JPS5811388B2 - Amorphous fireproof composition for pouring - Google Patents

Amorphous fireproof composition for pouring

Info

Publication number
JPS5811388B2
JPS5811388B2 JP55003373A JP337380A JPS5811388B2 JP S5811388 B2 JPS5811388 B2 JP S5811388B2 JP 55003373 A JP55003373 A JP 55003373A JP 337380 A JP337380 A JP 337380A JP S5811388 B2 JPS5811388 B2 JP S5811388B2
Authority
JP
Japan
Prior art keywords
weight
strength
alumina cement
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55003373A
Other languages
Japanese (ja)
Other versions
JPS56100174A (en
Inventor
淳一 河村
騏三郎 有吉
洋 楠瀬
幸三 「よし」岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA YOGYO FIRE BRICK
Original Assignee
OSAKA YOGYO FIRE BRICK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA YOGYO FIRE BRICK filed Critical OSAKA YOGYO FIRE BRICK
Priority to JP55003373A priority Critical patent/JPS5811388B2/en
Publication of JPS56100174A publication Critical patent/JPS56100174A/en
Publication of JPS5811388B2 publication Critical patent/JPS5811388B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はキャスタブル耐火組成物、具体的には、結合剤
として配合されるアルミナセメントの弊害を最小限度に
とどめると共に、高密度・高強度を有し、且つ水蒸気爆
裂の少ない施工性・作業性に優れた流し込み用不定形耐
火組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to minimize the adverse effects of castable refractory compositions, specifically alumina cement mixed as a binder, and which has high density and strength, and is resistant to steam explosion. This invention relates to a monolithic fire-resistant composition for pouring that has excellent workability and ease of construction.

アルミナセメント系の耐火物はアルミナセメントの水和
によって強度を発現するものであるが、この水和物は8
00〜1000℃の加熱脱水過程で強度最底となり、組
織劣化を生ずるところから、かかる温度域において容易
に焼結又はガラス相を生成させる例えばフリットを添加
することがある。
Alumina cement-based refractories develop strength through hydration of alumina cement, but this hydrate has a
Since the strength reaches its lowest point during the heating and dehydration process at 00 to 1000° C. and causes structural deterioration, for example, a frit may be added to easily form a sintering or glass phase in such a temperature range.

ところがこれによって耐高熱性は著しく損われるという
欠点があった。
However, this had the disadvantage that high heat resistance was significantly impaired.

またアルミン酸カルシウムを主鉱物とするアルミナセメ
ント中のCaOは、耐火分骨材や製鋼用スラグ、ポルト
ランドセメント等との反応により容易にアノルサイト (CaO−A12O3−2SiO2)やゲーレナイト(
2CaO−A12O3・5iO2)を生成するから、ア
ルミナセメントを多く使用することは耐火物の耐高熱性
を損うため望ましいものではない。
In addition, CaO in alumina cement, whose main mineral is calcium aluminate, easily forms anorthite (CaO-A12O3-2SiO2) and gehlenite (
2CaO-A12O3.5iO2) is produced, so it is not desirable to use a large amount of alumina cement because it impairs the high heat resistance of the refractory.

それにも拘らず、硬化体自体の強度を確保するためにこ
れ迄耐火性骨材に対して10%以上の添加はやむを得な
いこととされていた。
Nevertheless, in order to ensure the strength of the cured product itself, it has been considered unavoidable to add 10% or more of it to the fire-resistant aggregate.

一方、硬化体の組織が緻密であればある程、含有水分が
水蒸気となり硬化体の気孔を通って外部に逃げるのを困
難とするため、水蒸気圧は高くなり、該水蒸気圧が耐火
物の強度を上廻ると爆発音と共に剥離する現象を生ずる
ことが屡々生じた。
On the other hand, the denser the structure of the hardened material, the more difficult it is for the contained moisture to turn into water vapor and escape to the outside through the pores of the hardened material, resulting in a higher water vapor pressure. When the temperature was exceeded, the phenomenon of peeling together with an explosion sound often occurred.

そこで従来は金属アルミや繊維を添加して組織を弛め、
水蒸気を逃がしやすくする工夫こそなされてきたが、こ
のような手段をもってしては緻密組織を得ることが困難
であった。
Conventionally, metal aluminum or fibers were added to loosen the structure.
Efforts have been made to make it easier for water vapor to escape, but it has been difficult to obtain a dense structure using such means.

本発明の目的は上記した欠点を解消さすことができる流
し込み用不定形耐火組成物を提供することにある。
An object of the present invention is to provide a castable monolithic refractory composition that can eliminate the above-mentioned drawbacks.

本発明は二つの発明から成り、第1番目の発明は、5重
量%以下のアルミナセメントと2〜10重量%のシリカ
系超微粉末と残部は粒度調整した耐火性骨材とから成る
耐火性坏土に対して、0.05〜0.5重量%のリン酸
塩化合物と0.05〜1.0重量%のリチウム塩を添加
すると共に、上記シリカ系超微粉末とアルミナセメント
比は1または1より犬としたことを特徴とする流し込み
用不定形耐火組成物である。
The present invention consists of two inventions. The first invention is a fire-resistant material comprising 5% by weight or less of alumina cement, 2 to 10% by weight of ultrafine silica powder, and the remainder being refractory aggregate whose particle size has been adjusted. To the clay, 0.05 to 0.5% by weight of a phosphate compound and 0.05 to 1.0% by weight of a lithium salt were added, and the ratio of the silica-based ultrafine powder to alumina cement was 1. Or, it is an amorphous fireproof composition for pouring, characterized in that it is more dog-like than 1.

本発明で使用される耐火性骨材としては密充填を可能と
すべく粒度調整されたものであれば使用目的に応じて塩
基性、酸性質を問わず適宜選択使用することができる。
The refractory aggregate used in the present invention may be appropriately selected depending on the purpose of use, regardless of its basicity or acidity, as long as the particle size has been adjusted to enable close packing.

アルミナセメントも従来使用されているもので充分であ
る。
Conventionally used alumina cement is also sufficient.

アルミナセメントの添加量は可及的少量が好ましいこと
前述のとおりである。
As mentioned above, the amount of alumina cement added is preferably as small as possible.

本発明においてアルミナセメントの添加量を5重量%以
下とするのは、5重量%を越えると1000℃付近での
強度劣化あるいは耐熱性・耐食性が損われて、本発明の
効果を得られなくなるからである。
The reason why the amount of alumina cement added in the present invention is 5% by weight or less is because if it exceeds 5% by weight, strength will deteriorate near 1000°C or heat resistance and corrosion resistance will be impaired, making it impossible to obtain the effects of the present invention. It is.

常温強度の発現のためには2重量%以上であることが望
ましい。
In order to develop strength at room temperature, the content is preferably 2% by weight or more.

つぎにシリカ系超微粉末について述べると、これは後述
する他の添加剤との併用により流動性を著しく増大させ
従って添加水分量を少なくできて、高密度硬化体を得る
のに極めて有効である。
Next, let's talk about silica-based ultrafine powder. When used in combination with other additives described below, it can significantly increase fluidity and therefore reduce the amount of added water, making it extremely effective for obtaining high-density cured products. .

超微粉末の粒径は5μ以下とすることがよく、粒径が大
きくなると、上記した少量の水分量では流し込みが不可
能で、結局、従来差みの水分量を必要とするため、結果
的には高密産品を得ることができな(なるので注意を要
する。
The particle size of the ultrafine powder is preferably 5μ or less; if the particle size becomes large, it is impossible to pour it with the small amount of moisture mentioned above, and as a result, a higher amount of moisture than before is required. You must be careful because you will not be able to obtain high-density products.

シリカ系超微粉末は通常技術で得られる実質シリカ分が
50%以上含有する天然品、人工量が利用でき、珪石超
微粉末、技工木節粘土超微粉末、気化性シリカ、シリカ
フラワー等の一種あるいは二種以上を組合わせて使用す
ることができる。
Silica-based ultrafine powders can be obtained in natural products containing 50% or more of real silica by conventional techniques, or in artificial amounts, such as silica ultrafine powder, technical Kibushi clay ultrafine powder, vaporizable silica, silica flour, etc. One kind or a combination of two or more kinds can be used.

本発明においてシリカ系超微粉末の添加量を2〜10重
量%と特定した理由は、2重量%以下の添加量では前述
した流動性の著しい増大という効果を発現しないし、ま
た10重量%を越えると耐熱性を悪化させるからである
The reason why the amount of silica-based ultrafine powder added in the present invention is specified as 2 to 10% by weight is that if the amount added is less than 2% by weight, the above-mentioned effect of significantly increasing fluidity will not be achieved. This is because if it exceeds this, heat resistance will deteriorate.

本発明においては、また、シリカ系超微粉末とアルミナ
セメント比は1または1より犬とすると特定しているが
、この比が1より小さいと硬化速度が早きに過ぎ、特に
この傾向は気温が高くなると顕著であって、この為施工
性を阻害することになるからである。
In the present invention, the ratio of silica-based ultrafine powder to alumina cement is specified to be 1 or more than 1, but if this ratio is less than 1, the curing speed is too fast, and this tendency is particularly This is because the higher the value, the more noticeable it becomes, and this impedes workability.

つぎにリン酸塩化合物について説明すると、これは前述
したシリカ系超微粉末および後述するリチウム塩との相
乗効果により組成物の流動性を低水分でも良好ならしめ
ると共に、硬化体の結合強度を向上させる一役を荷なう
ものである。
Next, I will explain about the phosphate compound.It has a synergistic effect with the silica-based ultrafine powder mentioned above and the lithium salt mentioned below, which improves the fluidity of the composition even at low moisture levels, and improves the bonding strength of the cured product. It plays a role in making this happen.

このリン酸塩化合物は低融点物質であるから、多量に使
うと耐熱性を劣化することはいう迄もないが、多くても
少くても施工性、流動性を悪化させる性質がある。
Since this phosphate compound is a low melting point substance, it goes without saying that heat resistance deteriorates when used in large amounts, but it also has the property of deteriorating workability and fluidity when used in large amounts or in small amounts.

本発明においてリン酸塩化合物の添加量を上記耐火性坏
土に対して0.05〜0.5重量%とした理由について
はつぎのとおりである。
The reason why the amount of the phosphate compound added in the present invention is set to 0.05 to 0.5% by weight based on the fire-resistant clay is as follows.

すなわちリン酸塩化合物の添加量が0.05重量%以下
では硬化体の結合強度の向上も見るものがないし、施工
性も悪く、多量の水分を必要とするので好ましくない。
That is, if the amount of the phosphate compound added is less than 0.05% by weight, there is no improvement in the bonding strength of the cured product, the workability is poor, and a large amount of water is required, which is not preferable.

また0、5重量%を越えると結合強度の向上は得られる
が施工性が悪くなり、結果的に多量の水分を必要として
高密度製品は得られないばかりか、耐熱性も悪くなる。
If the amount exceeds 0.5% by weight, the bonding strength can be improved, but the workability deteriorates, and as a result, a large amount of water is required, making it impossible to obtain a high-density product, and the heat resistance also deteriorates.

添加量が0.05〜0.5重量%の範囲にあるものだけ
が流動性の点も強度、耐熱性の点も共に満足させること
ができるからである。
This is because only when the amount added is in the range of 0.05 to 0.5% by weight, fluidity, strength, and heat resistance can be satisfied.

一般式xM2O・yP2O5で示されるリン酸塩化合物
はx/yあるいはMによって種々のものがあるが、容易
に水に溶けるもの、例えばヘキサメタリン酸ソーダ、ピ
ロリン酸ソーダ、テトラポリリン酸ソーダ、トリポリリ
ン酸ソーダ、可溶性リン酸ガラス等が好適である。
There are various phosphate compounds represented by the general formula xM2O・yP2O5 depending on x/y or M, but those that are easily soluble in water include sodium hexametaphosphate, sodium pyrophosphate, sodium tetrapolyphosphate, and sodium tripolyphosphate. , soluble phosphate glass, etc. are suitable.

本発明では上記の混合物坏土にさらにリチウム塩を加え
るものである。
In the present invention, a lithium salt is further added to the above-mentioned mixture.

リチウム塩の添加によって硬化体の強度増加が期待でき
る。
Addition of lithium salt can be expected to increase the strength of the cured product.

リチウム塩が硬化体の強度増加に及ぼす機構の詳細は不
明であるが、リチウム塩のみの添加では差したる効果は
得られないことが実験かられかっている。
The details of the mechanism by which lithium salt increases the strength of the cured product are unknown, but experiments have shown that addition of lithium salt alone does not produce any significant effect.

リチウム塩の添加量としては0.05重量%未満では強
度向上が認められず、1.0重量%を越えると耐熱性を
損うので0.05〜1.0重量%の範囲とすべきである
If the amount of lithium salt added is less than 0.05% by weight, no improvement in strength will be observed, and if it exceeds 1.0% by weight, heat resistance will be impaired, so it should be in the range of 0.05 to 1.0% by weight. be.

リチウム塩としては炭酸リチウム、ホウ酸リチウム、フ
ッ化リチウム等が使用できる。
As the lithium salt, lithium carbonate, lithium borate, lithium fluoride, etc. can be used.

以上述べた第1番目の発明は、アルミナセメント量を5
重量%以下としたことによって得られた耐火物の耐高熱
性や耐食性を損なわないようにできると共に、シリカ系
超微粉末、リン酸塩化合物、リチウム塩の相乗効果によ
って硬化体自体の強度を充分に確保し且また流動性の顕
著な向上によって添加水分量を少なくできて高密度製品
たらしめる点で甚だ優れている。
The first invention described above reduces the amount of alumina cement to 5
By setting the content to less than 1% by weight, the high heat resistance and corrosion resistance of the obtained refractory are not impaired, and the synergistic effect of the ultrafine silica powder, phosphate compound, and lithium salt increases the strength of the cured product itself. It is extremely superior in that it can ensure a high density product and can reduce the amount of added water due to the remarkable improvement in fluidity.

第2番目の発明は第1番目の発明の構成に欠くことがで
きない事項の全部をその構成に欠くことのできない事項
の主要部としている発明であって、第1番目の発明の組
成物に、さらに0.1〜1.0重量%の範囲でフェノー
ル樹脂を添加するものである。
The second invention is an invention in which all of the essential features of the first invention are the main parts of the composition, and the composition of the first invention includes: Furthermore, a phenol resin is added in a range of 0.1 to 1.0% by weight.

フェノール樹脂はレゾールタイプあるいはノボラックタ
イプ何れでも使用できるが、粉末状のものが望ましい。
The phenol resin can be either a resol type or a novolac type, but a powdered one is preferable.

フェノール樹脂の使用量が0.1重量%未満であると所
期の効果が期待できない。
If the amount of phenol resin used is less than 0.1% by weight, the desired effect cannot be expected.

また1、0重量%を越えると気孔率が増し、熱間強ゑ度
を阻害することになる。
Moreover, if it exceeds 1.0% by weight, the porosity increases and hot strength is inhibited.

第2番目の発明は施工性を損わず高密度・高強度を有し
、しかもフェノール樹脂の軟化分解と水蒸気圧との関係
から、詳細な理由は不明であるが、水蒸気爆裂防止に対
して優れた性状を奏せしめることができる。
The second invention has high density and high strength without impairing workability, and because of the relationship between the softening and decomposition of phenolic resin and steam pressure, the detailed reason is unknown, but it is effective in preventing steam explosions. It can exhibit excellent properties.

以下に実施例を示す。Examples are shown below.

実施例 1 表1に配合割合及び試験結果を示す。Example 1 Table 1 shows the blending ratio and test results.

各試験体は40×40×160mmの形状に流し込み、
24時間養生後、脱枠し、各温度によって加熱処理を施
したものである。
Each test specimen was poured into a shape of 40 x 40 x 160 mm,
After curing for 24 hours, the frames were removed and heat treated at various temperatures.

本発明品A、Bを従来品Fと比較すると、添加水分量は
約1割少ないにも拘らず、施工性の目安となるフロー値
は大差なく、気孔率が小さく、高密度・高強度品が得ら
れることが理解できる。
Comparing products A and B of the present invention with conventional product F, it is found that although the amount of added water is approximately 10% less, the flow value, which is a guide for workability, is not significantly different, and the porosity is small, and the product is high density and high strength. It is understood that this can be obtained.

また比較量の試験結果からは、シリカフラワーとアルミ
ナセメント比が1より小さい比較量Cでは30分後のフ
ロー値が100、即ち流れなくなり、作業性に難点があ
ることが、またリチウム塩を添加しない比較量りでは乾
燥後の強度が著しく小さいことが、更にシリカフラワー
及びアルミナセメントが多い比較量Eでは熱間強度が著
しく低く、耐熱性、耐食性の面からも好ましくないこと
が、それぞれわかる。
In addition, the test results for comparative quantities show that in comparative quantity C, where the ratio of silica flour to alumina cement is less than 1, the flow value after 30 minutes is 100, that is, there is no flow, and there is a problem in workability. It can be seen that the strength after drying is extremely low in the comparative weighing without it, and the hot strength is extremely low in the comparative amount E, which contains a large amount of silica flour and alumina cement, which is unfavorable from the standpoint of heat resistance and corrosion resistance.

実施例 2 表2に示す配合割合でもって、実施例1に準じて試験し
たところ、下表の結果を得た。
Example 2 A test was conducted according to Example 1 using the blending ratios shown in Table 2, and the results shown in the table below were obtained.

本発明品Gは従来品Kに比べ添加水分量が約1割減少し
ているにも拘らずフロー値は大差ないこと、前記A、B
の場合と同じで、気孔率が小さく、高密度・高強度品で
あることがわかる。
Although the amount of added water in the product G of the present invention is reduced by about 10% compared to the conventional product K, the flow value is not significantly different;
As in the case of , it can be seen that the porosity is small, and it is a high-density and high-strength product.

一方、比較量H1■、Jからは技工木節粘土、ピロリン
酸ソーダ、ホウ酸リチウムの何れかが欠けても、高密度
・高強度品は得られないことがわかる。
On the other hand, from the comparative amounts H1■ and J, it can be seen that even if any one of the technical Kibushi clay, sodium pyrophosphate, and lithium borate is missing, a high-density and high-strength product cannot be obtained.

実施例 3 表3に示す配合割合でもって実施例1に準じて試験した
ところ、下表の結果を得た。
Example 3 Tests were conducted according to Example 1 using the blending ratios shown in Table 3, and the results shown in the table below were obtained.

上表より本発明品り、M、Nでは緻密で強度の大巾な向
上が見られるほか、アルミナセメント量が多くなると熱
間強度を低下さすことがわかる。
From the table above, it can be seen that the products of the present invention, M and N, are dense and have a large improvement in strength, and that as the amount of alumina cement increases, the hot strength decreases.

実施例 4 表4に示す配合割合でもって実施例1に準じて試験した
ほか、爆裂試験を行った。
Example 4 In addition to testing in accordance with Example 1 using the blending ratios shown in Table 4, an explosion test was also conducted.

爆裂試験は200×230×130mmの形にバイブレ
ータ−を使用して流し込み、1日養生後、脱枠し、つぎ
にこれを200×230mmの面が加熱面になるように
爆裂炉にセットし、重油バーナーを用いて表面温度で8
00℃/hrの速度になるように調整しながら1000
℃まで昇温した。
For the explosion test, it was poured into a 200 x 230 x 130 mm shape using a vibrator, and after one day of curing, it was removed from the frame, and then set in an explosion furnace so that the 200 x 230 mm surface became the heating surface. 8 at surface temperature using heavy oil burner
1000 while adjusting the speed to 00℃/hr.
The temperature was raised to ℃.

フェノール樹脂粉末を0.1〜1.0重量%添加した本
発明品Q、R,Sは何れも水蒸気爆裂を生じなかった。
None of the products Q, R, and S of the present invention to which 0.1 to 1.0% by weight of phenolic resin powder was added caused steam explosion.

これに対して0.1重量%未満の比較量Uでは40分後
に爆裂したし、また1、0重量%を越えた比較量Tでは
爆裂はしなかったが強度低下、気孔率増大という望まし
くない結果しか得られなかった。
On the other hand, when the comparative amount U was less than 0.1% by weight, it exploded after 40 minutes, and when the comparative amount T was more than 1.0% by weight, it did not explode, but the strength decreased and the porosity increased, which is undesirable. All I got was results.

Claims (1)

【特許請求の範囲】 15重量%以下のアルミナセメントと2〜10重量%の
シリカ系超微粉末と残部は粒度調整した耐火性骨材とか
ら成る耐火性坏土に対して、0.05〜0.5重量%の
リン酸塩化合物と0.05〜1.0重量%のリチウム塩
を添加すると共に、上記シリカ系超微粉末とアルミナセ
メント比は1または1より犬としたことを特徴とする流
し込み用不定形耐火組成物。 25重量%以下のアルミナセメントと2〜10重量%の
シリカ系超微粉末と残部は粒度調整した耐火性骨材とか
ら成る耐火性坏土に対して、0.05〜0.5重量%の
リン酸塩化合物と0.05〜1.0重量%のリチウム塩
を添加すると共に、上記シリカ系超微粉末とアルミナセ
メント比は1または1より大となし、更に0.1〜1.
0重量%のフェノール樹脂を加えたことを特徴とする流
し込み用不定形耐火組成物。
[Claims] 0.05 to 0.05 to 0.05 to 0.05 to 0.05 to 0.05 to 0.05 to 0.05 to 0.05 to 0.5% by weight of a phosphate compound and 0.05 to 1.0% by weight of a lithium salt are added, and the ratio of the silica-based ultrafine powder to alumina cement is 1 or less than 1. A monolithic refractory composition for pouring. 0.05 to 0.5% by weight of a refractory clay consisting of 25% by weight or less of alumina cement, 2 to 10% by weight of ultrafine silica powder, and the remainder being refractory aggregate with adjusted particle size. In addition to adding a phosphate compound and 0.05 to 1.0% by weight of lithium salt, the ratio of the silica-based ultrafine powder to alumina cement is 1 or greater than 1, and further 0.1 to 1.0% by weight.
A monolithic fireproof composition for pouring, characterized in that 0% by weight of phenolic resin is added.
JP55003373A 1980-01-16 1980-01-16 Amorphous fireproof composition for pouring Expired JPS5811388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55003373A JPS5811388B2 (en) 1980-01-16 1980-01-16 Amorphous fireproof composition for pouring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55003373A JPS5811388B2 (en) 1980-01-16 1980-01-16 Amorphous fireproof composition for pouring

Publications (2)

Publication Number Publication Date
JPS56100174A JPS56100174A (en) 1981-08-11
JPS5811388B2 true JPS5811388B2 (en) 1983-03-02

Family

ID=11555541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55003373A Expired JPS5811388B2 (en) 1980-01-16 1980-01-16 Amorphous fireproof composition for pouring

Country Status (1)

Country Link
JP (1) JPS5811388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286698A (en) * 1988-02-24 1989-11-17 Canon Inc Speaker enclosure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899177A (en) * 1981-12-08 1983-06-13 川崎製鉄株式会社 Indefinite form refractory composition
JPS5950081A (en) * 1982-09-14 1984-03-22 ハリマセラミック株式会社 Castable refractories
CA1247151A (en) * 1985-06-24 1988-12-20 Thomas R. Kleeb Abrasion resistant refractory composition
JP7282539B2 (en) * 2018-02-09 2023-05-29 Agcセラミックス株式会社 Monolithic refractory composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286698A (en) * 1988-02-24 1989-11-17 Canon Inc Speaker enclosure

Also Published As

Publication number Publication date
JPS56100174A (en) 1981-08-11

Similar Documents

Publication Publication Date Title
US4244745A (en) High-strength refractory casting compound for the manufacture of monolithic linings
US4755228A (en) Molding material
JP7341771B2 (en) castable refractories
JPS5811388B2 (en) Amorphous fireproof composition for pouring
CA2220430A1 (en) Control of expansion in concrete due to alkali silica reaction
US2597370A (en) Cement lining for metal pipe
CN110423103A (en) A kind of middle water containing opening environmentally friendly chamotte and preparation method thereof
JPS6060985A (en) Refractory composition for ladle lining
US5055433A (en) Refractory having high resistance to corrosion and spalling and manufacturing method thereof
KR100417706B1 (en) Refractory Composition of Magnesia Dam Block
KR860001760B1 (en) Refractory casterble
US4149897A (en) Refractory composition
JPH0357067B2 (en)
JPH06199575A (en) Alumina-spinel castable refractory
JPH0952755A (en) Magnesia-chrome refractory
JPS591233B2 (en) High zircon vibration molding material
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
SU489745A1 (en) Concrete mix
RU2267472C2 (en) Refractory mass for cladding of blast furnace trunks
SU1102785A1 (en) Concrete mix
JPS6323149B2 (en)
JP2023150262A (en) Castable refractory
JPS5857391B2 (en) Silicon carbide refractory mixture
JPS6140622B2 (en)
SU947139A1 (en) Batch for making refractory