990-06-28
JP2801621B2 true JP2801621B2 (en) 1998-09-21

Family

ID=16763905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016174A Expired - Lifetime JP2801621B2 (en) 1988-09-06 1989-01-27 Power supply device by PWM control

Country Status (2)

Country Link
JP (1) JP2801621B2 (en)
KR (1) KR920001945B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099410A (en) * 1990-11-13 1992-03-24 Wisconsin Alumni Research Foundation Single phase ac power conversion apparatus
JPH0759361A (en) * 1993-08-09 1995-03-03 Sansha Electric Mfg Co Ltd Boosting type uninterruptive power unit
JPH0767358A (en) * 1993-08-30 1995-03-10 Sansha Electric Mfg Co Ltd Power supply device for lighting high-intensity discharge lamp
JP2007082318A (en) * 2005-09-14 2007-03-29 Fuji Electric Fa Components & Systems Co Ltd Power system
JP2007202305A (en) * 2006-01-26 2007-08-09 Mitsumi Electric Co Ltd Power supply unit
FR2927201B1 (en) * 2008-01-31 2010-02-12 Airbus France CIRCUIT AND POWER RECTIFIER SYSTEMS, ASSOCIATED METHOD, AIRCRAFT COMPRISING SUCH CIRCUITS OR SYSTEMS
JP5403090B2 (en) * 2012-03-09 2014-01-29 富士電機株式会社 Power converter
JP5370519B2 (en) * 2012-03-15 2013-12-18 富士電機株式会社 Power converter
US9997917B2 (en) 2015-07-01 2018-06-12 Google Llc Transformerless power conversion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和62年度電気関係学会北陸支部連合大会論文集P.77

Also Published As

Publication number Publication date
KR900005675A (en) 1990-04-14
KR920001945B1 (en) 1992-03-07
JPH02168867A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
EP0358191B1 (en) PWM-controlled power supply capable of eliminating modulation-frequency signal components from ground potentials
AU770941B2 (en) Method and apparatus for converting a DC voltage to an AC voltage
US7042740B2 (en) Soft-switching half-bridge inverter power supply system
JP3263225B2 (en) Power harmonic current suppression means
US20100097827A1 (en) Method And Circuitry for Improving the Magnitude and Shape of the Output Current of Switching Power Converters
JP3230434B2 (en) AC / DC conversion circuit
JP3416948B2 (en) Sine wave input converter circuit
JPH01283063A (en) Power unit by pwm control
JP2801621B2 (en) Power supply device by PWM control
Deng et al. Single switch, unity power factor, lamp ballasts
Burlaka et al. Bidirectional single stage isolated DC-AC converter
CN100377481C (en) Integration converton with three phase power factor correction
Kishore et al. Single-phase PFC converter using modified multiplier SEPIC converter for high voltage DC applications
JP3416950B2 (en) Single-phase rectifier
KR960010828B1 (en) High power factor power supply
JP2996199B2 (en) Switching power supply
US20240146185A1 (en) T-type buck-boost rectifier
JP2011193704A (en) Dc-ac power converter
Mulkern et al. A sinusoidal line current rectifier using a zero-voltage switching step-up converter
Tekgun et al. Design and control of a single phase DC/Rectified AC/AC inverter for low THD applications
JP3364000B2 (en) Uninterruptible power system
Khodabandeh et al. A single-phase ac to three-phase ac converter with a small link capacitor
Liao et al. Eliminating input electrolytic bulk capacitors in flyback-based universal chargers with a half-bridge series-stacked buffer
JPH1141938A (en) Dc power supply equipment
JPH1198847A (en) Rectifier circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070710

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11