JPH0317847B2 - - Google Patents

Info

Publication number
JPH0317847B2
JPH0317847B2 JP31011286A JP31011286A JPH0317847B2 JP H0317847 B2 JPH0317847 B2 JP H0317847B2 JP 31011286 A JP31011286 A JP 31011286A JP 31011286 A JP31011286 A JP 31011286A JP H0317847 B2 JPH0317847 B2 JP H0317847B2
Authority
JP
Japan
Prior art keywords
propylene
ethylene
copolymer
polymerization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31011286A
Other languages
English (en)
Other versions
JPS63168414A (ja
Inventor
Nobuaki Goko
Yumito Uehara
Yasuhiro Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP31011286A priority Critical patent/JPS63168414A/ja
Publication of JPS63168414A publication Critical patent/JPS63168414A/ja
Publication of JPH0317847B2 publication Critical patent/JPH0317847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】
〔産業上の利用分野〕 本発明は、プロピレン共重合体の製造法に関す
る。更に詳しくは、チタン系化合物と有機アルミ
ニウム系化合物とを主成分とする立体特異性触媒
系を用いて2段階でプロピレン−エチレンランダ
ム共重合体を製造する際に、第2段の共重合を特
定のケイ素化合物を存在させて気相下で行なうこ
とにより、かさ密度が高く、安息角の小さい重合
体粒子を高い反応器容積効率で製造する方法に関
する。 〔従来の技術〕 エチレンを少量の割合で含有する結晶性プロピ
レン−エチレンランダム共重合体は、各種フイル
ム、中空成型品、射出成型品などに加工されて広
く使用されている。 プロピレン−エチレンランダム共重合体は、プ
ロピレン重合体に比べて透明性や耐衝撃性、低温
脆性が改良されるほか、フイルム分野においては
ヒートシール性が良化するが、これらの性質はエ
チレン含有量を増加させることによつて更に改善
することが出来る。 〔発明が解決しようとする問題点〕 ところが、このようなプロピレン−エチレンラ
ンダム共重合体を不活性溶媒や液化プロピレンの
存在下でスラリー重合などで製造する場合には、
重合溶媒に可溶性の重合体の生成が増加し、重合
スラリーが粘稠になるため重合体濃度を高くする
ことができる、生産性が低下する。 また重合溶媒に可溶性の重合体は反応器内壁へ
の付着により伝熱不良や抜出管の閉塞トラブルの
原因となるばかりでなく、重合体粒子のかさ密度
の低下やすべり性の悪化をもたらし、下流側であ
る移送工程の閉塞やホツパーでの固結、更には乾
燥工程での塊状物生成等の原因となる。 従つて不活性炭化水素や液体プロピレンを溶媒
としたスラリー重合法によるプロピレン−エチレ
ンランダム共重合体の製造では生産量を下げる等
の著しい不利益を伴うか、又は少量のエチレン含
有量で僅かな改善で妥協せざるをえない。 このような問題点を解決する為にスラリー重合
を多段で行い、かつ、後段で生成する共重合体中
のエチレン含有量を前段で生成する共重合体中の
エチレン含有量よりも多くして全共重合体中のエ
チレン含有量を増加させる方法が知られている。
しかしながらこの方法では媒体中へ溶出する成分
による前記トラブルは基本的になくならず解決策
として全く不十分である。 また、液状媒体を用いないいわゆる気相重合方
法も知られている。この方法は液状媒体を全く用
いないので非晶性重合体による前記トラブルは軽
減されるはずである。しかし、この方法も実際に
は媒体が存在しない為、除熱が十分行われず、粒
子相互の凝集による塊状物生成や重合槽内壁への
付着は改善されない。又反応初期に起ると思われ
る触媒の破枠によつて微粒が生じ、得られた重合
体粒子のかさ密度はスラリー重合によつて得た重
合体粒子のかさ密度より、むしろ低いのである。 気相重合法の更に大きな問題は単量体濃度が低
い為単位時間あたりの生産量は著しく低くなるこ
とである。気相重合では重合体粉末の混合に要す
るエネルギー、例えば流動層であれば、流動用循
環ガスのブロワーの動力、撹拌槽であれば撹拌動
力を大きくとる必要があり、気相反応器の容積の
大小は建設費のみならず、変動費にも多大の影響
を及ぼすので、生産性が低いということは経済的
観点からみると気相重合の重大な欠点と言わざる
を得ない。 本発明者らは、プロピレン−エチレンランダム
共重合体の物性上の特質である、すぐれた透明
性、耐衝撃性、低温脆性、ヒートシール性を有す
るプロピレン−エチレン共重合体を工業的有利に
製造する方法を開発すべく、粉体性状の改良と、
高活性を得る重合方法に着目して鋭意検討した結
果、下記方法を見い出すに至つた。 すなわち、本発明の目的は、 (1) 透明性、耐衝撃性、低温脆性、ヒートシール
性にすぐれた重合体を得ること、 (2) 反応器内でのポリマーの付着、乾燥工程での
粉体の互着、等の起こらないこと、 (3) 得られる重合体の粉体性状にすぐれかつ、高
活性で連続運転が可能であること という要件を満すプロピレン共重合体の製造方法
を提供することである。 本発明の要旨は、チタン化合物と有機アルミニ
ウム化合物とを主成分とする立体特異性触媒を用
い、第1段階の単独重合又は共重合を不活性溶媒
又は液化プロピレン中で行ない、第2段階の共重
合を実質的に溶媒、液化プロピレンのない気相中
で行うことにより高いかさ密度と良好なすべり性
を有する重合体粒子が極めて安定的に得られるこ
と、かつ第2段階の共重合時に特定のケイ素化合
物を重合系に存在させることにより、活性が著し
く向上し高い生産性が得られるということに存す
る。 以下本発明を順次説明する。 本発明において使用される重合触媒は、チタン
含有触媒成分と、有機アルミニウム化合物とから
なるが、特に限定されず、公知の触媒を用いう
る。 チタン含有固体触媒成分としては、固体のマグ
ネシウム化合物、チタン化合物成分およびハロゲ
ン成分を含む公知の担体担持型触媒成分も使用可
能であるが、好ましくは三塩化チタンを主成分と
するものである。三塩化チタンを主成分とするも
のとしては、従来公知の三塩化チタンが使用でき
る。たとえばボールミル粉砕で活性化処理を行な
つた三塩化チタン、更にそれを溶媒抽出した三塩
化チタン、β型三塩化チタンをエーテル類等の錯
化剤で処理し、更に四塩化チタンで処理してAl
含有量をTiに対する原子比で0.15以下にした三塩
化チタン、エーテル類の存在下、四塩化チタンを
有機アルミニウム化合物で処理して液状物とし、
これを更に加熱して固体としてAl含有量をTiに
対する原子比で0.15以下とした三塩化チタン等が
あげられる。 これらの三塩化チタンのうち特に好ましいの
は、アルミニウム含有量がチタンに対するアルミ
ニウムの原子比で0.15以下、好ましくは0.1以下、
さらに好ましくは0.02以下であり、かつ錯化剤を
含有するものである。 上記チタン含有固体触媒成分に対し、共触媒と
して使用される有機アルミニウム化合物は、一般
式AlRnX3-n(式中、Rは炭素数1〜20の炭化水
素基、Xはハロゲンを表わし、mは3≧m>1.5
の数を示す)で表わされる。チタン含有固体触媒
成分が、固体のマグネシウム化合物を含有する担
体担持型触媒成分である場合は、AlR3または
AlR3とAlR2Xとの混合物を使用するのが好まし
い。一方、チタン含有固体触媒成分が、三塩化チ
タンを主成分とする場合は、AlR2Xを使用する
が、一般にジエチルアルミニウムクロライド、ジ
ノルマルプロピルアルミニウムクロライド、ジヘ
キシルアルミニウムクロライド、ジノルマルオク
チルクロライドが好ましい。 上記に示した三塩化チタンおよび有機アルミニ
ウム化合物は、一般に有機アルミニウム化合物/
三塩化チタンのモル比が1〜30、好ましくは2〜
15の範囲で使用される。 本発明においては、上記の触媒をそのまま用い
てもよいが、前処理として、三塩化チタンと有機
アルミニウム化合物からなる触媒に予め少量のオ
レフインを予備的に重合させることが好ましい。 上記方法は、不活性溶媒、例えばヘキサン、ヘ
プタン等に三塩化チタンおよび有機アルミニウム
化合物を添加し、これにプロピレン、エチレン、
ブテン−1等のオレフインあるいは、これらの混
合物を供給して重合すればよい。この前処理は一
般に予備重合と称される手段であるが、その重合
条件は公知の条件が、そのまま採用できる。重合
温度は30〜70℃である。重合率は三塩化チタン単
位重量当り大きい程好ましいが、装置上あるいは
経済的な観点から0.1〜100g−ポリマー/1g−
TiCl3の範囲とするのが一般的である。また、重
合時分子量調節剤、例えば水素を添加してもよ
い。更に予備重合は回分式で均一に実施するのが
好ましい。この予備重合は、嵩密度など重合体の
性状の改良に効果がある。 更に、上記した三塩化チタンおよび有機アルミ
ニウム化合物からなる触媒には、立体規則性向上
の為の添加剤を第3成分として用いてもよい。こ
の目的のために、N.O.P又はSi等を含む種々の化
合物や、炭化水素化合物が用いられる。第3成分
の添加量は、一般に三塩化チタンに対するモル比
で0.0001〜5、好ましくは0.001〜1の範囲であ
る。 プロピレンとエチレンのランダム共重合は、少
なくとも二段階に分けて行なわれる。 第1段の重合は不活性溶媒中、液体モノマー中
いずれでも行なうことができるが、本発明を実施
するにあたつては、特に液体モノマー中で行なう
ことが好ましい。第1段の重合ではプロピレンの
単独重合又はエチレン含有量が5重量%以下のプ
ロピレン−エチレンランダム共重合体を製造す
る。エチレン含有量が上記範囲より高い共重合を
行うと不活性溶媒又は液体モノマー中に溶出する
成分の悪影響により本発明の目的の1つであるか
さ密度の高い重合体を得ることが難しくなる。 重合温度及び圧力は一般にプロピレン重合で用
いられている条件を適用することができるが通常
0〜100℃、好ましくは50〜85℃、100気圧以下、
好ましくは1〜50気圧の圧力範囲が適用される。 分子量調節剤としては、水素、ジエチル亜鉛等
の公知のものが用いられる。 第1段の重合で得られる重合体は、最終重合体
の物性バランスを考慮してMFI(メルトフローイ
ンデツクス)が0.1〜100g/10分の範囲となるよ
うに調節し、第1段の重合反応で、全重合量の5
〜95重量%を重合させる。 第1段の重合量が全重合量の5重量%に満たな
い場合は第2段の気相重合槽で粒子の凝集や塊り
が出来易くなり、本発明の目的であるかさ密度が
高くすべり性の良好な重合体粒子が得られない。 又、第1段の重合量が95重量%を越えた場合は
2段階で重合を行う効果が出ない。 第1段の重合反応は、重合反応器一槽でも二槽
以上用いても良い。 第1段の重合終了後、単独重合体又は共重合体
は、含まれる触媒を失活させることなく、反応媒
体の一部を除去し、又は、除去せずに気相重合器
に移送される。即ち該ポリマーが溶媒重合法によ
つて得られたものであるときは、不活性炭化水素
と未反応モノマーを遠心分離機、液体サイクロン
等で除去する。又、液体プロピレン自体を媒体と
したときは、同様の公知の固液分離手段の他、そ
のまま気相重合器に送ることもできる。 第二段階のプロピレン−エチレン共重合は、実
質的に不活性溶媒液化プロピレンの不存在下、気
相下で行なう。 第二段階で生成する共重合体中のエチレン含有
量は、通常20重量%以下であるが、全重合体のエ
チレン含有量が所望の値となるよう適宜調節され
る。全共重合体中に含まれるエチレン含有量は10
重量%以下であるが、本発明の効果はエチレン含
有量が高い程大きい。即ち本発明の方法はエチレ
ン含有量4重量%以上の共重合体の製造に特に好
適である。第1段で重合する重合体中のエチレン
含有量より第2段で重合するエチレン含有量を高
くすることが好ましい。 第二段階で生成する共重計体は、全重合体の95
〜5重量%となるように製造する。 第二段階の重合は通常30〜100℃、1〜50Kg/
cm2の範囲で行なう。 本発明の最も重要な特徴は、前記の第1段階の
方法によつて得られたプロピレン単独重合体又は
ランダム共重合体に引き続きプロピレンとエチレ
ンを気相で重合させる際に、ケイ素化合物を添加
して重合することにより極めて高い重合活性が得
られ、又ポリマーの粘着のないすべりの優れたラ
ンダム共重合体が得られることにある。 本発明で加えられるケイ素化合物は一般式
〔実施例〕
以下実施例を上げて本発明を説明するが本発明
はこれに限定されるものではない。 なお、実施例中の略号の意味及び各種の測定方
法は次の通りである。 (1) ノルマルヘキサン抽出残分は改良型ソツクス
レー抽出器で沸騰n−ヘキサンにより3時間抽
出した場合の残量(重量%)である。 (2) 嵩密度ρB(g/cm3)は、JIS−6721により測定
した。 (3) 安息角(度)は筒井理化学器械(株)製、三輪式
円筒回転法安息角測定器を用い、回転時の安息
角を測定した。 (4) メルトフローインデツクスMFI(g/10分)
はASTM−D1238−70により、230℃荷重2.16
Kgの時の重合体の押出量を示した。 (5) 脆化温度Tb(℃)は1オンス射出成型機によ
つて作つた厚さ2.0mmの平板から打抜いた試験
片につき、ASTM D746により求めた。 (6) ヘーズはASTM D1003−61に準ずる方法
で、0.25mmプレスシートについて測定した。 (7) 融点は等温結晶化した試料を差動熱量計によ
り測定した。 (8) エチレン含有量(重量%)はFT−NMRス
ペクトル分析により測定した。 (9) 触媒効率(CE)は三塩化チタン触媒成分1
g当り生成するプロピレン共重合体の全生成量
(g−ポリマー/1g−TiCl3)を表わす。 (10) 活性は単位時間当りの触媒効率を表わす(g
−ポリマー/g−TiCl3・hr) また、第1図は本発明に含まれる技術内容の理
解を助けるためのフローチヤート図であり、本発
明はその要旨を越えない限り、フローチヤート図
によつて限定されるものではない。 実施例 1 (A) 固体三塩化チタンの調製 室温において十分に窒素置換した容積1のフ
ラスコに精製トルエン500mlを入れ、撹拌下n−
ブチルエーテル65.1g(0.5mol)、四塩化チタン
94.9g(0.5mol)、ジエチルアルミニウムクロラ
イド28.6g(0.25mol)を添加し褐色の均一溶液
を得た。 次いで40℃に昇温し、30分経過した時点から紫
色の微粒状の固体の析出が認められるがそのまま
2時間40℃を保持した。 さらに96℃で約1時間保持した後、粒状紫色固
体を分離し、n−ヘキサンで洗浄して約80gの固
体三塩化チタンを得た。 (B) プロピレン重合体含有三塩化チタンの製造
(前処理) 十分に窒素置換した500mlのフラスコに精製n
−ヘキサン250mlを入れ、ジエチルアルミニウム
クロライド1.9g及び上記(A)で得た固体三塩化チ
タンをTiCl3として2.5g(0.016mol)を仕込んだ
後温度を40℃に保ち、撹拌下、プロピレンガス
12.5gを約10分間気相に吹き込んで接触処理し
た。 次いで固体成分を静置沈降させ、上澄液をデカ
ンテーシヨンで除去し、n−ヘキサンで数回洗浄
し、プロピレン重合体含有固体三塩化チタンを得
た。 (C) プロピレン−エチレン共重合体の製造 乾燥窒素で十分置換した容量2のオートクレ
ーブに、共触媒としたジエチルアルミニウムモノ
クロリド0.8mmol、第3成分としてメタクリル酸
メチル0.03mmolを入れ、水素ガスとエチレンガ
スを所定量張り込み液体プロピレンを700g仕込
んだ後、オートクレーブを昇温し内温が60℃にな
つた時点で上記(B)で得られたプロピレン重合体含
有固体三塩化チタン触媒成分をTiCl3として25mg
窒素で圧入し重合反応を開始した。重合温度は60
℃にコントロールし、気相の組成は各組成が一定
になる様にガスクロマトグラフイーで分析し、重
合するエチレンは逐次追加して制御した。 3時間重合後未反応のプロピレンを速やかにパ
ージし、精製窒素雰囲気下重合体粉末50gをサン
プリングした。次いで、この反応器に水素ガスを
所定量吹込み、70℃に達したところでケイ素化合
物として信越化学社製シリコンオイルKF−96
0.06gをプロピレンとエチレンの所定濃度の混合
ガスで圧入した。圧力を25Kg/cm2に保ちながら70
℃で1時間気相重合を続けた。気相の組成は所定
濃度になる様にガスクロマトグラフイーで分析し
ながらエチレン又はプロピレンを追加フイードし
制御した。 反応終了後未反応モノマーガスをパージし378
gのプロピレン−エチレンランダム共重合体を得
た。 重合条件及び各種測定結果を表1に示した。 螢光X線によるポリマー中のTi含有量分析か
らの触媒効率(CE)は第1段重合終了時点の試
料が12750、最終重合生成物が18000であり、気相
重合による共重合体の触媒効率は5250、活性5250
であつた。 また、第1段重合終了時点の試料のエチレン含
有量4.0重量%、n−ヘキサン抽出残96.4重量%、
嵩密度0.46g/cm3、安息角度35度に対して最終重
合体のエチレン含有量5.2重量%、n−ヘキサン
抽出残分87重量%、嵩密度0.47g/cm3、安息角度
36度であり、第2段階重合によつてエチレン含有
量の増加、非晶性重合体含有量が増加しているに
もかかわらず、嵩密度は向上し、安息角度は殆ん
ど変わらず粉体性状の良好な共重合体が得られ
た。 比較例 1 実施例1において第1段の共重合のみで実施例
1の最終共重合体と同等のエチレン含有量とすべ
く、気相のエチレン組成を多くして第1段の共重
合のみを行ない、所定の回分重合後プロピレン、
エチレンをパージし、共重合体を得た。 結果は表1に示すが、全共重合体中のエチレン
含有量は実施例1の全共重合体と同等にもかかわ
らず、嵩密度は0.38g/cm3、安息角は48度、n−
ヘキサン抽出残分は79.6重量%であり粉体性状が
悪く、自由流動性の悪い共重合体であつた。 比較例 2 実施例1において第1段の共重合及び第1段終
了后のサンプリングは実施例1と同様に行なつた
後、第2段の重合を再び液体プロピレン中で行な
つた。全共重合体中のエチレン含有量は実施例1
と同じになる様に第2段共重合時の気相組成のエ
チレン分率を多く制御して重合温度60℃で2時間
共重合を行なつた後、プロピレン、エチレンをパ
ージし共重合体を得た。 結果は表1に示すが、全共重合体中のエチレン
含有量は実施例1の全共重合体と同等にもかかわ
らず、嵩密度は0.37g/cm3、安息角は49度、n−
ヘキサン抽出残分は81.5重量%であり粉体性状は
悪く、安息角も高く流動性が悪い。 比較例 3 実施例1の(C)において、シリコンオイルKF−
96を使用しなかつた他は実施例1の(B)の工程と同
様に重合して得たプロピレン含有固体三塩化チタ
ンを用いて、実施例1の(C)と同様にしてプロピレ
ン−エチレンランダム共重合体の製造を行なつ
た。 結果は表1に示した。 実施例1に比較して、第2段の気相重合活性は
低く、触媒効率も低くい。この為エチレン含有量
は少なく、ランダム共重合体の特質は実施例1に
比べて悪い。 実施例 2〜4 実施例1の(C)において、シリコンオイルKF−
96の代わりに表1に示すケイ素化合物の種類及び
量を代えて添加し、実施例1の(B)の工程と同様に
重合して得たプロピレン重合体含有固体三塩化チ
タンを用いて、実施例1の(C)と同様にしてプロピ
レン−エチレンランダム共重合体を製造した。 結果は表1に示した。 実施例1と同様に、第2段の重合は高触媒効率
で粉体性状の良好な共重合体が得られた。 実施例 5 実施例1の(C)において、第1段階の重合開始時
プロピレン重合体含有固体三塩化チタン触媒成分
とともにシリコンオイルKF−96 0.06gを供給
し、第2段階での重合開始時にシリコンオイル
KF−96を添加しなかつた他は、実施例1の(C)と
同様にしてプロピレン−エチレンランダム共重合
体の製造を行なつた。 結果は表1に示した。 第1段階重合での触媒効率、nヘキサン抽出残
分、嵩密度、安息角は何ら変らず実施例1〜4と
同様の値が得られ、第2段階重合での触媒効率、
活性は実施例1〜4と同様に添加しない比較例1
に比べて大幅に向上し、粉体性状の良好な共重合
体が得られた。 実施例 6 (A) 実施例1の(C)において、別に70℃に加熱し、
精製窒素で内圧を5Kg/cm2に保持しながら精製
窒素を5/分で流通しているオートクレーブ
に実施例1と同様にして重合した第1段重合終
了後のプロピレン−エチレン共重合体スラリー
を回分で少量ずつ供給し、プロピレンをフラツ
シユ・パージした。供給終了後精製窒素雰囲気
下でフラツシユ後の共重合体47gをサンプリン
グした。 第1段の重合槽に残つた共重合体は103gで
あつた。 (B) 次いで共重合体を移送したオートクレーブ
に、水素を所定量吹込みシリコンオイルKF−
96 0.06gをエチレン−プロピレンの所定濃度
の混合ガスで圧入した。圧力を25Kg/cm2に保ち
ながら70℃で1時間気相重合反応を続けた。気
相の組成は、所定濃度になるようにガスクロマ
トグラフイーで分析しながらエチレン又はプロ
ピレンを追加フイードし制御した。 反応終了後未反応モノマーガスをパージし、
241gのプロピレン−エチレンランダム共重合
体を得た。 重合条件及び各種測定結果を第1表に示し
た。 第1段重合終了後の共重合体のCEは12930、
最終の共重合体のCEは17980であり、気相重合
による共重合体のCEは5050、活性は5050であ
つた。 第1段重合終了後の共重合体のエチレン含有
量は4.1重量%、n−ヘキサン抽出残分は96.6
重量%、嵩密度は0.45g/cm3、安息角度は36度
であり、最終の共重合体のエチレン含有量5.3
重量%、n−ヘキサン抽出残分86.2重量%、嵩
密度0.46g/cm3、安息角度37度であつた。 実施例 7 実施例1の(C)に於いて、、第1段の重合を共重
合する代わりにプロピレンのみの重合を行なつ
た。重合は温度70℃で2時間行ない、重合終了後
プロピレンをパージし、重合体粉末を55gサンプ
リングした。 次いで実施例1の(C)の第2段の共重合と同様に
水素を所定量フイード後、ケイ素化合物として、
信越化学社製のシリコンオイルKF−96 0.06gを
プロピレン、エチレン混合ガスで圧入した。圧力
25Kg/cm3、重合温度70℃に保ち2.5時間気相重合
を行なつた。 気相の組成は所定濃度になる様にガスクロマト
グラフイーで分析しながら、エチレン又はプロピ
レンを追加フイードし制御した。 共重合終了後未反応ガスをパージし480gの共
重合体を得た。 この結果を第2表に示した。 第2段目の活性は実施例1〜6と同様に高く、
粉体性状も良好な共重合体であつた。 実施例 8 実施例1の(C)で行なつたと同様にして第1段の
共重合を行ない、2段目の共重合を気相で行なう
に際しシリコンオイルKF−96を0.06g添加し、
実施例1の(C)と同等のガス組成で重合温度70℃で
3時間共重合を行なつた。共重合終了後混合ガス
をパージし共重合体を得た。 結果は第2表に示した。第2段の共重合量の分
率を50%としたが、粉体性状は液体プロピレン中
で共重合した場合に比べて良好であり、触媒効率
も高く、高活性が得られた。 実施例 9 実施例1の(C)で行なつたと同様にして第1段の
共重合を行なつた(但し、触媒量は35mg、ジノル
マルプロピルアルミニウムクロライド2.3mmol、
メタアクリル酸メチル0.05mmol)が、気相組成
のエチレン分率は実施例1の(C)の約1/2とし、重
合温度60℃で1時間共重合を行なつた。 第1段終了後未反応プロピレン、エチレン、水
素をパージし、精製窒素雰囲気下、共重合体粉末
50gをサンプリングした。 以後実施例1の(C)の第2段の共重合と同様にシ
リコンオイルKF−96 0.06g及び水素、プロピレ
ン、エチレンを所定の組成になる様に吹込み、重
合温度70℃で3時間共重合を行なつた。共重合終
了後混合ガスをパージし、共重合体を得た。 結果は第2表に示した。第2段の共重合体の分
率を71.5重量%としたが、粉体性状の大幅な悪化
は見られず良好であり、かつ触媒効率も高く、高
活性が得られた。 実施例 10 (A) 固体三塩化チタン触媒成分の製造 充分に窒素置換した容量100のオートクレー
ブにトルエン50および四塩化チタン50mol、ジ
−n−ブチルエーテル50molを添加する。これを
撹拌下25℃に保持しつつ、ジエチルアルミニウム
クロライド25molを添加し、褐色の均一溶液を得
た。 次いで40℃に昇温し30分経過した時点から紫色
の微粒状の固体の析出が認められるが、そのまま
40℃で2時間保持した。 次いで96℃に昇温し、さらに約1時間保持した
後、粒状紫色固体を分離しn−ヘキサンで洗浄し
て約8000gの固体三塩化チタンを得た。 次に充分に窒素置換した容量200のオートク
レーブにn−ヘキサン125を仕込み、撹拌下に
ジ−n−プロピルアルミニウムクロライド16mol
および上記固体三塩化チタン系触媒錯体をTiCl3
量が2500gとなる様に仕込んだ。次いで内温を30
℃に調節し撹拌下、プロピレンガスの吹込みを開
始して重合したプロピレンが12500gになるまで
プロピレンガスの吹込みを続けた。しかる後、固
体を分離し、、n−ヘキサンで繰り返し洗浄し、
ポリプロピレン含有三塩化チタン(チタン含有固
体触媒成分)を得た。 (B) プロピレン−エチレンランダム共重合体の製
造 容量1500の撹拌機付き反応槽、容量700の
ラセン型撹拌機付き気相反応器を直列に連結して
なる装置を用いた。 第1番目の反応槽では液体プロピレンを溶媒と
して用い、上記(A)で得たチタン含有固体触媒成
分、共触媒としてジエチルアルミニウムクロライ
ド、第3成分としてメタクリル酸メチル、分子量
調節剤としてH2ガス、共重合単量体としてエチ
レンを所定の割合で連続的に反応槽に供給し、重
合温度60℃、溜留時間3時間になる様にプロピレ
ンの供給量を調節して、プロピレン−エチレンの
ランダム共重合体を製造した。 上記重合体スラリーは、連続的に、第2番目の
気相反応器に供給し、反応器の圧力を25Kg/cm2
ガス組成で(エチレン/エチレン+プロピレン)
がガスクロ分析で4mol%になる様に調節しなが
ら、水素、エチレン、プロピレン混合ガスを循環
して気相重合を行なつた。 気相反応器の温度は、70℃になる様に循環混合
ガスの温度で調節した。又ポリマーの滞留時間は
1.5時間になる様に滞留量を調節しながら連続的
に抜き出し、粉末状の共重合体を得た。 気相重合器にフイードする混合ガスには、信越
化学社製のシリコンオイルKF−96のn−ヘキサ
ン希釈液として第1番目の反応器から、第2番目
の反応器に供給するプロピレン共重合体に対して
シリコンオイルの量が200ppmになる様に連続的
に供給した。 第1番目の重合槽で生成する共重合体のエチレ
ン含有量は、4重量%になる様にエチレンとプロ
ピレンの組成をガスクロ分析しながら調節し、第
2番目の気相重合で生成する共重合体のエチレン
含有量は、8重量%になる様にガス組成を分析し
ながら調節した。 この様にして連続運転を15日間行ない、この間
第1,第2反応器ともに付着トラブルもなく、安
定運転ができた。運転終了後、気相反応器を開放
し点検したが、器壁等への付着はなく塊状物の生
成も見られなかつた。 連続運転中の活性等代表的な値を第3表に示し
た。 比較例 4 実施例6の(A)と同様にして得た固体三塩化チタ
ン触媒成分を用いて、実施例6の(B)で使用したシ
リコンオイルを添加しなかつた他は、実施例6の
(B)と同様にして連続重合を行なつた。 結果は第2表に示した。 ケイ素化合物を使用しなかつたため、気相重合
器での触媒効率は小さく、得られた共重合体中の
エチレン含有量も少なく、ランダム共重合体の特
質は実施例9に比べて悪かつた。
【表】
【表】
【表】
〔発明の効果〕
本発明によると、高いかさ密度と良好なすべり
性を有する重合体粒子を高活性で安定に得られる
ため工業的に有用である。
【図面の簡単な説明】
図1は、本発明の一態様を示すフローチヤート
図である。

Claims (1)

  1. 【特許請求の範囲】 1 チタン化合物と有機アルミニウム化合物とを
    主成分とする立体特異性触媒系を用い、 (イ) 第1段階において、不活性溶媒又は液化プロ
    ピレンの存在下、プロピレンの単独重合又はエ
    チレン含有量5重量%以下のプロピレン−エチ
    レンランダム共重合を全重合量に対し5〜95重
    量%となるように行ない、 (ロ) 第2段階において、気相下でプロピレンとエ
    チレンのランダム共重合を全重合量に対し95〜
    5重量%となるように行なつて、エチレン含有
    量が10重量%以下のプロピレン−エチレンラン
    ダム共重合体を製造する方法であつて、第2段
    の共重合を行う際に一般式 【式】(但し、R1,R2は水素原子又は 炭素1〜20のアルキル基、アリール基、アルコキ
    シ基又はアリールオキシ基、あるいはハロゲン原
    子を表わし、nは3〜3000である)で表わされる
    ケイ素化合物を存在させることを特徴とするプロ
    ピレン共重合体の製造法。 2 エチレン含有量が4重量%以上〜10重量%以
    下であることを特徴とする特許請求範囲第1項記
    載の製造法。 3 立体特異性触媒系が、三塩化チタンとジアル
    キルアルミニウムクロライドを主成分とすること
    を特徴とする特許請求範囲第1項又は第2項記載
    の製造法。 4 立体特異性触媒系がアルミニウム含有量がチ
    タンに対するアルミニウムの原子比で0.15以下で
    あつて、かつ錯化剤を含有する固体三塩化チタン
    系触媒錯体と有機アルミニウム化合物とを主成分
    とする触媒系であることを特徴とする特許請求の
    範囲第1項又は第2項記載の製造法。
JP31011286A 1986-12-29 1986-12-29 プロピレン共重合体の製造法 Granted JPS63168414A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31011286A JPS63168414A (ja) 1986-12-29 1986-12-29 プロピレン共重合体の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31011286A JPS63168414A (ja) 1986-12-29 1986-12-29 プロピレン共重合体の製造法

Publications (2)

Publication Number Publication Date
JPS63168414A JPS63168414A (ja) 1988-07-12
JPH0317847B2 true JPH0317847B2 (ja) 1991-03-11

Family

ID=18001321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31011286A Granted JPS63168414A (ja) 1986-12-29 1986-12-29 プロピレン共重合体の製造法

Country Status (1)

Country Link
JP (1) JPS63168414A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60106219T2 (de) * 2001-06-27 2006-03-09 Borealis Technology Oy Propylen-Copolymer mit zufälliger Comonomerverteilung und Verfahren zu seiner Herstellung
US7390575B2 (en) 2003-10-31 2008-06-24 Japan Polypropylene Corporation Propylene-ethylene random block copolymer and biaxially oriented multi-layer film using the same as a surface layer
JP6268720B2 (ja) * 2013-03-06 2018-01-31 日本ポリプロ株式会社 プロピレン系ブロック共重合体の製造方法

Also Published As

Publication number Publication date
JPS63168414A (ja) 1988-07-12

Similar Documents

Publication Publication Date Title
KR940004124B1 (ko) 지글러-나타 촉매와 2개의 유기금속 화합물을 이용한 올레핀의 중합방법
US4339557A (en) Process for producing propylene-ethylene block copolymer
JPH0796564B2 (ja) オレフインのガス流動床三元共重合方法
JPS5847402B2 (ja) 成形用重合体組成物およびその製法
CA1293497C (en) Process for producing alpha-olefin polymer
KR940006454B1 (ko) α-올레핀 블럭 공중합체의 제조방법
NO153968B (no) Fremgangsmaate for fremstilling av en fast titantrikloridakatalysator, egnet for fremstilling av hoeykrystallinske olefinpolymer.
EP0014306A2 (en) Catalyst, catalyst composition and process for the polymerization of olefins
JPH0317847B2 (ja)
EP0029651A1 (en) Process for producing propylene-ethylene block copolymer
JP2777828B2 (ja) エチレン重合体の製法
RU2083611C1 (ru) Термопластичная полиолефиновая композиция, способ ее получения
JP2917412B2 (ja) プロピレン系共重合体の製造法
US4211671A (en) Olefin polymerization catalyst
JPH0317846B2 (ja)
JPH0562885B2 (ja)
JPH0244846B2 (ja)
JP3181704B2 (ja) ポリオレフィンの架橋成形物の製造方法
JP2568215B2 (ja) プロピレン系重合体の製造方法
JPS6239165B2 (ja)
JPH01165645A (ja) ポリプロピレン樹脂組成物の製造方法
JPH0347644B2 (ja)
JPS6241178B2 (ja)
JPH0580496B2 (ja)
JPH061817A (ja) プロピレンブロック共重合体の製造方法