JPS59113712A - Strengthened resin member joint like cryogenic cable pipe - Google Patents

Strengthened resin member joint like cryogenic cable pipe

Info

Publication number
JPS59113712A
JPS59113712A JP57220228A JP22022882A JPS59113712A JP S59113712 A JPS59113712 A JP S59113712A JP 57220228 A JP57220228 A JP 57220228A JP 22022882 A JP22022882 A JP 22022882A JP S59113712 A JPS59113712 A JP S59113712A
Authority
JP
Japan
Prior art keywords
reinforced resin
resin member
tube
cable
cable pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57220228A
Other languages
Japanese (ja)
Other versions
JPH0315402B2 (en
Inventor
松本 高
理 中森
緒方 順一
実 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57220228A priority Critical patent/JPS59113712A/en
Publication of JPS59113712A publication Critical patent/JPS59113712A/en
Publication of JPH0315402B2 publication Critical patent/JPH0315402B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は極低温ケーブル配管のような強化樹脂部材継手
部のnlJ案に系り、ケーブルを収容した配管に生ずる
うず電流損失を低下させ、効率的に大容量の送電を行わ
しめるようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the nlj plan for reinforced resin member joints such as cryogenic cable piping, reduces eddy current loss occurring in piping housing cables, and efficiently transmits large-capacity power. It is designed to ensure that the following is carried out.

電気を送る送電ケーブルにおいて大容量の電流を送る1
つの方法として金属を低温にすることが行われている。
Transmitting large amounts of current in power transmission cables 1
One method is to lower the temperature of the metal.

即ち低温とされた金属は電気抵抗が低下する現象を応用
するもので、送電ケーブルを液体望素などの冷媒に浸す
ものであり、例えばステンレスのような鋼管の内部に送
電ケーブルを収容し、且つその中に冷媒を入れるもので
あるが、この場合にはその冷媒の温度が上昇しないよう
に高度の断熱性が要求される。然してこの断熱方法とし
ては、第1図に示すように送電ケーブル11と冷媒を有
する内管12の外側を、よシ径の大きな鋼管である外管
13によって囲み、適宜スペーサ16を配設した2重管
とし、それら内管の隙間を真空にする方法が用いられ、
さらに内外管12.13の間の熱輻射を防止するため、
内管12にアルミ蒸着のマイラー14を多層巻にしたり
、内外管12.13の間にパーライト粉末等を入れたり
することも行なわれている。
In other words, the phenomenon in which the electrical resistance of metals at low temperatures decreases is applied, and the power transmission cable is immersed in a refrigerant such as liquid oxygen.For example, the power transmission cable is housed inside a steel pipe such as stainless steel, and A refrigerant is placed inside the refrigerant, and in this case, a high degree of insulation is required to prevent the temperature of the refrigerant from rising. However, as a heat insulation method, as shown in FIG. 1, the outside of the power transmission cable 11 and the inner tube 12 containing the refrigerant is surrounded by an outer tube 13, which is a steel tube with a larger diameter, and spacers 16 are appropriately arranged. A method is used that uses heavy pipes and creates a vacuum between the inner pipes.
Furthermore, in order to prevent heat radiation between the inner and outer tubes 12 and 13,
It is also possible to wrap the inner tube 12 in multiple layers with aluminum vapor-deposited mylar 14, or to insert pearlite powder or the like between the inner and outer tubes 12 and 13.

ところが、このような構造の内部にケーブル11を通し
、通電した場合には内外’112.13に渦電流が生じ
、そのために送電ロスを生ずるという不利がある。この
渦電流損失は第2図に示すように、ケーブル導体11を
流れる電流によって生じる交流磁界15によって発生し
、渦電流密度の自乗に比例した損失が生ずるから前記し
たように冷媒を用いて低温もしくは極低温条件下とされ
るケーブルの如きに犬6量の電流を流す場合には、渦電
流損失は大きな間)但となる。、即ち例えば、前記した
第1図のものにおいて、内管12が25OAのsus 
304であシ、外管13が40OAであるSGPのケー
ブル配管を用いた場合に、下記の条件下で送電したとき
の導体抵抗RPは次の第1表に示す通りである。
However, when the cable 11 is passed through such a structure and energized, eddy currents are generated inside and outside the cable 112, 13, resulting in a power transmission loss. As shown in FIG. 2, this eddy current loss is generated by the alternating current magnetic field 15 generated by the current flowing through the cable conductor 11, and the loss is proportional to the square of the eddy current density. However, when a large amount of current is passed through a cable that is exposed to extremely low temperatures, the eddy current loss is large. That is, for example, in the above-mentioned one shown in FIG.
When using SGP cable piping in which the outer tube 13 is 40 OA and the outer tube 13 is 40 OA, the conductor resistance RP when power is transmitted under the following conditions is as shown in Table 1 below.

61.2朋φ導体外径 0ケーブル積み・・・単心ケーブル3条俵積みφ送電々
流・・・100OA ・冷媒・・・・・液体窒素 第1表 従ってこのときにおいて鋼管に発生する渦電流は、第3
図に示すように33.2(μΩ/rn/3相)となり、
ケーブル自体の持つ抵抗よりも大きな値となるから必然
的に大きな問題とならざるを得ない。
61.2 φ conductor outer diameter 0 Cable stack...Single core cable stacked in 3 strips φ Transmission current...100OA ・Refrigerant...Liquid nitrogen Table 1 Therefore, the vortex generated in the steel pipe at this time The current is the third
As shown in the figure, it is 33.2 (μΩ/rn/3 phase),
Since the resistance is larger than the resistance of the cable itself, it inevitably becomes a big problem.

そこでこのようなうず電流損失を低下させるため前記内
管12を従来のSUS管からガラス繊維などを用いて積
層補強し強化させた、所ill F RP管を用いるこ
とが行われており、該FRP管の非磁性によシ全体のう
ず電流損失を低下させるものであって、この方法による
と外管にのみうず電流が生じ、従来のものに比し約6側
根度の低下が得られることになる。ところがこのように
して内管に強化樹脂管を用いるとその伸縮対策および接
続方法に多くの問題が生ずる。即ちこのFRP管に関す
る接続方法としてはM4図に示す如くで、同図(4)の
ソケット21を用いるもの、同図(B)の村ルマウス方
式、同図(C)の7ランジ方式の如くであるが、何れの
方式によるとしても現地で接続した場合に接続部におけ
る性能不均一が問題となり、特に高真空を長期に亘って
一定に保つことができない不利がある。つまシ内−’i
12を常温から低温に冷却するに当って彦軸方向に収縮
し、それによって軸方向に引張力が生じ、しかも接着剤
25とFnP内管12との線膨1辰率が異ることから接
続部に微小亀裂が発生し真空洩れが生ずることとなる。
Therefore, in order to reduce such eddy current loss, the inner tube 12 is made of a conventional SUS tube reinforced by laminating and reinforcing it using glass fiber or the like. The non-magnetic nature of the tube reduces the eddy current loss of the entire tube, and with this method, eddy current is generated only in the outer tube, resulting in a reduction in radial strength of about 6 sides compared to the conventional method. Become. However, when a reinforced resin tube is used as the inner tube in this manner, many problems arise in the expansion and contraction measures and the connection method. In other words, the connection methods for this FRP pipe are as shown in Figure M4, such as using the socket 21 in Figure (4), the village mouth method in Figure (B), and the 7 lunge method in Figure (C). However, no matter which method is used, when the connection is made on-site, there is a problem of nonuniform performance at the connection part, and in particular, there is a disadvantage that the high vacuum cannot be maintained constant over a long period of time. Inside the tsumashi-'i
12 contracts in the axial direction when it is cooled from room temperature to a low temperature, which generates a tensile force in the axial direction, and the linear expansion ratio of the adhesive 25 and the FnP inner tube 12 is different, so the connection is made. Microcracks will occur in the area, resulting in vacuum leakage.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものであって、その実施態様を添附図面に示すもの
について説明すると、前記したような内管12として用
いられるFRPの如き強化樹脂管1の端部に鋼材その他
による筒状の管端部材2を用い、該管端部材20強化樹
脂管1側の外面に半径方向において凹凸した環状凹凸部
3を形成し、該環状凹凸部3に対して前記強化樹脂管1
を覆着係合させて一体的に形成したものである。前記し
た環状凹凸部3は場合によってはス・母イラル状に連続
したものでもよく何れにしてもその加工は比較的容易で
ある。
The present invention has been devised after repeated studies in view of the above-mentioned circumstances, and the embodiment thereof will be described with reference to the attached drawings. A cylindrical tube end member 2 made of steel or other material is used at the end of the tube 1, and an annular uneven portion 3 that is uneven in the radial direction is formed on the outer surface of the tube end member 20 on the reinforced resin tube 1 side. For the reinforced resin pipe 1
It is integrally formed by covering and engaging the two. The annular concavo-convex portion 3 described above may be continuous in a spiral or spiral shape depending on the case, and in any case, machining thereof is relatively easy.

なお前記管端部材2の強化樹脂管1より突出した端面に
は開先部4を形成しておくことにより第6図に示すよう
に溶接5で接続することができ、該接続部の強度を充分
に得ることができる。又強化樹脂管1の中間部には第7
図に示すように伸縮を吸収するためのベローズ6を設け
ることができ、このようにベローズ6を設ける場合にお
いても該ベローズ形成素材6aの端部に環状凹凸部6b
を形成して該部分を強化樹脂材を覆うようにすることに
よシ好ましい取付関係が得られる。更にこのような°凹
凸部6bを利用した強化樹脂材Tとの連結は場合によっ
ては第8図のように、平板又は丙曲板のような板材との
接続部分にも採用することができる。舌端部材2として
鋼管などの鋼材を用いた場合においてはその線膨張係数
がFRPのような強化樹脂管1に略近い値となシ前記し
たように冷却低温化されfc、1合において両部材1.
2間の剥離や亀裂発生などを有効に防止できる。
By forming a groove 4 on the end surface of the pipe end member 2 that protrudes from the reinforced resin pipe 1, the connection can be made by welding 5 as shown in FIG. 6, and the strength of the connection can be increased. You can get enough. In addition, there is a seventh tube in the middle part of the reinforced resin pipe 1.
As shown in the figure, a bellows 6 for absorbing expansion and contraction can be provided, and even when the bellows 6 is provided in this way, an annular uneven portion 6b is provided at the end of the bellows forming material 6a.
A preferable attachment relationship can be obtained by forming the reinforcing resin material and covering the portion with the reinforcing resin material. Furthermore, the connection with the reinforced resin material T using the uneven portions 6b can also be applied to the connection portion with a plate material such as a flat plate or a curved plate, as shown in FIG. 8, depending on the case. When a steel material such as a steel pipe is used as the tongue end member 2, its linear expansion coefficient is approximately close to that of the reinforced resin pipe 1 such as FRP. 1.
Peeling and cracking between the two can be effectively prevented.

以上説明したような本発明によるときけ鋼管などの金属
質′U端部材2を用い、該部材2の強化樹脂管1側に環
状凹凸部3を形成し、該部分3に対して強化樹脂#1を
覆着係合させて成形し一体的に形成したものであるから
両部月1.2の軸方向における接合力を充分に高めるこ
とができると共に両部材1.2間の接合面積を増大して
シール性の優れた、構造となり、@記したような低温冷
却時においても亀裂損傷を見ることのない製品となシ、
従って真空洩れを生ずることがない特質を有し、更には
溶接による接続をも図らしめて、この点からも充分に措
信することのできる継手を得しめ、それらの結果として
うず電流損失を的確に低減した極低温用ケーブル配管を
提供し得るなどの作用効果を有しており、工業的にその
効果の大きい発明である。
Using the metal end member 2 of the present invention, such as a broken steel pipe, as described above, an annular uneven portion 3 is formed on the reinforced resin pipe 1 side of the member 2, and the reinforced resin # 1 are integrally formed by enclosing and engaging them, it is possible to sufficiently increase the bonding force in the axial direction of both members 1.2, and increase the bonding area between both members 1.2. The product has a structure with excellent sealing properties, and does not show any crack damage even when cooled at low temperatures as described in @.
Therefore, it has the characteristic of not causing vacuum leakage, and it is also possible to connect by welding, resulting in a joint that can be fully reliable from this point of view, and as a result, eddy current loss can be accurately reduced. This invention has effects such as being able to provide cable piping for reduced cryogenic temperatures, and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
は従来の冷媒を用いた送電ケーブル配管の説明図、第2
図はその交流磁界によるうず電流損失の説明図、第3図
はそのうす電流損失関係を3条ケーブルの場合について
示した図式、第4図は従来の強化樹脂管継手に関する代
表例を示した各断面図、第5図は本発明によるものの継
手部を示した断面図、第6図はその溶接継手部分のff
T面図、第7図はそのペローX部分を示した断面図、第
8図は本発明によるものが板状材に適用される場合の要
領を示した斜面図である。 然してこれらの図面において、1は強化樹脂管、2は盾
1喘部拐、3は環状凹凸部、4は開先部、5は溶接、6
(d′ベローズ、6aはベローズ形成素材、6bはその
環状凹凸部を示すものである。 特許出願人   日本鋼管株式会社 発  明 者    松   本       高量 
           中   森        埋
置           緒   方   順   −
同           根   本       実
代理人弁理士    白   川   −−:′1゛−
ニド′
The drawings show the technical content of the present invention, and FIG. 1 is an explanatory diagram of power transmission cable piping using a conventional refrigerant, and FIG.
Figure 3 is an explanatory diagram of the eddy current loss due to the alternating magnetic field, Figure 3 is a diagram showing the thin current loss relationship in the case of a three-strand cable, and Figure 4 is a diagram showing typical examples of conventional reinforced resin pipe joints. 5 is a sectional view showing a joint according to the present invention, and FIG. 6 is a ff of a welded joint.
FIG. 7 is a sectional view showing the Perot X portion, and FIG. 8 is a perspective view showing how the present invention is applied to a plate material. In these drawings, 1 is a reinforced resin pipe, 2 is a shield 1 with a gap, 3 is an annular uneven part, 4 is a groove, 5 is a weld, and 6 is a welded part.
(d' bellows, 6a is the material forming the bellows, and 6b is the annular uneven portion thereof. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Takamasa Matsumoto
Nakamori burial Ogata order -
Nemoto Actual Attorney Patent Attorney Shirakawa --:'1゛-
nido′

Claims (1)

【特許請求の範囲】 1、強化樹脂′Gのような強化樹脂部材の端部に鋼′H
などの金属質端部材を用い、該金属質端部材の強化樹脂
部材側外面に凹凸部を形成し、該凹凸部に前記強化樹脂
部材を覆着係合させて一体的に形成したことを特徴とす
る極低温ケーブル配管のような強化樹脂部材継手部。 2、強化樹脂部材および金属質端部材が何れも板状材で
ある特許請求の範囲第1項に記載の強化(労脂部材継手
部。
[Claims] 1. Steel 'H' at the end of a reinforced resin member such as reinforced resin 'G'
A metal end member such as the above is used, an uneven part is formed on the outer surface of the metal end member on the side of the reinforced resin member, and the reinforced resin member is covered and engaged with the uneven part to form an integral part. Reinforced resin material joints such as cryogenic cable piping. 2. Reinforced labor member joint portion according to claim 1, wherein both the reinforced resin member and the metallic end member are plate-shaped materials.
JP57220228A 1982-12-17 1982-12-17 Strengthened resin member joint like cryogenic cable pipe Granted JPS59113712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220228A JPS59113712A (en) 1982-12-17 1982-12-17 Strengthened resin member joint like cryogenic cable pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220228A JPS59113712A (en) 1982-12-17 1982-12-17 Strengthened resin member joint like cryogenic cable pipe

Publications (2)

Publication Number Publication Date
JPS59113712A true JPS59113712A (en) 1984-06-30
JPH0315402B2 JPH0315402B2 (en) 1991-03-01

Family

ID=16747888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220228A Granted JPS59113712A (en) 1982-12-17 1982-12-17 Strengthened resin member joint like cryogenic cable pipe

Country Status (1)

Country Link
JP (1) JPS59113712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177592A (en) * 1989-12-04 1991-08-01 Mitsubishi Heavy Ind Ltd Device for electrochemically transporting oxygen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146892A (en) * 1974-04-24 1975-11-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146892A (en) * 1974-04-24 1975-11-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177592A (en) * 1989-12-04 1991-08-01 Mitsubishi Heavy Ind Ltd Device for electrochemically transporting oxygen

Also Published As

Publication number Publication date
JPH0315402B2 (en) 1991-03-01

Similar Documents

Publication Publication Date Title
US3749811A (en) Superconducting cable
US4852645A (en) Thermal transfer layer
US8730001B2 (en) Reactor and reactor-use component
JPH0435848B2 (en)
EP2487691A1 (en) Superconductor cable and ac power transmission cable
KR20050076744A (en) Multiphase superconducting cable connection structure and multiphase superconducting cable line
KR20070073795A (en) Monoblock cooling device component
JPS5816104B2 (en) Simple induced current heating tube
JP2011003494A (en) Reinforcement high temperature superconducting wire and high temperature superconducting coil winding it
EP0093349B1 (en) Method of heating piping arrangement and heating coil
US4176238A (en) Cooled multiphase ac cable
JPS59113712A (en) Strengthened resin member joint like cryogenic cable pipe
EP1441367A2 (en) Superconducting cable
US20210012929A1 (en) Superconductor Cable or superconductor cable-in-conduit-conductor with clocking feature
US7281949B2 (en) Electrical hermetic penetrant structure of average voltage
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
Summers et al. The International Thermonuclear Experimental Reactor (ITER): Design and Materials Selection
CA2299245C (en) High temperature superconducting cable and process for manufacturing the same
US20210225561A1 (en) Superconductor Cable or superconductor cable-in-conduit-conductor with clocking feature
Klaudy et al. First field trials of a superconducting power cable within the power grid of a public utility
JP5557008B2 (en) Vacuum insulation tube and superconducting cable
US4344057A (en) Transverse magnetic load containment structure for use in MHD magnets
Harvey et al. Mineral-insulated magnets for high-radiation environments
US20220024146A1 (en) Coupling Polymeric Components to One Another Utilizing Electromagnetic Energy
Hagedorn et al. Design and construction of a twin-aperture prototype magnet for the CERN LHC project