JPS5950081A - Castable refractories - Google Patents

Castable refractories

Info

Publication number
JPS5950081A
JPS5950081A JP57160569A JP16056982A JPS5950081A JP S5950081 A JPS5950081 A JP S5950081A JP 57160569 A JP57160569 A JP 57160569A JP 16056982 A JP16056982 A JP 16056982A JP S5950081 A JPS5950081 A JP S5950081A
Authority
JP
Japan
Prior art keywords
particle size
fine powder
refractory
less
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57160569A
Other languages
Japanese (ja)
Other versions
JPH0158156B2 (en
Inventor
古川 邦男
利幸 鈴木
利弘 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP57160569A priority Critical patent/JPS5950081A/en
Publication of JPS5950081A publication Critical patent/JPS5950081A/en
Publication of JPH0158156B2 publication Critical patent/JPH0158156B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は強度、耐熱衝撃性および施工性にすぐれたキャ
スタブル耐火物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a castable refractory having excellent strength, thermal shock resistance and workability.

通常、キャスタゾル耐火物は、バインダーとして多量の
アルミナセメントが添加されているため、使用中の高温
時にセメント中のCaO成分が液相を生成し、キャスタ
ブル耐火物の強度および耐熱衝撃性を低下させている。
Castasol refractories usually have a large amount of alumina cement added as a binder, so the CaO component in the cement forms a liquid phase at high temperatures during use, reducing the strength and thermal shock resistance of castasol refractories. There is.

このため、アルミナセメント量を減らし、耐火性微粉末
と分散剤とを添加することが知られているが、従来は加
水混線後の硬化が速り、鋳込施工するまでの可使時間が
十′分得られず、特に取鍋、タンプッシュなどの大型の
溶融金属容器を施工する場合は、一度に混線できないな
どの不都合がある。また、従来のものは施工後の強度お
よび耐熱衝撃性が不十分であった。
For this reason, it is known to reduce the amount of alumina cement and add refractory fine powder and dispersant, but in the past, the curing after mixing with water was accelerated, and the pot life until casting was insufficient. Particularly when constructing large molten metal containers such as ladles and tank pushers, there are inconveniences such as the inability to cross-wire all at once. In addition, conventional products had insufficient strength and thermal shock resistance after construction.

本発明者らは、研究の結果、骨材、セメント、耐火性微
粉末の粒度および添加量を特定の範囲に限定することに
よシ、キャスタブル耐火物がもつ上記従来の欠点を一挙
に解決したものである。
As a result of research, the present inventors have solved the above-mentioned conventional drawbacks of castable refractories at once by limiting the particle size and addition amount of aggregate, cement, and refractory fine powder to specific ranges. It is something.

すなわち本発明は、下記(4)、 03) 、 (c’
l 、 (D)およびチ。
That is, the present invention provides the following (4), 03), (c'
l, (D) and chi.

(B)粒子径が5〜0.1μのアルミナ、酸化クロム、
ジルコンおよびジルコニアから選ばれた1種また′は2
種以上の微粉を15〜Q、5wt%。
(B) Alumina, chromium oxide with a particle size of 5 to 0.1μ,
One or two selected from zircon and zirconia
15-Q, 5wt% fine powder of seeds or higher.

(Cり粒子径が100〜2μのアルミナセメントまたは
マグネシアを7〜Q、5wt%。
(7-Q, 5 wt% of alumina cement or magnesia with carbon grain size of 100-2μ.

(ロ)前記(ト)、(B)および(C)の残部を粒子径
が1 mm−1μの耐火性原料。
(B) The remainder of (G), (B) and (C) above is used as a refractory raw material with a particle size of 1 mm-1μ.

(純分散剤を外掛で0.5wt%以下。(0.5 wt% or less of pure dispersant.

骨材としては酸性、中性、塩基性の金属酸化物あるいは
炭素、炭化物、窒化物など、周知の耐火性原料から選ば
れた1種または2種以上を用いる。
As the aggregate, one or more types selected from well-known refractory raw materials such as acidic, neutral, and basic metal oxides, carbon, carbides, and nitrides are used.

最大粒子径が15闘を超えると施工時の流動性が低下す
る。1朋以上の割合が70 vt%を超えると、微粉の
割合が相対的に不足し、マトリックス部の充填性が悪く
なって高強度が得られない。また、微粉量が少なくなる
ことで、施工時の流動性に劣る。40 wt%未満では
、逆に微粉が多いためにマトリックス部が連続した一体
化組織となり、耐熱衝撃性に劣る。
If the maximum particle size exceeds 15 mm, fluidity during construction will decrease. If the proportion of 1 or more particles exceeds 70 vt%, the proportion of fine powder becomes relatively insufficient, the filling property of the matrix portion deteriorates, and high strength cannot be obtained. In addition, because the amount of fine powder is reduced, fluidity during construction is poor. If it is less than 40 wt%, on the other hand, there is a large amount of fine powder, so that the matrix portion becomes a continuous integrated structure, resulting in poor thermal shock resistance.

アルミナ、酸化クロム、ジルコンおよびジルコニアから
選ばれた1種または2種以上からなる微粉は、分散剤に
よ多分散した後、バインダーから溶出したCa++、あ
るいはMg++のイオンの作用によるファンデルワール
ス力現象で強固な結合を発現するものである。しかし、
この粒子径が5μを超えると施工時の流動性が低下して
マトリックス部の充填性に劣る。また、o、iμ未満で
は水利反応が速く、さらに凝集力が太きいために可使時
間が短く、施工性が悪い。特に気温が高く々る夏場にお
いては、従来のものではこの可使時間が殆どなく、何ん
らかの冷却手段を用いないと施工でき々いのが実情であ
る。配合割合は、15 wt%を超えると乾燥・加熱収
縮によるきれっの発生が著しく、さらに耐熱衝撃性に劣
る。0.5 wt%未満では微粉添加の効果がなく、強
度が不十分となる。
Fine powder consisting of one or more selected from alumina, chromium oxide, zircon and zirconia is polydispersed in a dispersant and then van der Waals force phenomenon occurs due to the action of Ca++ or Mg++ ions eluted from the binder. It expresses a strong bond. but,
If the particle size exceeds 5 μm, the fluidity during application will be reduced and the filling properties of the matrix portion will be poor. Moreover, if it is less than o, iμ, the water utilization reaction is fast, and furthermore, the cohesive force is large, so the pot life is short and the workability is poor. Particularly in the summer when the temperature is high, conventional products have almost no pot life, and the reality is that they cannot be used without some kind of cooling means. If the blending ratio exceeds 15 wt%, cracking will occur significantly due to drying and heating shrinkage, and furthermore, thermal shock resistance will be poor. If the amount is less than 0.5 wt%, the addition of fine powder has no effect and the strength becomes insufficient.

バインダーとして配合するアルミナセメントまたはマグ
ネシアは、粒子径が2μ未満ではアルミナセメントから
のCa++イオンあるいはマグネシアからのMg+1イ
オンの溶出速度が大きくなり、しかも添加水との水利反
応によって可使時間を著しく短くする。100μを超え
ると表面積が少なくなってバインダーとしての効力がな
くな9、好ましくない。またその配合割合は7 wt%
を超えると耐食性、耐熱衝撃性に劣り、o、5wt%未
満では添加の効果がない。
If the alumina cement or magnesia used as a binder has a particle size of less than 2μ, the elution rate of Ca++ ions from the alumina cement or Mg+1 ions from the magnesia will increase, and furthermore, the pot life will be significantly shortened due to the water use reaction with the added water. . If it exceeds 100μ, the surface area decreases and the binder becomes ineffective9, which is not preferable. The blending ratio is 7 wt%
If it exceeds 5 wt %, the corrosion resistance and thermal shock resistance will be poor, and if it is less than 5 wt %, the addition will have no effect.

残部を占める1朋〜1μの耐火原料は、前記の1 ys
m以上の耐火性原料と同様、酸性、中性、塩基性の金属
酸化物、あるいは炭素、炭化物、窒化物などから選ばれ
た1種または2種以上を用いる。
The remaining refractory raw material with a thickness of 1 to 1μ is the above-mentioned 1ys
As with the refractory raw materials of m or more, one or more selected from acidic, neutral, basic metal oxides, carbon, carbides, nitrides, etc. are used.

この残部は粒径的に中間粒子として耐火物組織の密充填
化を図る。
The remainder serves as intermediate particles in terms of particle size and is used to densely pack the refractory structure.

分散剤は、例えばリグニンスルフオン酸ソーダ、アルキ
ルベンゼンスルフオン酸ソーダ、ポリアクリル酸ソーダ
、テトラポリシん酸ソーダ、トリポリりん酸ソーダ、ヘ
キサメタシん酸ソーダ、ウルトラポリシん酸ソーダなど
があシ、これらの1種または2種以上を使用する。外掛
で0.5wt%未満、好ましくは0.03〜0.3 w
t%添加する。Q、 5 wt%を超えると硬化に時間
がかが多すぎる。
Examples of the dispersant include sodium lignin sulfonate, sodium alkylbenzene sulfonate, sodium polyacrylate, sodium tetrapolysinate, sodium tripolyphosphate, sodium hexametasinate, and sodium ultrapolysinate. Use one or more species. Less than 0.5 wt% on the outside, preferably 0.03 to 0.3 w
Add t%. Q. If it exceeds 5 wt%, it takes too much time to cure.

本発明のキャスタブル耐火物の施工法は、従来のものと
格別具なるところはなく、各原料を所定(5) の割合で混合し、水分を外掛で3〜7wt%程度添加し
て混練した後、施工対象となる型枠、炉壁などに鋳込み
、あるいは圧入などによって施工する。
The method for constructing castable refractories of the present invention is not particularly different from conventional methods; each raw material is mixed in a predetermined ratio (5), water is added in an amount of 3 to 7 wt%, and then kneaded. , It is constructed by casting or press-fitting into the formwork, furnace wall, etc. to be constructed.

前にも述べたように、本発明のキャスタブル耐火物は可
使時間が長いために一度に多量に混練しても硬化する心
配がないから施工能率がよく、また長時間、流動性を保
つことで充填性にすぐれ、かつ、強度、耐熱衝撃性にも
すぐれている。したがって、例えば取鍋、タンプッシュ
、転炉、真空脱ガス炉などのように大型で、しかも操業
条件の苛酷な工業宮炉の炉材として好適である。
As mentioned before, the castable refractory of the present invention has a long pot life, so there is no need to worry about hardening even if a large amount is kneaded at one time, so construction efficiency is high, and it maintains fluidity for a long time. It has excellent filling properties, strength, and thermal shock resistance. Therefore, it is suitable as a furnace material for industrial furnaces that are large and have severe operating conditions, such as ladles, tank pushers, converters, vacuum degassing furnaces, and the like.

つぎに、本発明実施例とその比較例をあげ、それぞれの
物性について試験し、その結果を第1〜第3表に示す。
Next, examples of the present invention and comparative examples thereof are listed, and their physical properties are tested, and the results are shown in Tables 1 to 3.

(6)(6)

Claims (1)

【特許請求の範囲】 下記(4)、 (B) 、 (c) 、 (D)および
(ト)からなるキャスタブル耐火物。 (4)粒+□、8□5〜1゜3.)4火性。料オフ。〜
4o妙チ。 (B)粒子径が5〜0.1μのアルミナ、酸化クロム、
ジルコンおよびジルコニアから選ばれた1種または2種
以上の微粉を15〜0.5 wtチ。 (C)粒子径が100〜2μのアルミナセメントまたは
マグネシアを7〜0,5wt%。 (2)前記(A) 、 (B)および(C)の残部を粒
子径が1朋〜1μの耐火性原料。 (ト)分散剤を外掛で0.5wt%以下。
[Scope of Claims] A castable refractory comprising the following (4), (B), (c), (D) and (g). (4) Grains +□, 8□5~1°3. ) 4 flammable. Fee off. ~
4o myochi. (B) Alumina, chromium oxide with a particle size of 5 to 0.1μ,
15 to 0.5 wt of one or more types of fine powder selected from zircon and zirconia. (C) 7 to 0.5 wt% of alumina cement or magnesia with a particle size of 100 to 2 μm. (2) A refractory raw material containing the remainder of (A), (B) and (C) above and having a particle size of 1 to 1 μm. (g) The amount of dispersant is 0.5 wt% or less.
JP57160569A 1982-09-14 1982-09-14 Castable refractories Granted JPS5950081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57160569A JPS5950081A (en) 1982-09-14 1982-09-14 Castable refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57160569A JPS5950081A (en) 1982-09-14 1982-09-14 Castable refractories

Publications (2)

Publication Number Publication Date
JPS5950081A true JPS5950081A (en) 1984-03-22
JPH0158156B2 JPH0158156B2 (en) 1989-12-08

Family

ID=15717802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57160569A Granted JPS5950081A (en) 1982-09-14 1982-09-14 Castable refractories

Country Status (1)

Country Link
JP (1) JPS5950081A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301552A (en) * 1987-09-29 1989-12-05 General Electric Co <Ge> Aluminum phosphate cement composition and lamp assembly composed thereof
JPH03177365A (en) * 1989-12-05 1991-08-01 Ngk Insulators Ltd Monolithic refractory for molten aluminum metal
JPH05238839A (en) * 1992-02-28 1993-09-17 Harima Ceramic Co Ltd Alumina-magnesia refractory for casting
JPH06293570A (en) * 1993-04-08 1994-10-21 Ngk Insulators Ltd Alumina chromia castable refractory and precast block using
JP2015512855A (en) * 2012-03-07 2015-04-30 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Self-leveling concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545519A (en) * 1978-09-22 1980-03-31 Showa Electric Wire & Cable Co Ltd Steel sleeve position detecting method
JPS56100174A (en) * 1980-01-16 1981-08-11 Osaka Yougiyou Taika Renga Kk Indefinite form refractory composition for flowwin
JPS5721781A (en) * 1980-07-15 1982-02-04 Asahi Glass Co Ltd Construction of hearth or wall of furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545519A (en) * 1978-09-22 1980-03-31 Showa Electric Wire & Cable Co Ltd Steel sleeve position detecting method
JPS56100174A (en) * 1980-01-16 1981-08-11 Osaka Yougiyou Taika Renga Kk Indefinite form refractory composition for flowwin
JPS5721781A (en) * 1980-07-15 1982-02-04 Asahi Glass Co Ltd Construction of hearth or wall of furnace

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301552A (en) * 1987-09-29 1989-12-05 General Electric Co <Ge> Aluminum phosphate cement composition and lamp assembly composed thereof
JPH03177365A (en) * 1989-12-05 1991-08-01 Ngk Insulators Ltd Monolithic refractory for molten aluminum metal
JPH05238839A (en) * 1992-02-28 1993-09-17 Harima Ceramic Co Ltd Alumina-magnesia refractory for casting
JP2552980B2 (en) * 1992-02-28 1996-11-13 ハリマセラミック株式会社 Alumina-magnesia cast refractory
JPH06293570A (en) * 1993-04-08 1994-10-21 Ngk Insulators Ltd Alumina chromia castable refractory and precast block using
JP2601129B2 (en) * 1993-04-08 1997-04-16 日本碍子株式会社 Alumina-chromia castable refractory and precast block using it
JP2015512855A (en) * 2012-03-07 2015-04-30 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Self-leveling concrete

Also Published As

Publication number Publication date
JPH0158156B2 (en) 1989-12-08

Similar Documents

Publication Publication Date Title
JPH0420871B2 (en)
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP2920726B2 (en) Cast refractories
JPH04119962A (en) Magnesia-carbon refractories
JPS5950081A (en) Castable refractories
WO1992018440A1 (en) Unshaped alumina spinel refractory
JP2601129B2 (en) Alumina-chromia castable refractory and precast block using it
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
US3285760A (en) Refractory
JPS6060985A (en) Refractory composition for ladle lining
JP2607918B2 (en) Pouring refractories
JP2617086B2 (en) Silicon carbide casting material
JP2562767B2 (en) Pouring refractories
US3678143A (en) Use of refractory parting layer to aid skull removal from furnace linings
JPH06321628A (en) Alumina-chromia-zircon-based sintered refractory brick
JP3579231B2 (en) Zirconia / graphite refractories containing boron nitride
JP2747734B2 (en) Carbon containing refractories
JP2607963B2 (en) Pouring refractories
JP3014775B2 (en) Pouring refractory
JPH07330450A (en) Flow-in refractory material
JPS63218586A (en) Monolithic refractories
JPS5849669A (en) Anticorrosive indefinite form refractories
JP2000203931A (en) Magnesia-carbon slide gate plate
JPH1025167A (en) Refractory for casting using magnesia-based coarse grain
JPH07291748A (en) Executing method of monolithic refractory