JPH03177592A - Device for electrochemically transporting oxygen - Google Patents

Device for electrochemically transporting oxygen

Info

Publication number
JPH03177592A
JPH03177592A JP1313484A JP31348489A JPH03177592A JP H03177592 A JPH03177592 A JP H03177592A JP 1313484 A JP1313484 A JP 1313484A JP 31348489 A JP31348489 A JP 31348489A JP H03177592 A JPH03177592 A JP H03177592A
Authority
JP
Japan
Prior art keywords
oxygen
water
gas
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1313484A
Other languages
Japanese (ja)
Inventor
Hiroyo Matsumoto
松本 曠世
Hitoshi Miyamoto
均 宮本
Shuichi Sato
秀一 佐藤
Hiroaki Matsumoto
浩明 松本
Kazuhide Kamimura
一秀 上村
Hisashi Kudo
工藤 寿士
Tatsuji Sato
佐藤 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Japan Storage Battery Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1313484A priority Critical patent/JPH03177592A/en
Publication of JPH03177592A publication Critical patent/JPH03177592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PURPOSE:To selectively transport concd. pure oxygen to oxygen utilizing equipment from an oxygen-contg. gas source by using an electrochemical cell divided into a cathode chamber and an anode chamber by the cation-exchange membrane. CONSTITUTION:The electrochemical cell main body 4 is divided into an anode chamber 8 provided with an anode collector 10 and a cathode chamber 5 furnished with a cathode collector 7 by a cation-exchange membrane 1 with an anode 9 bonded to one side and a cathode 6 to the other side. The main body 4, oxygen-contg. gas source 1 (closed structure) and oxygen utilizing equipment are connected to the second dehumidifier 18, gas-liq. separator 14, first dehumidifier 15 and water tank 17. Consequently, oxygen alone is selectively transported from the source 1, and oxygen having 99.9% purity is transported to the oxygen utilizing equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気化学的に酸素を選択的に分離して酸素を輸
送する装置に関する。さらに詳しくは、密閉された植物
栽培装置内で植物が発生する酸素を選択的に装置外に取
り出す装置、藻類培養装置で藻が発生する酸素を選択的
に装置外に取り出す装置、水中から酸素を水中構造物内
に取り入れる装置、地下都市のような閉鎖空間において
、密閉された構造物内で植物又は藻が発生する酸素を人
間が居住する空間に選択的に輸送する装置、及び宇宙ス
テーション又は宇宙基地のような宇宙の閉鎖空間におい
て、密閉された構造物内で植物又は藻が発生する酸素を
人間が居住する空間又は動物が生育する空間に選択的に
輸送する装置などに有利に適用することができる電気化
学的に酸素を選択的に分離して酸素を輸送する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for selectively separating oxygen electrochemically and transporting oxygen. In more detail, we have a device that selectively extracts oxygen generated by plants in a sealed plant cultivation device, a device that selectively extracts oxygen generated by algae in an algae cultivation device, and a device that selectively extracts oxygen generated by algae in an algae cultivation device. Devices for introducing oxygen into underwater structures, devices for selectively transporting oxygen generated by plants or algae in closed structures such as underground cities to spaces inhabited by humans, and space stations or outer space. Advantageously applied to a device that selectively transports oxygen generated by plants or algae in a closed structure in a closed space such as a base to a space where humans live or animals grow. This invention relates to a device that selectively separates oxygen electrochemically and transports oxygen.

〔従来の技術〕[Conventional technology]

従来は酸素を含む気体を吸着剤と接触させて酸素を該吸
着剤に吸着させ、酸素吸着量が飽和に達すると吸着剤を
加熱して酸素を脱着させて選択的に酸素を採取して移動
させていた。
Conventionally, a gas containing oxygen is brought into contact with an adsorbent to adsorb oxygen onto the adsorbent, and when the amount of oxygen adsorbed reaches saturation, the adsorbent is heated to desorb the oxygen and selectively collect and transfer oxygen. I was letting it happen.

従来技術の例を第9図を用いて説明する。例えば、酸素
を含む気体の入った密閉された構造物1から送風機3に
より気体を吸着剤101の入った吸着塔102を送り込
み、酸素だけを吸着剤101に吸着させ、吸着されなか
った気体は弁103を通して密閉された構造物1に戻す
An example of the prior art will be explained using FIG. 9. For example, a blower 3 sends the gas from a sealed structure 1 containing oxygen-containing gas to an adsorption tower 102 containing an adsorbent 101, so that only oxygen is adsorbed by the adsorbent 101, and the unadsorbed gas is removed by a valve. 103 and back into the closed structure 1.

酸素吸着量が飽和に達すると送風機3を止め、弁103
及び弁104を閉め、弁105を開けてから吸着塔10
2を約90℃に加熱して酸素を脱着させる。脱着した酸
素は弁105を通して外へ排出する。酸素の脱着が終了
すると吸着塔102を約20℃まで冷やす。以上の操作
を繰り返すことにより、酸素を密閉された構造物1から
排出させていた。(特公昭56−35488号) 〔発明が解決しようとする課題〕 従来の技術では加熱・冷却を繰り返すために吸着剤が劣
化し、有害ガスを発生することがあり、脱着した酸素は
吸着塔に残留する気体を同伴して出てくるので純粋な酸
素を取得することは困難であった。また、酸素の吸M量
を測定する適当な手段がないため、吸脱着はあらかじめ
設定した時間に従って一義的に繰り返すので、輸送すべ
き酸素量が変化した場合に柔軟に対応することができな
かった。
When the amount of oxygen adsorption reaches saturation, the blower 3 is stopped and the valve 103 is closed.
After closing the valve 104 and opening the valve 105, the adsorption tower 10
2 to about 90° C. to desorb oxygen. The desorbed oxygen is exhausted to the outside through valve 105. When the desorption of oxygen is completed, the adsorption tower 102 is cooled to about 20°C. By repeating the above operations, oxygen was discharged from the sealed structure 1. (Special Publication No. 56-35488) [Problems to be Solved by the Invention] In the conventional technology, the adsorbent deteriorates due to repeated heating and cooling, and harmful gases may be generated. It has been difficult to obtain pure oxygen because it comes out with residual gases. Furthermore, since there is no suitable means for measuring the amount of absorbed M of oxygen, adsorption and desorption are uniquely repeated according to a preset time, making it impossible to respond flexibly to changes in the amount of oxygen to be transported. .

本発明は上記技術水準に鑑み、合目的に酸素発生(又は
含有〉源より酸素を選択的に輸送する装置を提供しよう
とするものである。
In view of the above state of the art, the present invention aims to provide a device for selectively transporting oxygen from an oxygen generating (or containing) source.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、 ■片面に陽極、他面に陰極を接合したカチオン交換膜に
よって陽極集電体を備えた陽極室と陰極集電体を備えた
陰極室とに分割された電気化学的セル本体部、 ■上記セル本体部の陽極室と連通する水タンク及び上記
セル本体部の陰極室と送風手段を介して連通ずる酸素含
有ガス発生源、 ■上記陽極室で発生する酸素含有水をポンプ、気液分離
装置及び第1除湿装置を備えた配管を介して脱水、脱湿
酸素を供給される酸素利用設備、 ■上記陽極室で発生する脱酸素水分含有ガスを除湿する
第2除湿装置、 ■上記第2除湿装置で分離された脱酸素脱水分ガス及び
水を夫々回収する手段、 ■上記気液分離装置及び第1除湿装置で分離された水並
びに上記第2除湿装置で分離された水を上記水タンクに
移送する手段 よりなることを特徴とする酸素含有ガス源から酸素利用
設備に電気化学的に酸素を輸送する装置である。
The present invention has the following features: (1) An electrochemical cell main body divided into an anode chamber equipped with an anode current collector and a cathode chamber equipped with a cathode current collector by a cation exchange membrane with an anode bonded to one side and a cathode bonded to the other surface. , ■ A water tank communicating with the anode chamber of the cell main body and an oxygen-containing gas generation source communicating with the cathode chamber of the cell main body via a ventilation means; ■ A pump and air source for the oxygen-containing water generated in the anode chamber. Oxygen utilization equipment to which dehydration and dehumidification oxygen is supplied via piping equipped with a liquid separation device and a first dehumidification device, ■ a second dehumidification device that dehumidifies the deoxygenated water-containing gas generated in the anode chamber, ■ the above means for recovering the deoxygenated and dehydrated gas and water separated in the second dehumidifying device, respectively; A device for electrochemically transporting oxygen from an oxygen-containing gas source to an oxygen utilization facility, comprising means for transporting oxygen to a water tank.

そして、後記実施例に具体的に示すように、本発明の上
記構成の電気化学的に酸素を輸送する装置は上記構成に
その目的に応じて種々の改変をなしつるものである。
As specifically shown in the Examples below, the apparatus for electrochemically transporting oxygen having the above structure of the present invention has various modifications to the above structure depending on the purpose.

〔作 用〕[For production]

本発明の主要な構成要素であるカチオン交換膜を固体電
解質とする電気化学的酸素輸送装置の電極反応は次の通
りである。
The electrode reaction of an electrochemical oxygen transport device using a cation exchange membrane as a solid electrolyte, which is a main component of the present invention, is as follows.

陰極: 02+ 48”+ 4 e−−+  2820
陽極+ 2 H2O→02+ 48” + 4 e従っ
て、酸素を含む気体はセル本体部の陰極室に供給し、陰
極で酸素は水素イオンと反応して水を生成する。一方、
陽極では水から酸素が生威し、該酸素が輸送される酸素
として排出される。陽極での反応で生成したH+はカチ
オン交換膜を通り、e−は配線を通って陰極に移動して
酸素と反応して水になる。
Cathode: 02+ 48"+ 4 e--+ 2820
Anode + 2 H2O → 02+ 48" + 4 e Therefore, the gas containing oxygen is supplied to the cathode chamber of the cell body, and at the cathode oxygen reacts with hydrogen ions to produce water. On the other hand,
At the anode, oxygen is produced from the water and is discharged as transported oxygen. H+ generated by the reaction at the anode passes through the cation exchange membrane, and e- moves through the wiring to the cathode where it reacts with oxygen and becomes water.

鉄水は酸素が減少した気体と共にセル本体部の陰極室か
ら排出されて、第2除湿装置に供給される。第2除湿装
置にて陰極での反応で生成した水を除去して気体は脱酸
素気体排出管から排出される。除去された水は陽極へ供
給する水を貯蔵する水タンクに返送される。
The iron water is discharged from the cathode chamber of the cell main body together with the oxygen-depleted gas and supplied to the second dehumidifier. The water produced by the reaction at the cathode is removed in the second dehumidifier, and the gas is discharged from the deoxidized gas discharge pipe. The removed water is returned to a water tank that stores water for supply to the anode.

一方、陽極で発生した酸素は水と共にセル本体部の陽極
室から排出され、気液分離装置に送られる。該気液分離
装置において酸素は水蒸気と共に気体として除去され、
続いて第1除湿装置により水蒸気を除去した後、酸素排
出管から排出される。気液分離装置で酸素から分離され
た水及び第1除湿装置で除去された水は、前記水タンク
に送られ、該水タンクに一旦貯蔵されてから再びセル本
体部の陽極室に供給される。
On the other hand, oxygen generated at the anode is discharged from the anode chamber of the cell main body together with water and sent to the gas-liquid separator. In the gas-liquid separator, oxygen is removed as a gas together with water vapor,
Subsequently, after water vapor is removed by the first dehumidifier, it is discharged from the oxygen exhaust pipe. The water separated from oxygen by the gas-liquid separator and the water removed by the first dehumidifier are sent to the water tank, temporarily stored in the water tank, and then supplied to the anode chamber of the cell main body again. .

このように、酸素分離装置に供給された気体中の酸素は
、陰極で電気的反応により一旦水になってから陽極で酸
素に戻り排出される。
In this way, oxygen in the gas supplied to the oxygen separation device is converted into water by an electrical reaction at the cathode, and then returned to oxygen at the anode and is discharged.

本発明では、比抵抗が5MΩ・cm (導電率0.2μ
S/cm)以上の水を使用すれば上記反応だけが進行し
、有害ガスが発生することはない。
In the present invention, the specific resistance is 5MΩ・cm (the electrical conductivity is 0.2μ
If water with a temperature of S/cm or higher is used, only the above reaction will proceed and no harmful gas will be generated.

上記反応式から明らかなように、セル本体部から排出さ
れる気体は酸素及び水蒸気だけであるので、水蒸気を十
分除去すれば99.9%以上の純粋な酸素を排出するこ
とが可能である。また、酸素輸送量は電流と完全に比例
しており、21〇−02/ A−hrという関係がある
。従って酸素輸送量は電流を変化させることにより制御
することができる。
As is clear from the above reaction equation, since the gases discharged from the cell body are only oxygen and water vapor, it is possible to discharge 99.9% or more pure oxygen if water vapor is sufficiently removed. Furthermore, the amount of oxygen transported is completely proportional to the current, and there is a relationship of 210-02/A-hr. Therefore, the amount of oxygen transported can be controlled by changing the current.

陽極室で発生した酸素は水と共に気液分離装置に送られ
る。該気液分離装置において気体である酸素は水と分離
される。鉄水は水を一時貯蔵する水タンクに送る。水と
分離した上記酸素は飽和濃度の水蒸気を含んでいるので
99.9%以上の純粋な酸素を得るために、又、水の損
失を最小にするために、酸素は第1除湿装置に送られる
。該第1除湿装置において水蒸気を除去し、純粋な酸素
を排出する。該第1除湿装置において除去された水蒸気
は液体となって上記水タンクに送られる。
Oxygen generated in the anode chamber is sent to the gas-liquid separator along with water. In the gas-liquid separator, gaseous oxygen is separated from water. Iron water is sent to a water tank where water is temporarily stored. Since the oxygen separated from the water contains water vapor at a saturated concentration, in order to obtain more than 99.9% pure oxygen and to minimize water loss, the oxygen is sent to the first dehumidifier. It will be done. The first dehumidifier removes water vapor and exhausts pure oxygen. The water vapor removed in the first dehumidifier becomes a liquid and is sent to the water tank.

陰極室では電気化学反応により水が発生する。Water is generated in the cathode chamber by an electrochemical reaction.

鉄水は脱酸素された気体と共に第2除湿装置に送られる
。該第2除湿装置において水は脱酸素された気体と分離
され、上記水タンクに送られる。このように、第1及び
第2除湿装置に於て陽極室及び陰極室で失われた水は回
収されて、水タンクに戻され、電気化学的酸素輸送装置
からの水の損失を防ぐ。除湿後の脱酸素された気体は上
記第2除湿装置から脱酸素気体排出管より排出される。
The iron water is sent to the second dehumidifier together with the deoxygenated gas. In the second dehumidifier the water is separated from the deoxygenated gas and sent to the water tank. In this manner, water lost in the anode and cathode chambers in the first and second dehumidifiers is recovered and returned to the water tank, preventing water loss from the electrochemical oxygen transport device. The deoxygenated gas after dehumidification is discharged from the second dehumidifier through the deoxygenated gas exhaust pipe.

〔実施例1〕 第1図は本発明の実施例1にかかる密閉された構造物1
から酸素だけを選択的に取り出す装置の概念図を示す。
[Example 1] Figure 1 shows a sealed structure 1 according to Example 1 of the present invention.
This shows a conceptual diagram of a device that selectively extracts only oxygen from.

密閉された構造物1の気体は気体取込管2を通って送風
機によりセル本体部4の陰極室5に送られる。セル本体
部4は陰極室5、酸素を選択的に電解還元し得る陰極6
、陰極集電体7、陽極室8、酸素発生電極として働く陽
極9、陽極集電体10、陰極室5と陽極室8とを物理的
に分割し水素イオンを輸送する性質をもつカチオン交換
膜11及びセル枠体12からなる。
The gas in the sealed structure 1 is sent to the cathode chamber 5 of the cell main body 4 through the gas intake pipe 2 by a blower. The cell main body 4 includes a cathode chamber 5 and a cathode 6 that can selectively electrolytically reduce oxygen.
, a cathode current collector 7, an anode chamber 8, an anode 9 serving as an oxygen generating electrode, an anode current collector 10, a cation exchange membrane having the property of physically dividing the cathode chamber 5 and anode chamber 8 and transporting hydrogen ions. 11 and a cell frame 12.

上記陽極室8は水で満たされている。The anode chamber 8 is filled with water.

陰極集電体7と陽極集電体10との間に直流電流を通電
することにより陽極9において水が電気分解されて酸素
及び水素イオンが発生する。
By passing a direct current between the cathode current collector 7 and the anode current collector 10, water is electrolyzed at the anode 9 to generate oxygen and hydrogen ions.

該水素イオンはカチオン交換膜11を通って陰極室5に
移動し、陰極室5に送られた気体に含まれる酸素と陰極
6で電解還元反応して水を生成する。
The hydrogen ions move to the cathode chamber 5 through the cation exchange membrane 11, undergo an electrolytic reduction reaction with oxygen contained in the gas sent to the cathode chamber 5 at the cathode 6, and produce water.

陽極9において発生した酸素は陽極室8を満たす水と共
にポンプ13により気液分離装置14に送られる。気液
分離装置14において気体である酸素は水と分離される
。該酸素は飽和濃度の水蒸気を含んでおり、第1の除湿
装置15に送られる。第1の除湿装置15において水蒸
気は完全に取り除かれ、純粋の酸素が酸素排出管16よ
り排出される。第1の除湿装置15において取り除かれ
た水蒸気は液体となり、気液分離装置14で酸素と分離
された水と共に水タンク17に送られる。水と水タンク
17に一旦貯蔵されてから、押し出されて再びセル本体
84の陽極室8に送られる。
Oxygen generated at the anode 9 is sent together with water filling the anode chamber 8 to a gas-liquid separator 14 by a pump 13. In the gas-liquid separator 14, gaseous oxygen is separated from water. The oxygen contains water vapor at a saturated concentration and is sent to the first dehumidifier 15. Water vapor is completely removed in the first dehumidifier 15 and pure oxygen is discharged from the oxygen discharge pipe 16. The water vapor removed in the first dehumidifier 15 becomes a liquid and is sent to the water tank 17 together with water separated from oxygen in the gas-liquid separator 14. After being temporarily stored in the water tank 17, the water is pushed out and sent to the anode chamber 8 of the cell body 84 again.

一方、陰極室5に送られた気体は陰極5で電解還元反応
により生成した水と共に第2の除湿装置18に送られる
。第2の除湿装置18において水を除去し、脱酸素され
た気体は脱酸素気体排出管19より密閉された構造物1
に返送される。第2の除湿装置18において反応により
生成した水は回収され、この水も水タンク17に送られ
る。
On the other hand, the gas sent to the cathode chamber 5 is sent to the second dehumidifier 18 together with water generated by an electrolytic reduction reaction at the cathode 5. Water is removed in the second dehumidifier 18 and the deoxygenated gas is discharged from the deoxidized gas discharge pipe 19 to the sealed structure 1.
will be returned to. The water produced by the reaction in the second dehumidifier 18 is recovered, and this water is also sent to the water tank 17.

密閉された構造物1の中に酸素発生源があり、かつ酸素
濃度制御が必要な場合は密閉された構造物1に酸素濃度
センサ20を取り付け、電流制御装置21により陰極集
電体7と陽極集電体10との間の電流を調整して酸素輸
送量を制御し、密閉された構造物1内の酸素濃度を制御
する。
If there is an oxygen generation source in a sealed structure 1 and oxygen concentration control is required, an oxygen concentration sensor 20 is attached to the sealed structure 1, and a current control device 21 is used to connect the cathode current collector 7 and the anode. The amount of oxygen transported is controlled by adjusting the current between the current collector 10 and the oxygen concentration within the sealed structure 1.

セル本体部4での電極反応は電流密度50mA/cm”
以上で安定している。循環水温度40℃、大気を4〜6
i!/minで供給するという条件では、陽極9として
有効電極面積100 cm’の白金電極を使用する場合
、電流密度50〜200mA/cm2で電圧では1.2
〜1.5V(第2図A)酸素輸送量は1.05〜4.2
110./ hrであり、陽極9として有効電極面積1
00 cm’のイリジウム電極を使用する場合、電流密
度50〜300mΔ/cm’で電圧では0.75〜1,
2V(第2図B)酸素輸送量は1.05〜13,31[
l□/hrである。例えば、標準とする酸素輸送量が3
fO□/hrの場合、陽極9として有効電極面積100
 Cm”のイリジウム電極を使用すると35〜210%
の範囲で酸素輸送量を調整できるので、密閉された構造
物lの中で植物栽培又は藻類培養のような酸素発生速度
が変動する酸素発生源がある場合に特にこの実施例1は
有効である。酸素輸送量が能力の35%未満の場合は、
陰極集電体7と陽極集電体10との間のスイッチ22の
開閉により調整すればよい。
The electrode reaction in the cell main body 4 is at a current density of 50 mA/cm"
The above is stable. Circulating water temperature 40℃, atmospheric temperature 4-6
i! /min, when using a platinum electrode with an effective electrode area of 100 cm' as the anode 9, the current density is 50 to 200 mA/cm2 and the voltage is 1.2
~1.5V (Figure 2 A) Oxygen transport amount is 1.05~4.2
110. / hr, and the effective electrode area 1 as anode 9
When using an iridium electrode of 00 cm', the current density is 50 to 300 mΔ/cm' and the voltage is 0.75 to 1,
2V (Figure 2B) oxygen transport amount is 1.05 to 13,31[
l□/hr. For example, the standard oxygen transport amount is 3
In the case of fO□/hr, the effective electrode area is 100 as the anode 9.
35 to 210% when using an iridium electrode of Cm"
Since the amount of oxygen transport can be adjusted within the range of . If oxygen transport is less than 35% of capacity,
The adjustment may be made by opening and closing a switch 22 between the cathode current collector 7 and the anode current collector 10.

〔実施例2〕 第3図は本発明の実施例2にかかる出口側密閉された構
造物23に酸素だけを選択的に送り込む機構の概念図を
示す。
[Embodiment 2] FIG. 3 shows a conceptual diagram of a mechanism for selectively sending only oxygen into the outlet-side sealed structure 23 according to Embodiment 2 of the present invention.

第1図の実施例1との違いは実施例1では密閉構造物の
中の気体から酸素だけを選択的に取り出していたのに対
し、実施例2では酸素排出管16の先に密閉された構造
物を取り付け、酸素だけを選択的に出口側密閉された構
造物23の中に送り込むようにした点のみであり、その
他の構成・は実施例1と同じである。
The difference from Embodiment 1 shown in FIG. The only difference is that a structure is attached and only oxygen is selectively sent into the structure 23 sealed on the outlet side, and the other configurations are the same as in Example 1.

出口側密閉された構造物23の中に酸素消費源があり、
かつ酸素濃度制御が必要な場合は出口側密閉された構造
物23に酸素濃度センサ20を取り付け、電流制御装置
21により陰極集電体7と陽極集電体10との間の電流
を導整して酸素輸送量を制御し、出口側密閉された構造
物23内の酸素濃度を制御する。35〜210%の範囲
で酸素輸送量を調整できるので、出口側密閉された構造
物23の中で人間が居住又は動物飼育が行われるなど酸
素消費速度が変動する酸素消費源がある場合に特にこの
実施例2の装置は有効である。
There is an oxygen consumption source in the outlet-side sealed structure 23;
In addition, if oxygen concentration control is required, an oxygen concentration sensor 20 is attached to the closed structure 23 on the outlet side, and the current between the cathode current collector 7 and the anode current collector 10 is regulated by the current control device 21. to control the amount of oxygen transported and the oxygen concentration within the closed structure 23 on the outlet side. Since the oxygen transport amount can be adjusted in the range of 35 to 210%, this is especially useful when there is an oxygen consuming source whose oxygen consumption rate fluctuates, such as when humans live or animals are kept in the closed structure 23 on the exit side. The device of this second embodiment is effective.

〔実施例3〕 第4図、は本発明の実施例3にかかる密閉された構造物
1から出口側密閉された構造物23に酸素だけを選択的
に送り込む機構の概念図を示す。
[Embodiment 3] FIG. 4 shows a conceptual diagram of a mechanism for selectively sending only oxygen from the sealed structure 1 to the outlet-side sealed structure 23 according to Embodiment 3 of the present invention.

第■図の実施例1及び第3図の実施例2との違いは実施
例1.2では気体取込管2又は酸素排出管16のいずれ
か一方に密閉された構造物を取り付けていたのに対し、
実施例3では気体取込管2及び酸素排出管16の双方に
密閉された構造物を取り付け、密閉された構造物1から
出口側密閉された構造物23に酸素だけを選択的に輸送
するようにした点のみであり、その他の構成は前記実施
例1.2と同じである。
The difference between Embodiment 1 shown in FIG. 3 and Embodiment 2 shown in FIG. For,
In the third embodiment, a sealed structure is attached to both the gas intake pipe 2 and the oxygen discharge pipe 16, and only oxygen is selectively transported from the sealed structure 1 to the outlet-side sealed structure 23. The other configuration is the same as in Example 1.2.

密閉された構造物1の中に酸素発生源があるが、又は出
口側密閉された構造物23の中に酸素消費源があり、か
つ酸素濃度制御が必要な場合は、密閉された構造物1又
は出口側密閉された構造物23に酸素濃度センサ20を
取り付け、電流制御装置21により陰極集電体7と陽極
集電体10との間の電流を調整して酸素輸送量を制御し
、密閉された構造物l内又は出口側密閉された構造物2
3内の酸素濃度を制御する。35〜210%の範囲で酸
素輸送量を調整できるので、密閉された構造物lの中で
植物栽培又は藻類培養のような酸素発生速度が変動する
酸素発生源がある場合、又は、出口側密閉された構造物
23の中で人間が居住又は動物飼育が行われるなど酸素
消費速度が変動する酸素消費源がある場合に特にこの実
施例3の装置は有効である。
If there is an oxygen generation source in the sealed structure 1 or an oxygen consumption source in the outlet-side sealed structure 23 and oxygen concentration control is required, the sealed structure 1 Alternatively, the oxygen concentration sensor 20 is attached to the closed structure 23 on the outlet side, and the current between the cathode current collector 7 and the anode current collector 10 is adjusted by the current control device 21 to control the amount of oxygen transported, and the structure is sealed. inside the structure l or on the exit side sealed structure 2
Control the oxygen concentration within 3. Since the oxygen transport amount can be adjusted in the range of 35 to 210%, it can be used when there is an oxygen generating source whose oxygen generation rate fluctuates, such as plant cultivation or algae cultivation, in a closed structure, or when the outlet side is sealed. The device of the third embodiment is particularly effective when there is an oxygen consumption source whose oxygen consumption rate fluctuates, such as when humans live or animals are kept in the structure 23.

〔実施例4〕 第5図は本発明の実施例4にかかる密閉された構造物l
から出口側密閉された構造物23に酸素だけを選択的に
送り込み、かつ、密閉された構造物1及び出口側密閉さ
れた構造物23の双方で酸素濃度制御を行う場合の概念
図である。
[Example 4] Figure 5 shows a sealed structure l according to Example 4 of the present invention.
FIG. 2 is a conceptual diagram of a case where only oxygen is selectively sent from the outlet side to the closed structure 23 and oxygen concentration is controlled in both the closed structure 1 and the outlet side sealed structure 23.

第4図の実施例3との違いは酸素タンク24を有してい
る点のみであり、その他の構成は実施例3と同じである
The only difference from the third embodiment shown in FIG. 4 is that it includes an oxygen tank 24, and the other configurations are the same as the third embodiment.

密閉された構造物1からセル本体4を経由して輸送され
た酸素は酸素排出管16に設けられた酸素タンク24に
一旦入れられる。出口側密閉された構造物23の酸素濃
度が所定値より低下すると、酸素タンク24の弁25を
開けて酸素を出口側密閉された構造物23に送り込み酸
素濃度を調整する。この実施例4の装置では純粋な酸素
が得られるので酸素タンク24を小さくすることができ
る。
Oxygen transported from the sealed structure 1 via the cell body 4 is temporarily put into an oxygen tank 24 provided in the oxygen exhaust pipe 16. When the oxygen concentration in the outlet-side sealed structure 23 falls below a predetermined value, the valve 25 of the oxygen tank 24 is opened to send oxygen into the outlet-side sealed structure 23 to adjust the oxygen concentration. Since pure oxygen can be obtained in the apparatus of this fourth embodiment, the oxygen tank 24 can be made smaller.

〔実施例5〕 第6図は本発明の実施例5にかかる密閉された構造物1
から出口側密閉された構造物23に酸素だけを選択的に
送り込み、かつ、密閉された構造物1及び出口側密閉さ
れた構造物23の双方で酸素濃度制御を行う場合の概念
図であり、その作用は実施例4と同じである。
[Example 5] Figure 6 shows a sealed structure 1 according to Example 5 of the present invention.
It is a conceptual diagram when only oxygen is selectively sent from the outlet side to the closed structure 23, and the oxygen concentration is controlled in both the closed structure 1 and the outlet side closed structure 23, Its operation is the same as in Example 4.

実施例4との違いは通常は酸素排出管16に設けられて
いる弁26が開いていて密閉された構造物1からセル本
体4を経由して輸送してきた酸素を直接出口側密閉され
た構造物23に送り込み、出口側密閉された構造物23
の酸素濃度が所定値より高くなると弁26を閉め、かつ
、酸素排出管16のバイパス管に設けた弁27を開けて
一旦酸素をバイパス管路上に設けた酸素タンク24に貯
蔵し、出口側密閉された構造物23の酸素濃度が所定値
より低くなると酸素タンク24の弁25を開けて純粋な
酸素をバイパス管を経由して送り込むことにより出口側
密閉された構造物23の酸素濃度を調整するようにした
点のみであり、その他の構成は実施例4と同じである。
The difference from Embodiment 4 is that normally the valve 26 provided in the oxygen discharge pipe 16 is open and the oxygen transported from the sealed structure 1 via the cell body 4 is directly discharged from the closed structure. The structure 23 is fed into the structure 23 and the exit side is sealed.
When the oxygen concentration becomes higher than a predetermined value, the valve 26 is closed, and the valve 27 provided on the bypass pipe of the oxygen discharge pipe 16 is opened to temporarily store oxygen in the oxygen tank 24 provided on the bypass pipe, and the outlet side is sealed. When the oxygen concentration in the closed structure 23 becomes lower than a predetermined value, the valve 25 of the oxygen tank 24 is opened and pure oxygen is sent through the bypass pipe to adjust the oxygen concentration in the closed structure 23 on the outlet side. This is the only difference, and the other configurations are the same as in the fourth embodiment.

この実施例5の装置では純粋な酸素が得られるので酸素
タンク24を更に小さくすることができる。
Since pure oxygen can be obtained in the apparatus of this fifth embodiment, the oxygen tank 24 can be made even smaller.

〔実施例6.〕 第7rgJは本発明の実施例6にかかる装置であって、
酸素を含んだ水から酸素だけを選択的に取り出す装置の
概念図を示す。
[Example 6. ] No. 7 rgJ is the device according to Example 6 of the present invention,
A conceptual diagram of a device that selectively extracts only oxygen from oxygen-containing water is shown.

35は水中と酸素輸送装置を設置する空間とを区分する
仕切りを示す。水中28からポンプ29により水をガス
透過部30に送る一方、気体タンク31から送風機3に
より気体をガス透過部30に送り、ガス透過部30にお
いて水に含まれる酸素を気体に移し、該酸素の増えた気
体をセル本体部4に送るようにしたものでありセル本体
部4以降の構成は第1図の実施例1と同様である。
35 indicates a partition that separates the water from the space in which the oxygen transport device is installed. Water is sent from the submersible 28 to the gas permeation part 30 by the pump 29, while gas is sent from the gas tank 31 to the gas permeation part 30 by the blower 3, and the oxygen contained in the water is transferred to gas in the gas permeation part 30. The increased gas is sent to the cell main body 4, and the structure after the cell main body 4 is the same as that of the first embodiment shown in FIG.

セル本体部4に送られた気体は脱酸素された気体となっ
て脱酸素気体排出管19を通って気体タンク31に戻る
。ガス透過部30において脱酸素された水は脱酸素水排
出管36より水中28に排出される。水中28に酸素発
生源があり、かつ酸素濃度制御が必要な場合は水中28
に酸素濃度センサ20を取り付け、電流制御装置21に
より陰極集電体7と陽極集電体10との間の電流を調整
して酸素輸送量を制御し水中28の酸素濃度を制御する
。35〜210%の範囲で酸素輸送量を調整できるので
、水中28で藻の栽培が行われるなど酸素発生速度が変
動する酸素5発生源がある場合に特にこの実施例6の装
置は有効である。
The gas sent to the cell main body 4 becomes a deoxygenated gas and returns to the gas tank 31 through the deoxygenated gas exhaust pipe 19. The water deoxidized in the gas permeation section 30 is discharged into the water 28 through the deoxygenated water discharge pipe 36. If there is an oxygen generation source in underwater 28 and oxygen concentration control is required, use underwater 28
An oxygen concentration sensor 20 is attached to the tank, and a current control device 21 adjusts the current between the cathode current collector 7 and the anode current collector 10 to control the amount of oxygen transported and the oxygen concentration of the water 28. Since the oxygen transport amount can be adjusted in the range of 35 to 210%, the device of Example 6 is particularly effective when there is an oxygen 5 generation source whose oxygen generation rate fluctuates, such as when algae are cultivated underwater. .

第7図では酸素排出管16には何もついていないが、酸
素排出管16に出口側密閉された構造物23を取り付け
て出口側密閉された構造物23の酸素濃度が調整する場
合は第3図の実施例2、第4図の実施例3、第5図の実
施例4及び第6図の実施例5で説明した構成を組み合せ
ればよい。
Although nothing is attached to the oxygen exhaust pipe 16 in FIG. 7, if the oxygen concentration of the outlet-side sealed structure 23 is adjusted by attaching the outlet-side sealed structure 23 to the oxygen exhaust pipe 16, the third The configurations described in Embodiment 2 in the figure, Embodiment 3 in FIG. 4, Embodiment 4 in FIG. 5, and Embodiment 5 in FIG. 6 may be combined.

〔実施例7〕 第8図は本発明の実施例7にかかる酸素だけを選択的に
水の中に溶かし込む装置の概念図を示す。
[Embodiment 7] FIG. 8 shows a conceptual diagram of an apparatus for selectively dissolving only oxygen into water according to Embodiment 7 of the present invention.

37は出口側水中と酸素輸送機構を設置する空間とを区
分する仕切りを示す。酸素排出管16までの構成は第3
図の実施例2と同様である。
Reference numeral 37 indicates a partition that separates the outlet side water from the space in which the oxygen transport mechanism is installed. The configuration up to the oxygen exhaust pipe 16 is the third
This is the same as the second embodiment shown in the figure.

酸素排出管16かち出てきた酸素は一旦酸素タンク24
に入り、酸素タンク24から送風機38により酸素を出
口側ガス透過部32に送る一方、出口側水中33から出
口側ポンプ34により水を出口側ガス透過部32に送り
、出口側ガス透過部32において酸素を水中に溶かし込
み、溶存酸素の増えた水を酸素富化水排出管39を通し
て出口側水中33に排出する。出口側ガス透過部32か
ら出て来る酸素は湿度が増加しているので、第1の除湿
装置15で除湿後、酸素タンク24に戻される。出口側
水中33に酸素消費源があり、かつ酸素濃度制御が必要
な場合は、出口側水中33に酸素濃度センサ20を取り
付け、電流制御装置21により陰極集電体7と陽極集電
体10との間の電流を調整して酸素輸送量を制御し、出
口側水中33の酸素濃度を制御する。35〜210%の
範囲で酸素輸送量を調整できるので、出口側密閉された
構造物23の中で魚類飼育が行われるなど酸素消費速度
が変動する酸素消費源がある場合に特にこの実施例7の
装置は有効である。
The oxygen that comes out of the oxygen exhaust pipe 16 is temporarily transferred to the oxygen tank 24.
The blower 38 sends oxygen from the oxygen tank 24 to the outlet side gas permeation part 32, while water is sent from the outlet side submersible 33 to the outlet side gas permeation part 32 by the outlet side pump 34, and in the outlet side gas permeation part 32. Oxygen is dissolved in the water, and water with increased dissolved oxygen is discharged to the outlet side water 33 through an oxygen-enriched water discharge pipe 39. Since the oxygen coming out of the outlet side gas permeation section 32 has increased humidity, it is returned to the oxygen tank 24 after being dehumidified by the first dehumidifier 15. If there is an oxygen consumption source in the outlet side underwater 33 and oxygen concentration control is required, an oxygen concentration sensor 20 is attached to the outlet side underwater 33, and the current control device 21 controls the cathode current collector 7 and the anode current collector 10. The amount of oxygen transported is controlled by adjusting the current between them, and the oxygen concentration in the water 33 on the outlet side is controlled. Since the oxygen transport amount can be adjusted in the range of 35 to 210%, this embodiment 7 is particularly useful when there is an oxygen consumption source whose oxygen consumption rate fluctuates, such as when fish breeding is carried out in the closed structure 23 on the exit side. device is effective.

第8図では気体取込管2には何もついていないが、気体
取込管2に密閉された構造物1を取り付けて密閉された
構造物1の酸素濃度を調整する場合は、第4図の実施例
3、第5図の実施例4及び第6図の実施例5で説明した
構成を組合わせればよい。又、気体取込管2が水中28
とつながっていく場合は第5図の実施例4、第6図の実
施例5及び第7図の実施例6で説明した構成と組み合わ
せればよい。
Although nothing is attached to the gas intake pipe 2 in Fig. 8, if the sealed structure 1 is attached to the gas intake pipe 2 to adjust the oxygen concentration in the sealed structure 1, the The configurations described in Example 3, Example 4 in FIG. 5, and Example 5 in FIG. 6 may be combined. Also, the gas intake pipe 2 is underwater 28
If the structure is to be connected to the fourth embodiment shown in FIG. 5, the fifth embodiment shown in FIG. 6, and the sixth embodiment shown in FIG.

〔発明の効、果〕〔Effect of the invention〕

本発明により、酸素だけを選択的に輸送し、かつ濃度9
9.9%以上の純粋な酸素を得ることが可能となった。
According to the present invention, only oxygen is selectively transported and the concentration of oxygen is 9.
It became possible to obtain pure oxygen of 9.9% or more.

得られる酸素ガス中において、酸素以外の成分は水だけ
であり有害ガスを発生することはなく、酸素を輸送する
先に生物が存在する場合に使用しても安全である。また
、電流を変化させることにより、標準輸送能力の35〜
210%の範囲で酸素輸送量を自在に変動することがで
きる。酸素輸送量が35%未満の場合も、電流スイッチ
22の開閉により制御は可能である。従って、密閉され
た構造物の酸素濃度及び水中の溶存酸素濃度を制御しな
がら酸素輸送を行うことが容易になった。
In the obtained oxygen gas, the only component other than oxygen is water, so no harmful gas is generated, and it is safe to use when there are living organisms at the destination where oxygen is transported. In addition, by changing the current, the standard transport capacity of 35~
The amount of oxygen transported can be freely varied within a range of 210%. Even when the oxygen transport amount is less than 35%, control is possible by opening and closing the current switch 22. Therefore, it has become easy to transport oxygen while controlling the oxygen concentration in the sealed structure and the dissolved oxygen concentration in water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1にかかる密閉された構造物か
ら酸素だけを選択的に取り出す装置を示す概念図、第2
図は陽極として白金電極及びイリジウム電極を使用した
場合の電流密度と電圧との関係を示す図表、第3図は本
発明の実施例2にかかる出口側密閉された構造物に酸素
だけを選択的に送り込む装置を示す概念図、第4図は本
発明の実施例3にかかる密閉された構造物から出口側密
閉された構造物に酸素だけを選択的に送り込む装置を示
す概念図、第5図は本発明の・実施例4にかかる密閉さ
れた構造物から出口側密閉された構造物に酸素だけを選
択的に送り込み、かつ、密閉された構造物及び出口側密
閉された構造物の双方で酸素濃度制御を行う装置を示す
概念図、第6図は本発明の実施例5にかかる密閉された
構造物から出口側密閉された構造物に酸・素だけを選択
的に送り込み、かつ、密閉された構造物及び出口側密閉
された構造物の双方で酸素濃度制御を行う装置を示す概
念図、第7図は本発明の実施例6にかかる酸素を含んだ
水から酸素だけを選択的に取り出す装置を示す概念図、
第8図は本発明の実施例7にかかる酸素だけを選択的に
水の中に溶かし込む装置を示す概念図、第9図は従来の
吸着剤により酸素だけを選択的に輸送する装置を示す概
念図である。
FIG. 1 is a conceptual diagram showing a device for selectively extracting only oxygen from a sealed structure according to Embodiment 1 of the present invention;
The figure is a chart showing the relationship between current density and voltage when platinum electrodes and iridium electrodes are used as anodes, and Figure 3 is a graph showing the relationship between current density and voltage when platinum electrodes and iridium electrodes are used as anodes. FIG. 4 is a conceptual diagram showing a device for selectively sending only oxygen from a sealed structure to a sealed structure on the outlet side according to Embodiment 3 of the present invention; FIG. Embodiment 4 of the present invention selectively sends only oxygen from the sealed structure to the outlet-side sealed structure, and both the sealed structure and the outlet-side sealed structure FIG. 6 is a conceptual diagram showing a device for controlling oxygen concentration, which selectively sends only oxygen/element from a sealed structure to a sealed structure on the outlet side according to Embodiment 5 of the present invention. FIG. 7 is a conceptual diagram showing a device for controlling oxygen concentration in both a closed structure and a closed structure on the outlet side. A conceptual diagram showing a device for taking out;
FIG. 8 is a conceptual diagram showing a device for selectively dissolving only oxygen into water according to Example 7 of the present invention, and FIG. 9 shows a device for selectively transporting only oxygen using a conventional adsorbent. It is a conceptual diagram.

Claims (7)

【特許請求の範囲】[Claims] (1)[1]片面に陽極、他面に陰極を接合したカチオ
ン交換膜によって陽極集電体を備えた陽極室と陰極集電
体を備えた陰極室とに分割された電気化学的セル本体部
、 [2]上記セル本体部の陽極室と連通する水タンク及び
上記セル本体部の陰極室と送風手段を介して連通する酸
素含有ガス発生源、 [3]上記陽極室で発生する酸素含有水をポンプ、気液
分離装置及び第1除湿装置を備えた配管を介して脱水、
脱湿酸素を供給される酸素利用設備、 [4]上記陰極室で発生する脱酸素水分含有ガスを除湿
する第2除湿装置、 [5]上記第2除湿装置で分離された脱酸素脱水分ガス
及び水を夫々回収する手段、 [6]上記気液分離装置及び第1除湿装置で分離された
水並びに上記第2除湿装置で分離された水を上記水タン
クに移送する手段 よりなることを特徴とする酸素含有ガス源から酸素利用
設備に電気化学的に酸素を輸送する装置。
(1) [1] An electrochemical cell body divided into an anode chamber with an anode current collector and a cathode chamber with a cathode current collector by a cation exchange membrane with an anode on one side and a cathode on the other side. [2] A water tank communicating with the anode chamber of the cell main body and an oxygen-containing gas generation source communicating with the cathode chamber of the cell main body via a blowing means; [3] Oxygen-containing gas generated in the anode chamber. Water is dehydrated through piping equipped with a pump, a gas-liquid separator, and a first dehumidifier,
Oxygen utilization equipment supplied with dehumidified oxygen; [4] A second dehumidifier that dehumidifies the deoxygenated and moisture-containing gas generated in the cathode chamber; [5] Deoxygenated and dehydrated gas separated by the second dehumidifier. and means for recovering water, respectively; [6] means for transferring the water separated by the gas-liquid separator and the first dehumidifying device and the water separated by the second dehumidifying device to the water tank. A device that electrochemically transports oxygen from an oxygen-containing gas source to oxygen utilization equipment.
(2)酸素含有ガス発生源及び/又は酸素利用設備が密
閉された構造物である請求項(1)記載の装置。
(2) The device according to claim (1), wherein the oxygen-containing gas generation source and/or the oxygen utilization equipment are sealed structures.
(3)酸素含有ガス発生源及び/又は酸素利用設備に酸
素センサーを設け、その酸素濃度信号によりセル本体部
の電極反応を制御するようにした請求項(1)又は(2
)記載の装置。
(3) Claim (1) or (2) wherein an oxygen sensor is provided in the oxygen-containing gas generation source and/or the oxygen utilization equipment, and the electrode reaction in the cell main body is controlled by the oxygen concentration signal from the oxygen sensor.
) device described.
(4)密閉された構造物である酸素含有ガス発生源に、
脱酸素脱水分ガスを返送するようにした請求項(2)又
は(3)記載の装置。
(4) In an oxygen-containing gas source that is a sealed structure,
The apparatus according to claim 2 or 3, wherein the deoxygenated and dehydrated gas is returned.
(5)脱水、脱湿酸素の酸素利用設備への供給路に酸素
貯蔵タンクを設けた請求項(1)〜(4)のいずれかに
記載の装置。
(5) The apparatus according to any one of claims (1) to (4), further comprising an oxygen storage tank provided in a supply path for dehydrating and dehumidifying oxygen to the oxygen utilization equipment.
(6)酸素を含んだ水に酸素濃度の低い気体を接触させ
て得られる酸素を富化した気体を酸素含有ガス発生源と
した請求項(1)〜(5)のいずれかに記載の装置。
(6) The device according to any one of claims (1) to (5), wherein the oxygen-containing gas generation source is an oxygen-enriched gas obtained by contacting oxygen-containing water with a gas with a low oxygen concentration. .
(7)酸素利用設備が水である請求項(1)〜(6)の
いずれかに記載の装置。
(7) The device according to any one of claims (1) to (6), wherein the oxygen utilization equipment is water.
JP1313484A 1989-12-04 1989-12-04 Device for electrochemically transporting oxygen Pending JPH03177592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313484A JPH03177592A (en) 1989-12-04 1989-12-04 Device for electrochemically transporting oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313484A JPH03177592A (en) 1989-12-04 1989-12-04 Device for electrochemically transporting oxygen

Publications (1)

Publication Number Publication Date
JPH03177592A true JPH03177592A (en) 1991-08-01

Family

ID=18041865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313484A Pending JPH03177592A (en) 1989-12-04 1989-12-04 Device for electrochemically transporting oxygen

Country Status (1)

Country Link
JP (1) JPH03177592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025116A (en) * 2019-08-08 2021-02-22 株式会社東芝 Water electrolysis apparatus and method for controlling water electrolysis apparatus
WO2023145095A1 (en) * 2022-01-31 2023-08-03 高砂熱学工業株式会社 Water sampling device, water sampling method and water electrolysis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595602A (en) * 1979-01-12 1980-07-21 Japan Storage Battery Co Ltd Oxygen concentration controlling method
JPS59113712A (en) * 1982-12-17 1984-06-30 日本鋼管株式会社 Strengthened resin member joint like cryogenic cable pipe
JPS60193590A (en) * 1984-03-14 1985-10-02 Kubota Ltd Aeration apparatus for water treatment
JPS6352119A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Liquid crystal element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595602A (en) * 1979-01-12 1980-07-21 Japan Storage Battery Co Ltd Oxygen concentration controlling method
JPS59113712A (en) * 1982-12-17 1984-06-30 日本鋼管株式会社 Strengthened resin member joint like cryogenic cable pipe
JPS60193590A (en) * 1984-03-14 1985-10-02 Kubota Ltd Aeration apparatus for water treatment
JPS6352119A (en) * 1986-08-22 1988-03-05 Ricoh Co Ltd Liquid crystal element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025116A (en) * 2019-08-08 2021-02-22 株式会社東芝 Water electrolysis apparatus and method for controlling water electrolysis apparatus
WO2023145095A1 (en) * 2022-01-31 2023-08-03 高砂熱学工業株式会社 Water sampling device, water sampling method and water electrolysis device

Similar Documents

Publication Publication Date Title
US8613848B2 (en) Concurrent O2 generation and CO2 control for advanced life support
US8900435B2 (en) Separating gas using ion exchange
AU2010201005A1 (en) Low-voltage alkaline production using hydrogen and electrocatlytic electrodes
CN109487081A (en) Lithium unit and expanding unit and continuous operation method are mentioned using flowing electrode
WO1999060654A1 (en) Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
US4131514A (en) Oxygen separation with membranes
Kang et al. Concentration of carbon dioxide by a high-temperature electrochemical membrane cell
JPH03177592A (en) Device for electrochemically transporting oxygen
CN105264705B (en) For the method from the raw energy of gas miscarriage and system and equipment for generating energy from flue gas
KR101900752B1 (en) Device and method for treating indoor carbon dioxide
KR20170008534A (en) Metal air battery and operation method of the metal air battery
WO2023178913A1 (en) Hydrogen impurity purification apparatus used for fuel cell
JPH09312166A (en) Fuel cell power generator
US20230407501A1 (en) Apparatus for production of hydrogen
WO1981003035A1 (en) Method of concentrating alkali metal hydroxide in a cascade of hybrid cells
JP2001333983A (en) Oxygen supply system
JP2005063733A (en) Oxygen removing system and fuel cell system
JPS61117103A (en) Method for controlling oxygen concentration
CN109323500A (en) A kind of cold compartment of refrigerator subregion control wet electrolyte film independence humidity control device and method
JPS6223021Y2 (en)
JP2003144549A (en) Medical oxygen concentrator
JPH07157301A (en) Ozone generator
KR20200052706A (en) Metal air battery and operation method of the metal air battery
CN209279468U (en) A kind of cold compartment of refrigerator subregion control wet electrolyte film independence humidity control device
JP2002369885A (en) Gaseous oxygen supply system for medical treatment