JPH03177366A - Raw material for cementless monolithic refractory and production of cementless monolithic refractory using the same raw material - Google Patents

Raw material for cementless monolithic refractory and production of cementless monolithic refractory using the same raw material

Info

Publication number
JPH03177366A
JPH03177366A JP1315914A JP31591489A JPH03177366A JP H03177366 A JPH03177366 A JP H03177366A JP 1315914 A JP1315914 A JP 1315914A JP 31591489 A JP31591489 A JP 31591489A JP H03177366 A JPH03177366 A JP H03177366A
Authority
JP
Japan
Prior art keywords
refractory
alumina
cement
powder
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1315914A
Other languages
Japanese (ja)
Other versions
JPH068224B2 (en
Inventor
Kazuma Nishiuchi
一磨 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON REONA KK
NGK Insulators Ltd
Original Assignee
NIPPON REONA KK
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON REONA KK, NGK Insulators Ltd filed Critical NIPPON REONA KK
Priority to JP1315914A priority Critical patent/JPH068224B2/en
Publication of JPH03177366A publication Critical patent/JPH03177366A/en
Publication of JPH068224B2 publication Critical patent/JPH068224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject refractory with enhanced corrosion resistance to chemical attack by molten slag, etc., and to fine resistance by adding a small amount of a dispersing agent to a refractory composition composed of an aggregate, intermediate powder and fine powder as the refractory composition and one or more ultrafine powders such as silica and hydraulic alumina having a prescribed grain diameter. CONSTITUTION:The objective cementless monolithic refractory (I) obtained by preparing a refractory material, composed of an aggregate, intermediate powder and fine powder, e.g. bauxite or a high purity alumina, alone or as mixture, further preparing a refractory composition (I') composed of >=60wt.% aforementioned refractory material (I), 2-20wt.% ultrafine powder composed of one or more of silica, alumina, etc., or chromite and 2-10wt.% hydraulic alumina, contained in the above-mentioned ultrafine powder and having 3-15mum average grain diameter and then adding 0.2wt.% dispersing agent to the aforementioned refractory composition (I'). Low-melting compounds are prevented from the forming by the absence of the cement and hot characteristics such as corrosion, fire resistance, high-temperature strength, etc., are improved by combination of the hydraulic alumina and dispersing agent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セメント無含有不定形耐火物に関するもので
、例えば鉄鋼、鋳物等の分野におけるキュポラ、誘導炉
、ロータリーキルン等の耐火物に適用される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to cement-free monolithic refractories, and is applied to refractories such as cupolas, induction furnaces, rotary kilns, etc. in the fields of steel, casting, etc. Ru.

(従来の技術) アルミナセメントを結合材として利用した不定形耐火物
は、鉄鋼、セメント、鋳物、バルブ等の業界において広
く用いられている。
(Prior Art) Monolithic refractories using alumina cement as a binding material are widely used in the steel, cement, foundry, valve, and other industries.

キャスタブル耐火物は、シリカ−アルミナ系の骨材にア
ルミナセメントを配合したもので、一般に5iOz −
AI;!、t Os −CaO系の組成物である(特開
昭53−84012号公報)。
Castable refractories are made by blending alumina cement with silica-alumina aggregate, and are generally 5iOz-
AI;! , tOs-CaO type composition (Japanese Unexamined Patent Publication No. 1984-84012).

最近では、キャスタブル耐火物に含まれるアルミナセメ
ントを次の種々の理由から低量にして用いることが多い
Recently, the amount of alumina cement contained in castable refractories is often reduced for the following various reasons.

Φ高強度施工体を得るためである。セメント含有量が少
ないと施工時の混線水量も少なくすることができ、低水
量で行った混線で施工した耐火物は高強度を有する。
This is to obtain a high-strength construction body. If the cement content is low, the amount of cross-conducting water during construction can be reduced, and refractories constructed using cross-conducting with a low amount of water have high strength.

■混線物の乾燥時間を短くするためである。セメント含
有量が多いと使用する混線物の水量が増し、混線物が乾
燥して強度を発現するまでに時間がかかる。
■This is to shorten the drying time of interfering materials. When the cement content is high, the amount of water used in the mixed material increases, and it takes time for the mixed material to dry and develop strength.

■耐火物中のアルミナの含有量を高めるためである。キ
ャスタブル耐火物は、Aβ203が多く含まれるほどそ
の耐火物の耐用温度が高くなるので、アルミナセメント
よりもアルミナの含量が多い高純度アルミナを骨材とし
て用い、アルミナセメントの量を少なくした方が耐火物
全体に占めるアルミナ含量を多くすることができる。
■This is to increase the alumina content in the refractory. For castable refractories, the more Aβ203 they contain, the higher the temperature they can withstand. Therefore, it is better to use high-purity alumina, which has a higher alumina content than alumina cement, as the aggregate, and to reduce the amount of alumina cement. The alumina content in the entire product can be increased.

■焼成品に亀裂を生じさせないためである。アルミナセ
メントは、高温になると低融点化合物を形成し、焼成品
に亀裂を生じさせることがある。
■This is to prevent cracks from forming in the fired product. Alumina cement forms low-melting compounds when exposed to high temperatures, which can cause cracks in fired products.

また、低セメントキャスタブル耐火物では、耐火物の骨
材に添加する超微粉の粒径を調整したり、アルミナセメ
ント、超微粉、分散剤等からなる結合材の配合比を調整
することにより、低セメント化および低水分化を図り緻
密質の耐火物にしたものが知られている。
In addition, for low-cement castable refractories, we can reduce the Dense refractories made by cementing and reducing moisture content are known.

(発明が解決しようとする課題) しかしながら、従来の低セメントキャスクプル耐火物に
おいては、セメントの主成分CaOがアノーサイト (
CaO・AI2* 03  ・2S i Ox )等に
なる低融点化合物を生成するため、1500°Cを超え
る使用温度では耐火性が低下し、溶融スラグ等に対する
耐食性が低下するという問題がある。 この耐火性およ
び耐食性を向上させるために前記アルミナセメントに代
えて硬化剤または凝集剤どして水硬性アルミナ等を使用
したものが、あるがこの場合にも、耐火性および耐食性
は不十分なもので、しかも流動性、硬化性等の施工性お
よび強度については不十分である。
(Problem to be solved by the invention) However, in conventional low-cement cask pull refractories, the main component of cement, CaO, is anorthite (
Since low melting point compounds such as CaO.AI2* 03 .2S i Ox are produced, there is a problem that fire resistance decreases at usage temperatures exceeding 1500° C., and corrosion resistance against molten slag etc. decreases. In order to improve this fire resistance and corrosion resistance, there are products that use hydraulic alumina as a hardening agent or coagulant instead of the alumina cement, but even in this case, the fire resistance and corrosion resistance are insufficient. Moreover, it is insufficient in terms of workability such as fluidity and hardenability, and strength.

本発明は、このような問題点を解決するためになされた
もので、セメントを無含有にし、溶融メタル、溶融スラ
グなどによる化学的侵食に対する耐食性および耐火性を
高めかつ熱間強度の高いセメント無含有不定形耐火物を
提供することを目的とする。
The present invention has been made to solve these problems, and is a cement-free product that does not contain cement, has high corrosion resistance and fire resistance against chemical attack by molten metal, molten slag, etc., and has high hot strength. The purpose is to provide a monolithic refractory containing

(課題を解決するための手段) そのために、本発明の第1の発明によるセメント無含有
不定形耐火物原料は、骨材と中間粒と微粉とからなる耐
火材60wt%以上と、シリカ、アルミナ、マグネシア
またはクロム鉄鉱の1種以上からなる超微粉2〜20w
t%と、この超微粉中に含有される平均粒径3〜15μ
mの水硬性アルミナ2〜10wt%とから成る耐火組成
物に、分散剤0.2wt%以下を添加したことを特徴と
する。
(Means for Solving the Problems) For this purpose, the cement-free monolithic refractory raw material according to the first aspect of the present invention contains 60 wt% or more of a refractory material consisting of aggregate, intermediate grains, and fine powder, silica, alumina, etc. 2-20w ultrafine powder consisting of one or more of magnesia or chromite
t% and the average particle size contained in this ultrafine powder from 3 to 15μ
The present invention is characterized in that 0.2 wt % or less of a dispersant is added to a fireproof composition consisting of 2 to 10 wt % of hydraulic alumina of m.

本発明の第2の発明によるセメント無含有不定形耐火物
の製造方法は、第1の発明に記載のセメント無含有不定
形耐火物原料に水3〜6wt%を添加して施工されるこ
とを特徴とする。
The method for producing a cement-free monolithic refractory according to the second invention of the present invention includes adding 3 to 6 wt% of water to the cement-free monolithic refractory raw material according to the first invention. Features.

前記耐火材は、骨材と中間粒と微粉とから構成され、原
料割合中の主要成分であり、例えばボーキサイト、シャ
モット、高純度アルミナ、ジルコン、クロミア等を単独
または混合し、使用するのが望ましい。特に耐熱性、耐
摩耗性および耐食性が要求される部位では、例えば電融
アルミナや焼結アルミナ等を主体として使用するのが望
ましい。
The refractory material is composed of aggregate, intermediate grains, and fine powder, and is the main component in the raw material ratio. For example, bauxite, chamotte, high-purity alumina, zircon, chromia, etc. are preferably used alone or in combination. . Particularly in areas where heat resistance, wear resistance, and corrosion resistance are required, it is desirable to use fused alumina, sintered alumina, or the like as a main material.

前記耐火組成物にセメントは含有されない。これは、ア
ルミナセメント等の結合材を含むと、施工時に必要な添
加木遣が増え施工後の乾燥品の平均気孔率を大きくする
等の理由により、耐火性が低くまた熱間強度を低くする
原因になるからである。
The refractory composition does not contain cement. This is because if a binder such as alumina cement is included, the amount of wood added during construction increases and the average porosity of the dried product increases after construction, resulting in low fire resistance and low hot strength. This is because it becomes.

超微粉は、主に粒径0,3〜6μmの粉末を用いるのが
望ましい。この粉末が耐火物中の気孔や毛管を埋めるこ
とによって平均気孔径を小さくし高緻密質の耐火物にす
る。超微粉の添加量を2wt%以上としたのは、この値
未満であるとその効果が小さく、20wt%以下とした
のは、この値を超えると施行時の流動性が悪くなり充填
性も低下するためである。
As the ultrafine powder, it is desirable to use a powder mainly having a particle size of 0.3 to 6 μm. This powder fills the pores and capillaries in the refractory, reducing the average pore diameter and making it a highly dense refractory. The reason why the amount of ultrafine powder added is 2wt% or more is that if it is less than this value, the effect is small, and the reason why it is 20wt% or less is that if it exceeds this value, the fluidity during application will deteriorate and the filling property will also decrease. This is to do so.

超微粉中に含まれる水硬性アルミナは、平均粒径3〜1
5μmのものを用い、前記超微粉中に2〜10wt%含
まれる。水硬性アルミナは施工時に水和反応による発熱
を起こす。したがって水硬性アルミナの含有量を2wt
%以上としたのは施工時に硬化性を高めるためにこの値
以上必要であり、10wt%以下としたのは、施工時の
流動性を良好にするためである。
The hydraulic alumina contained in the ultrafine powder has an average particle size of 3 to 1
The ultrafine powder contains 2 to 10 wt% of the ultrafine powder. Hydraulic alumina generates heat due to hydration reaction during construction. Therefore, the content of hydraulic alumina is 2wt.
% or more because this value or more is necessary in order to improve hardenability during construction, and the reason why it is set to 10 wt % or less is to improve fluidity during construction.

分散剤としては、金属キレート化合物、アルカリ金属炭
酸塩等を用いるのが望ましい。この分散剤は前記耐火組
成物の分散効果を促進し、流動性、硬化性等の施工性を
向上させるものである。分散剤を0.2wt%を超える
量にすると、施工後の乾燥時に硬化しにくくなるので一
定範囲内とする。
As the dispersant, it is desirable to use metal chelate compounds, alkali metal carbonates, and the like. This dispersant promotes the dispersion effect of the fireproof composition and improves workability such as fluidity and hardenability. If the amount of the dispersant exceeds 0.2 wt%, it will be difficult to harden when drying after application, so it should be within a certain range.

前記セメント無含有不定形耐火物原料を用いるときは、
これに対し水の添加量を3〜6wt%の範囲にするのが
望ましい。これは水の添加量を3wt%以上とすること
により流動性を確保し、6wt%以下とすることにより
施工後の乾燥時に固形化し強度を確保するためである。
When using the cement-free monolithic refractory raw material,
On the other hand, it is desirable that the amount of water added be in the range of 3 to 6 wt%. This is because by setting the amount of water added to 3 wt% or more, fluidity is ensured, and by setting the amount of water added to 6 wt% or less, it is solidified during drying after construction and ensures strength.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

骨材と中間粒と微粉とからなる耐火材料84wt%と、
超微粉16wt%の混合粉末を用いた。
84 wt% of fireproof material consisting of aggregate, intermediate grains and fine powder;
A mixed powder containing 16 wt% of ultrafine powder was used.

耐火材料は、アルミナとシリカを主体とし、化学分析の
結果、Alx Oa  : 64wt%、SiO:31
wt%、TLOt:2wt%、他にNa2O等: 3w
t%含まれていた。
The refractory material is mainly composed of alumina and silica, and as a result of chemical analysis, Alx Oa: 64 wt%, SiO: 31
wt%, TLOt: 2wt%, Na2O etc.: 3w
It contained t%.

超微粉は、アルミナとシリカが各々24wt%と75w
t%、他に微量成分が7wt%含まれていた。
The ultrafine powder contains 24wt% and 75w of alumina and silica, respectively.
t%, and 7wt% of other trace components.

そして超微粉16wt%中に水硬性アルミナを第1表に
示す所定wt%含有させた。
Then, a predetermined wt% of hydraulic alumina shown in Table 1 was contained in 16 wt% of the ultrafine powder.

これらの粉末からなる耐火組成物にカルボキシレートソ
ーダ塩からなる分散剤を所定%加え、これら総量に対し
水を4wt%添加し、施工した。
A predetermined amount of a dispersant made of carboxylate sodium salt was added to a fireproof composition made of these powders, and 4 wt% of water was added to the total amount of these, and construction was carried out.

この場合、第1表に示すように、水硬性アルミナと分散
剤の含有量を変化させ、各種実施例1〜7および比較例
1〜5の場合について施工性および耐食性を試験した。
In this case, as shown in Table 1, the contents of hydraulic alumina and dispersant were varied, and various Examples 1 to 7 and Comparative Examples 1 to 5 were tested for workability and corrosion resistance.

その結果は第1表に示すとおりである。The results are shown in Table 1.

(以下、余白。) 第1表において、水硬性アルミナのwt%は。(Hereafter, margin.) In Table 1, the wt% of hydraulic alumina is.

骨材と中間粒と微粉とからなる耐火材料と超微粉との総
量に対する重量割合を示し、分散剤についても同様であ
る。第1表中、0は特に良好であった6の、Oは良好で
あったもの、△は普通のもの、×は不良なものを表わす
The weight ratio of the refractory material consisting of aggregate, intermediate particles, and fine powder to the total amount of ultrafine powder is shown, and the same applies to the dispersant. In Table 1, 0 represents 6 as particularly good, 0 as good, Δ as normal, and × as poor.

試験の結果、実施例1〜7については、耐火物原料の流
動性および硬化性が良好であり、乾燥後の耐食性につい
ても相対的に良好なものであった。
As a result of the test, in Examples 1 to 7, the refractory raw materials had good fluidity and hardenability, and the corrosion resistance after drying was also relatively good.

これに対し、比較例1〜3については、水硬性アルミナ
の過少あるいは過多により施工不能であり、比較例4お
よび5については、分散剤の過多または過少により施工
不能であった。そのため比較例1〜5ではいずれも耐食
性を評価することができなかった。
On the other hand, Comparative Examples 1 to 3 could not be applied due to too little or too much hydraulic alumina, and Comparative Examples 4 and 5 could not be applied due to too much or too little dispersant. Therefore, in Comparative Examples 1 to 5, corrosion resistance could not be evaluated in any of them.

(発明の効果) 以上説明したように、本発明のセメント無含有不定形耐
火物原料によれば、セメント無含有により低融点化合物
の生成を防止しかっ水硬性アルミナ−と分散剤の適切な
組合わせにより、耐食性、耐天性および高温強度等の熱
間特性を向上するとともに、流動性および硬化性等の施
工性を確実に高めることができるという効果がある。
(Effects of the Invention) As explained above, according to the cement-free monolithic refractory raw material of the present invention, the formation of low melting point compounds is prevented due to the absence of cement, and an appropriate combination of hydraulic alumina and dispersant is used. This has the effect of improving hot properties such as corrosion resistance, weather resistance, and high-temperature strength, as well as reliably improving workability such as fluidity and hardenability.

Claims (2)

【特許請求の範囲】[Claims] (1)骨材と中間粒と微粉とからなる耐火材60wt%
以上と、 シリカ、アルミナ、マグネシアまたはクロム鉄鉱の1種
以上からなる超微粉2〜20wt%と、この超微粉中に
含有される平均粒径3〜15μmの水硬性アルミナ2〜
10wt%と、 からなる耐火組成物に、分散剤0.2wt%以下を添加
したことを特徴とするセメント無含有不定形耐火物原料
(1) 60wt% refractory material consisting of aggregate, intermediate grains, and fine powder
The above, 2 to 20 wt% of ultrafine powder consisting of one or more of silica, alumina, magnesia, or chromite, and 2 to 20 wt% of hydraulic alumina with an average particle size of 3 to 15 μm contained in this ultrafine powder.
A cement-free monolithic refractory raw material, characterized in that 0.2 wt% or less of a dispersant is added to a refractory composition consisting of 10 wt%.
(2)請求項1に記載のセメント無含有不定形耐火物原
料に水3〜6wt%を添加して施工されることを特徴と
するセメント無含有不定形耐火物の製造方法。
(2) A method for manufacturing a cement-free monolithic refractory, which is carried out by adding 3 to 6 wt% of water to the cement-free monolithic refractory raw material according to claim 1.
JP1315914A 1989-12-05 1989-12-05 Cement-free amorphous refractory raw material and method for producing cement-free amorphous refractory using this raw material Expired - Lifetime JPH068224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315914A JPH068224B2 (en) 1989-12-05 1989-12-05 Cement-free amorphous refractory raw material and method for producing cement-free amorphous refractory using this raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315914A JPH068224B2 (en) 1989-12-05 1989-12-05 Cement-free amorphous refractory raw material and method for producing cement-free amorphous refractory using this raw material

Publications (2)

Publication Number Publication Date
JPH03177366A true JPH03177366A (en) 1991-08-01
JPH068224B2 JPH068224B2 (en) 1994-02-02

Family

ID=18071128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315914A Expired - Lifetime JPH068224B2 (en) 1989-12-05 1989-12-05 Cement-free amorphous refractory raw material and method for producing cement-free amorphous refractory using this raw material

Country Status (1)

Country Link
JP (1) JPH068224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320412B1 (en) * 1999-11-25 2002-01-12 최낙명, 홍석범 Fire retardant composition and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384012A (en) * 1976-12-29 1978-07-25 Nippon Tokushu Rozai Kk Refractory composites
JPS5833195A (en) * 1981-08-21 1983-02-26 株式会社東芝 Radioactive gaseous waste processing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384012A (en) * 1976-12-29 1978-07-25 Nippon Tokushu Rozai Kk Refractory composites
JPS5833195A (en) * 1981-08-21 1983-02-26 株式会社東芝 Radioactive gaseous waste processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320412B1 (en) * 1999-11-25 2002-01-12 최낙명, 홍석범 Fire retardant composition and its manufacturing method

Also Published As

Publication number Publication date
JPH068224B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
CN106977216A (en) Anti-erosion liner for aluminium melting furnace and preparation method thereof
JP2874831B2 (en) Refractory for pouring
CN110423103A (en) A kind of middle water containing opening environmentally friendly chamotte and preparation method thereof
JPH03177366A (en) Raw material for cementless monolithic refractory and production of cementless monolithic refractory using the same raw material
JPH09301780A (en) Lightweight monolithic refractory
JPH08175877A (en) Castable refractory
JP4960541B2 (en) Magnesia-alumina-titania brick
KR100276310B1 (en) Refractory material of magnesia castable block
JPH03159967A (en) Lining material of container for molten metal
JPH0952755A (en) Magnesia-chrome refractory
JPS5811388B2 (en) Amorphous fireproof composition for pouring
JPH0952169A (en) Refractory for tuyere of molten steel container
JP4181658B2 (en) Alumina-magnesia casting material
JPH0725668A (en) Refractory for casting work
JP2518559B2 (en) Refractory materials and their preparation method
KR100473111B1 (en) Amorphous refractory materials for casting and molten steel containers
JPH03205368A (en) Castable alumina-spinel refractory
JPH10158072A (en) Magnesia-carbon castable refractory and its applied body
JPH02141480A (en) Castable refractory
JPS6051673A (en) Manufacture of castable refractories
JPS6065770A (en) Manufacture of castable refractories
JPS6127350B2 (en)
JPH06172044A (en) Castable refractory of alumina spinel
JPH04193770A (en) Basic refractory for pouring
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this