JP7341771B2 - castable refractories - Google Patents

castable refractories Download PDF

Info

Publication number
JP7341771B2
JP7341771B2 JP2019138820A JP2019138820A JP7341771B2 JP 7341771 B2 JP7341771 B2 JP 7341771B2 JP 2019138820 A JP2019138820 A JP 2019138820A JP 2019138820 A JP2019138820 A JP 2019138820A JP 7341771 B2 JP7341771 B2 JP 7341771B2
Authority
JP
Japan
Prior art keywords
refractory
mass
amount
castable
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019138820A
Other languages
Japanese (ja)
Other versions
JP2021020829A (en
Inventor
豊司 栗田
文数 神野
渉吾 畑
建太 澤近
智史 日永田
Original Assignee
大光炉材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大光炉材株式会社 filed Critical 大光炉材株式会社
Priority to JP2019138820A priority Critical patent/JP7341771B2/en
Publication of JP2021020829A publication Critical patent/JP2021020829A/en
Application granted granted Critical
Publication of JP7341771B2 publication Critical patent/JP7341771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はキャスタブル耐火物、特に均熱炉や熱処理炉、鋼片加熱炉のスキッドポスト、スキッドビーム等で使用される断熱性のキャスタブル耐火物に関する。 The present invention relates to castable refractories, particularly heat-insulating castable refractories used in soaking furnaces, heat treatment furnaces, skid posts, skid beams, etc. of billet heating furnaces.

アルミナ微粉とアルミナセメントとを配合したキャスタブル耐火物では、1400℃以上の高温雰囲気下においてマトリックス部にCaO・6Al2O3(以下CA6と略する。)が生成する際に体積膨張を起こすため、亀裂、剥離、せり出し等の問題が発生することが知られている。 Castable refractories containing fine alumina powder and alumina cement undergo volumetric expansion when CaO・6Al 2 O 3 (hereinafter abbreviated as CA6) is generated in the matrix in a high-temperature atmosphere of 1400°C or higher. It is known that problems such as cracking, peeling, and protrusion occur.

一方で1200℃雰囲気下においても、マトリックス部にCaO・2Al2O3(以下CA2と略する。)が生成し、この際にも体積膨張を起こす。しかしCA6の生成膨張に比べて、CA2の生成膨張にはあまり着目されていない。 On the other hand, even in an atmosphere of 1200°C, CaO.2Al 2 O 3 (hereinafter abbreviated as CA2) is generated in the matrix, and volumetric expansion also occurs at this time. However, compared to the production and expansion of CA6, less attention has been paid to the production and expansion of CA2.

CA2の生成膨張はキャスタブル耐火物の中でも特に、断熱性キャスタブル耐火物において問題となる。断熱性キャスタブル耐火物は近年、断熱性骨材として軽量で気孔率の高いCA6骨材や中空アルミナ骨材が使用されることが多く、マトリックス部は耐火性や断熱性、耐スケール性等の観点からCA6微粉とアルミナ微粉、アルミナセメントによって構成されることが多い。つまり断熱性キャスタブル耐火物は主にCaOとAl2O3との2つの成分によって構成されるものが近年の主流である。従って、断熱性キャスタブル耐火物は、CA2やCA6の生成による膨張の影響が無視しがたいものとなってきた。 The expansion of CA2 is a problem among castable refractories, especially in heat-insulating castable refractories. In recent years, lightweight, high-porosity CA6 aggregate and hollow alumina aggregate have often been used as heat-insulating aggregates for heat-insulating castable refractories, and the matrix portion has been designed to improve fire resistance, heat insulation, scale resistance, etc. It is often composed of CA6 fine powder, alumina fine powder, and alumina cement. In other words, insulating castable refractories that are mainly composed of two components, CaO and Al 2 O 3 , have become mainstream in recent years. Therefore, it has become difficult to ignore the influence of expansion caused by the formation of CA2 and CA6 on heat-insulating castable refractories.

そこで本発明者らは、CA2の生成を抑制できれば生成膨張を低減できると考え、鋭意研究を行った。 Therefore, the present inventors believed that if the production of CA2 could be suppressed, the production expansion could be reduced, and conducted extensive research.

キャスタブル中のアルミナセメントはマトリックス部に水和物を生成することで硬化する。セメント水和物は加熱による温度上昇によって、結晶転化、脱水という過程を経て、12CaO・7Al2O3(以下C12A7と略する。)、CaO・Al2O3(以下CAと略する。)、CA2、CA6等を生成する。当然ながらCaOに対して十分な量のAl2O3がなければ、CA2やCA6といった鉱物は生成しないが、断熱性キャスタブル耐火物にはアルミナ微粉等のアルミナ源があるため、CA2やCA6が生成しやすい。 Alumina cement in castable hardens by forming hydrates in the matrix. Cement hydrate undergoes a process of crystal conversion and dehydration due to temperature rise due to heating, resulting in 12CaO・7Al 2 O 3 (hereinafter abbreviated as C12A7), CaO・Al 2 O 3 (hereinafter abbreviated as CA), Generate CA2, CA6, etc. Naturally, minerals such as CA2 and CA6 will not be produced unless there is a sufficient amount of Al 2 O 3 relative to CaO, but since insulating castable refractories have alumina sources such as alumina fine powder, CA2 and CA6 will be produced. It's easy to do.

通常のキャスタブル耐火物は多成分系であり、1100~1200℃雰囲気下での膨張を問題と考えたとしても、影響する反応が多すぎてCA2の生成膨張が影響しているとはあまり考えられていなかった。加えてキャスタブル耐火物の試験は加熱後冷却した試験片の線変化率を測定することが一般的で、しかも線変化率と熱間の膨張率とは必ずしも対応しないため加熱時の膨張率についてはあまり議論されなかった。また加熱時の保温時間も0~3時間が多く、さらに断熱性キャスタブル耐火物の場合は内部まで熱が伝わりにくいこともあり、反応が進行するのに十分な時間をとった評価がなされていなかった。従って、CA2の生成時の膨張を課題として考え、その解決方法が検討された先行技術は少なかった。 Ordinary castable refractories are multi-component systems, and even if we consider expansion in an atmosphere of 1100 to 1200°C to be a problem, there are so many reactions that they are unlikely to be affected by the expansion caused by the formation of CA2. It wasn't. In addition, when testing castable refractories, it is common to measure the linear change rate of a test piece that has been heated and then cooled.Moreover, the linear change rate and the hot expansion coefficient do not necessarily correspond, so the expansion rate during heating cannot be measured. It wasn't much discussed. In addition, the heat retention time during heating is often 0 to 3 hours, and in the case of insulating castable refractories, heat may be difficult to transfer to the inside, so evaluations have not been conducted that allow sufficient time for the reaction to proceed. Ta. Therefore, there have been few prior art techniques in which expansion during generation of CA2 has been considered as a problem and methods for solving the problem have been studied.

一方でキャスタブル耐火物中のマトリックス部に生成するCA鉱物の種類をコントロールしようとする技術思想は過去から存在した。特にCA6の生成による膨張が課題として考えられていた。その対策の多くはキャスタブル耐火物の配合を調整するもので、CaO源となるセメントの添加量を減らしてCA6の生成量を減らすか、Al2O3源となるアルミナ微粉等の添加量を減らしてCA6を生成しないようにするものである。 On the other hand, technical ideas have existed since the past to control the type of CA minerals that form in the matrix of castable refractories. In particular, expansion due to the formation of CA6 was considered to be an issue. Most of the countermeasures are to adjust the composition of castable refractories, such as reducing the amount of cement added as a source of CaO to reduce the amount of CA6 generated, or reducing the amount of fine alumina powder, etc. added as a source of Al 2 O 3 . This prevents CA6 from being generated.

特許文献1(特開2016-145117号)は、アルミナセメントの一部をストロンチウムセメントに置換することでCaOの添加量を減らした断熱性キャスタブル耐火物を開示している。特許文献1は高温時の膨張を抑制しつつ養生強度を高くすることを課題としているが、CA2の生成抑制ではなく、アルミナセメントの添加量を減らしてCaO量を抑えることで、CA2の生成量を減らそうとするものであると考えられる(CA2の生成量の変化や1000~1200℃での熱間での膨張率の変化は不明である)。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2016-145117) discloses a heat-insulating castable refractory in which the amount of CaO added is reduced by replacing a part of alumina cement with strontium cement. Patent Document 1 aims to increase curing strength while suppressing expansion at high temperatures, but rather than suppressing the generation of CA2, by reducing the amount of alumina cement added and suppressing the amount of CaO, the amount of CA2 generated can be increased. (Changes in the amount of CA2 produced and changes in the coefficient of expansion when hot at 1000-1200℃ are unknown).

特許文献2(特開2009-203090号)は、CA6系キャスタブルにおける粒径75μm未満の微粒域のC/Aを0.03~0.13とし、マトリックス中にCA6を生成させる断熱性キャスタブル耐火物を開示している。特許文献2は、粗粒域のCA6骨材の周囲に同じCA6を晶出させることで、CA6骨材とマトリックスとの組織の一体性ないし連続性を改善し、両者の結合力が高め、断熱キャスタブル耐火物の強度を改善しようとするものである。特許文献2は、CaO/Al2O3質量比が0.08を超えると、CA6と共にCA2も生成され施工体の収縮又は亀裂を招くため、CaO/Al2O3質量比を0.08以下とすることによりCA2の生成をできるだけ抑えるのが好ましいと記載している。 Patent Document 2 (Japanese Unexamined Patent Publication No. 2009-203090) discloses a heat-insulating castable refractory in which the C/A in the fine grain region with a grain size of less than 75 μm in CA6 castable is 0.03 to 0.13, and CA6 is generated in the matrix. There is. Patent Document 2 discloses that by crystallizing the same CA6 around the CA6 aggregate in the coarse grain region, the integrity or continuity of the structure between the CA6 aggregate and the matrix is improved, the bonding strength between the two is increased, and the heat insulation is improved. This aims to improve the strength of castable refractories. Patent Document 2 discloses that when the CaO/ Al 2 O 3 mass ratio exceeds 0.08, CA2 is also generated along with CA6, causing shrinkage or cracking of the construction body. It states that it is preferable to suppress CA2 production as much as possible.

ここで前述の通り、キャスタブル中のセメント水和物は加熱による温度上昇によって、結晶転化及び脱水という過程を経て、各温度域で以下の反応が起こる。
反応(1) C12A7 + 5A → 12CA (1000~1100℃)
反応(2) CA + A → CA2 (1000~1200℃)
反応(3) CA2 + 4A → CA6 (1400~1600℃)
[なお、反応(1)、(2)及び(3)の式において、CはCaO、AはAl2O3、C12A7は12CaO・7Al2O3、CAはCaO・Al2O3、CA2はCaO・2Al2O3、及びCA6はCaO・6Al2O3を表す。]
Here, as mentioned above, the cement hydrate in the castable undergoes the processes of crystal conversion and dehydration due to the temperature increase due to heating, and the following reactions occur in each temperature range.
Reaction (1) C12A7 + 5A → 12CA (1000-1100℃)
Reaction (2) CA + A → CA2 (1000-1200℃)
Reaction (3) CA2 + 4A → CA6 (1400-1600℃)
[In the equations of reactions (1), (2) and (3), C is CaO, A is Al 2 O 3 , C12A7 is 12CaO・7Al 2 O 3 , CA is CaO・Al 2 O 3 , and CA2 is CaO.2Al 2 O 3 and CA6 represent CaO.6Al 2 O 3 . ]

従って、マトリックス部にCA6が生成するためには通常1400℃以上の雰囲気が必要であり、このような雰囲気下では、CA及びCA2の生成を経てCA6が生成する。このときAの量が少ない場合(C/Aが大きい場合)、反応(1)及び反応(2)によってCA2が生成するが、反応(3)に必要なAが足りなくなり、反応(3)が十分に進行しなくなりCA6の生成が減少する。一方で、Aの量が多い場合(C/Aが小さい場合)、反応(3)に必要なAが十分にあるため、反応(3)によりCA2が減少するとともにCA6が生成する。特許文献2に記載の発明は、CaO/Al2O3質量比(C/A)を0.08以下とする、すなわち、Aの量を増やすことにより、反応(3)をすみやかに進行させCA2の生成量を減らし、CA6の生成量を増やそうとしたものであると考えられる。 Therefore, in order to generate CA6 in the matrix portion, an atmosphere of 1400° C. or higher is usually required, and under such an atmosphere, CA6 is generated after the generation of CA and CA2. At this time, when the amount of A is small (when C/A is large), CA2 is produced by reactions (1) and (2), but there is not enough A required for reaction (3), and reaction (3) It does not progress sufficiently and the production of CA6 decreases. On the other hand, when the amount of A is large (when C/A is small), there is enough A required for reaction (3), so reaction (3) reduces CA2 and generates CA6. The invention described in Patent Document 2 makes the CaO/Al 2 O 3 mass ratio (C/A) 0.08 or less, that is, by increasing the amount of A, the reaction (3) proceeds quickly and generates CA2. It is thought that this was an attempt to reduce the amount of CA6 produced and increase the amount of CA6 produced.

しかしながら、特許文献2に記載の断熱性キャスタブル耐火物は、CaO/Al2O3質量比(C/A)を0.08以下とすることによりCA2の生成量を見かけ抑えてはいるが、実際はCA2の生成反応を経てCA6が生成するため、反応(2)におけるCA2の生成が抑えられているわけではなくCA2生成による膨張は解決されていない。 However, although the heat-insulating castable refractory described in Patent Document 2 apparently suppresses the amount of CA2 produced by setting the CaO/Al 2 O 3 mass ratio (C/A) to 0.08 or less, in reality, the amount of CA2 produced is suppressed. Since CA6 is produced through a production reaction, the production of CA2 in reaction (2) is not suppressed, and the expansion caused by CA2 production remains unresolved.

特許文献3(特開2014-037327号)は、CA6系キャスタブルにおける粒径1 mm未満の微粒域のC/Aを0.24~0.32とし、マトリックス中にCA2を生成させる断熱性キャスタブル耐火物を開示している。特許文献3は特許文献2におけるCA6の生成膨張を抑えようとするものであり、いずれにしてもCA2の生成膨張が発生しており、CA2の生成膨張という課題には着目されていない。 Patent Document 3 (Japanese Unexamined Patent Publication No. 2014-037327) discloses a heat-insulating castable refractory in which the C/A in the fine grain region with a grain size of less than 1 mm in CA6 castable is 0.24 to 0.32, and CA2 is generated in the matrix. ing. Patent Document 3 attempts to suppress the generation and expansion of CA6 in Patent Document 2, but in any case, generation and expansion of CA2 occurs, and no attention is paid to the problem of generation and expansion of CA2.

特許文献1~3に記載された断熱性キャスタブル耐火物において、Al2O3を減らしてC/Aを0.55以上とすればCA2を生成しないようにできる。しかし近年のキャスタブル耐火物で使用されるアルミナセメントは、耐火性、耐食性、耐スケール性等の観点からAl2O3を70質量%以上含むクラスが多く使用されており、そのようなアルミナセメント単体のC/Aは0.43未満である。アルミナ微粉やCA6骨材を加えるとC/Aはさらに減少してしまうため、アルミナセメントを使用したキャスタブル耐火物においてCA2の生成を抑制することは事実上困難であった。例えば特許文献3の比較例5ではマトリックス部をアルミナセメントのみで構成してC/Aを0.38としているが、CA2が多く生成している。 In the heat insulating castable refractories described in Patent Documents 1 to 3, CA2 can be prevented from being generated by reducing Al 2 O 3 to make C/A 0.55 or more. However, in recent years, many alumina cements used in castable refractories contain 70% by mass or more of Al 2 O 3 due to their fire resistance, corrosion resistance, scale resistance, etc. C/A is less than 0.43. Adding alumina fine powder or CA6 aggregate further reduces C/A, so it has been virtually difficult to suppress CA2 formation in castable refractories using alumina cement. For example, in Comparative Example 5 of Patent Document 3, the matrix portion is composed only of alumina cement and the C/A is 0.38, but a large amount of CA2 is generated.

一方で、CA6の生成を抑制するための技術として、例えば、特許文献4(特開平9-142943号)は、1350~1450℃においてCA6が生成する前に、1000~1200℃においてα-アルミナをマグネシアと反応させてマグネシアスピネルとし、CA6の生成を抑制しようとする不定形耐火物を開示している。しかしながら、マグネシアスピネルは生成時に大きな体積膨張を伴い、加えて1100℃ではスピネル化反応が十分に進んでいないため、CA2の生成に起因する膨張を解決する手段には用いることができない。 On the other hand, as a technique for suppressing the generation of CA6, for example, Patent Document 4 (Japanese Unexamined Patent Publication No. 9-142943) discloses that α-alumina is added at 1000 to 1200°C before CA6 is generated at 1350 to 1450°C. Discloses a monolithic refractory that is made to react with magnesia to form magnesia spinel and suppresses the formation of CA6. However, magnesia spinel undergoes a large volumetric expansion during production, and in addition, the spinelization reaction does not proceed sufficiently at 1100°C, so it cannot be used as a means to solve the expansion caused by the production of CA2.

また特許文献5(特開平06-263527号)は、アルミナ微粉、アルミナセメントに亜鉛酸化物を添加したアルミナ質耐火物を開示しており、耐食性と耐スポ-リング性を向上した耐火物が得られると記載している。しかしながら、特許文献5に記載のアルミナ質耐火物は、アルミナセメントの配合量が少ないため施工体としての強度に劣り、例えば加熱炉のスキッドポストやスキッドビーム用のキャスタブル耐火物のように強度が必要とされるキャスタブル耐火物としては使用できない。さらに、アルミナセメントの配合量が少ないため、CA2がほとんど生成せず、CA2による膨張が問題となることはない。 Furthermore, Patent Document 5 (Japanese Unexamined Patent Publication No. 06-263527) discloses an alumina refractory in which zinc oxide is added to alumina fine powder and alumina cement, and a refractory with improved corrosion resistance and spalling resistance can be obtained. It is stated that it is possible. However, the alumina refractory described in Patent Document 5 has a low strength as a construction body because it contains a small amount of alumina cement, and for example, castable refractories for heating furnace skid posts and skid beams require strength. It cannot be used as a castable refractory. Furthermore, since the amount of alumina cement blended is small, almost no CA2 is generated, and expansion due to CA2 does not become a problem.

特開2016-145117号公報Japanese Patent Application Publication No. 2016-145117 特開2009-203090号公報Japanese Patent Application Publication No. 2009-203090 特開2014-037327号公報Japanese Patent Application Publication No. 2014-037327 特開平9-142943号公報Japanese Patent Application Publication No. 9-142943 特開平06-263527号公報Japanese Patent Application Publication No. 06-263527

従って、本発明の目的は、アルミナ微粉とアルミナセメントとを使用したキャスタブル耐火物において、アルミナセメントの使用量を過度に少量に制限することなく、1100~1200℃におけるCA2の生成に起因するマトリックス部の膨張が抑制されたキャスタブル耐火物を提供することである。 Therefore, an object of the present invention is to provide a castable refractory using alumina fine powder and alumina cement, without limiting the amount of alumina cement used to an excessively small amount, and to reduce the amount of matrix that is caused by the formation of CA2 at 1100 to 1200°C. An object of the present invention is to provide a castable refractory whose expansion is suppressed.

上記目的に鑑み、本発明者らは、配合時にCaOやAl2O3源となる原料の配合量を減らすのではなく、CA2の生成が始まる1100℃までにマトリックス中のフリーのAl2O3の量を減らすことで、CA2の生成を抑制し、CA2の生成膨張を低減することのできるキャスタブル耐火物について鋭意研究を行った。そして、本発明者らは1100℃よりも低い温度域でアルミナと結びつき、かつ化合物の生成時に大きな膨張を伴わない鉱物について種々検討した結果、酸化亜鉛微粉の添加という解決手段に想到した。 In view of the above objective, the present inventors did not reduce the blending amount of raw materials serving as CaO and Al 2 O 3 sources during blending, but rather increased free Al 2 O 3 in the matrix by 1100°C, when CA2 generation begins. We conducted intensive research on castable refractories that can suppress the generation of CA2 and reduce the expansion of CA2 by reducing the amount of . The present inventors conducted various studies on minerals that bond with alumina in a temperature range lower than 1100°C and do not undergo large expansion during compound formation, and as a result, they came up with the solution of adding zinc oxide fine powder.

酸化亜鉛は高温域において、還元されてガス化しやすい鉱物である。特に還元雰囲気で鉄と接した場合にZnO(s)+nFe(s)=Zn(g)+FenO(s) 等の反応が起こる(亜鉛の融点は419.5℃)。そのためキャスタブル耐火物においてあまり用いられてこなかった鉱物であり、キャスタブル耐火物中での挙動についても研究した先行技術は少ない。 Zinc oxide is a mineral that is easily reduced and gasified at high temperatures. In particular, when it comes into contact with iron in a reducing atmosphere, reactions such as ZnO(s) + nFe(s) = Zn(g) + FenO(s) occur (the melting point of zinc is 419.5°C). Therefore, it is a mineral that has not been used much in castable refractories, and there is little prior art that has studied its behavior in castable refractories.

酸化亜鉛とアルミナがスピネル化合物を生成することは公知であるが、キャスタブル耐火物中でどの温度域でスピネル化するか、高温域でどのような膨張挙動を示すのかについては研究がなされていなかった。 Although it is known that zinc oxide and alumina form spinel compounds, no research has been conducted on the temperature range in which they form spinel in castable refractories or the expansion behavior they exhibit at high temperatures. .

例えば、特許文献5には、酸化亜鉛はアルミナと特定の低融点の化合物を生成しないこと、酸化亜鉛自体の熱膨張係数が低いことが記載されているのみで、スピネル化については記載されていない。また特許文献5に記載のアルミナ質耐火物は、アルミナセメントの配合量が5質量%(比較例5)と少ないため、CA2はほとんど生成していないと考えられる。そのため、CA2の生成を抑制しCA2の生成膨張を低減するといった課題はなく、従って、酸化亜鉛を配合すること(例えば、実施例4)によってCA2の生成を抑制するといった技術的思想はない。 For example, Patent Document 5 only states that zinc oxide does not form a specific low-melting compound with alumina and that zinc oxide itself has a low coefficient of thermal expansion, but does not describe spinelization. . Further, in the alumina refractory described in Patent Document 5, the amount of alumina cement blended is as small as 5% by mass (Comparative Example 5), so it is thought that almost no CA2 is generated. Therefore, there is no problem of suppressing the production of CA2 and reducing the expansion of CA2 production, and therefore, there is no technical idea of suppressing the production of CA2 by adding zinc oxide (for example, Example 4).

そこで本発明者らは、1 mm以上の耐火性骨材としてCA6骨材を含み、1 mm未満の耐火性微粉としてCA6微粉、アルミナ微粉及びアルミナセメントを含む耐火組成物に水を加えてなる従来の断熱性キャスタブル耐火物において、アルミナ微粉の一部を酸化亜鉛粉末に置き換えて作製した断熱性キャスタブル耐火物を各温度雰囲気下で保温し、反応生成物のX線回折測定を行った。その結果、保温温度800℃以上では亜鉛スピネルが検出され、保温温度1000℃以上ではCA2の生成が抑制されていることが分かった。 Therefore, the present inventors developed a conventional fire-resistant composition containing CA6 aggregate as a refractory aggregate of 1 mm or more, and CA6 fine powder, alumina fine powder, and alumina cement as a refractory fine powder of less than 1 mm, by adding water. The heat-insulating castable refractories produced by replacing part of the alumina fine powder with zinc oxide powder were kept at various temperature atmospheres, and the reaction products were measured by X-ray diffraction. As a result, zinc spinel was detected at an insulating temperature of 800°C or higher, and it was found that CA2 production was suppressed at an insulating temperature of 1000°C or higher.

亜鉛スピネルの生成も膨張を伴う反応ではあるが、CA2の生成膨張よりも膨張率が低く、1100~1200℃雰囲気でのキャスタブル全体の膨張に与える影響は小さい。すなわち、1100℃において膨張するキャスタブル耐火物に膨張性原料を加えたにもかかわらず、膨張を低減することができる。また酸化亜鉛はスピネル化してもスケールや溶銑と高温域で接すると蒸発しやすいが、蒸発するのは表面側の一部分であるため、キャスタブルの各種特性を損なうことがない。 Although the production of zinc spinel is also a reaction that involves expansion, the expansion rate is lower than that of CA2, and the effect on the overall expansion of the castable in an atmosphere of 1100 to 1200°C is small. That is, even though an expandable raw material is added to a castable refractory that expands at 1100°C, expansion can be reduced. Furthermore, even when zinc oxide is turned into spinel, it tends to evaporate when it comes into contact with scale or hot metal at high temperatures, but since only a portion of the surface side evaporates, it does not impair the various properties of the castable.

すなわち、本発明のキャスタブル耐火物は、粒径1 mm以上の耐火性骨材及び粒径1 mm未満の耐火性微粉からなる耐火組成物と水とを含んでなるキャスタブル耐火物であって、
前記粒径1 mm未満の耐火性微粉は、アルミナセメント、アルミナ微粉、及び酸化亜鉛微粉を含み、
前記アルミナセメント中のAl2O3成分量が70質量%以上であり、
前記耐火組成物100質量%中に、前記アルミナセメントが8質量%以上50質量%未満、及び前記酸化亜鉛微粉が0.5質量%以上25質量%未満配合されている。
That is, the castable refractory of the present invention is a castable refractory comprising water and a refractory composition consisting of a refractory aggregate with a particle size of 1 mm or more and a refractory fine powder with a particle size of less than 1 mm,
The refractory fine powder with a particle size of less than 1 mm includes alumina cement, alumina fine powder, and zinc oxide fine powder,
The amount of Al 2 O 3 component in the alumina cement is 70% by mass or more,
In 100% by mass of the fireproof composition, 8% by mass or more and less than 50% by mass of the alumina cement and 0.5% by mass or more and less than 25% by mass of the zinc oxide fine powder are blended.

前記アルミナセメント由来のCaO成分量は、前記耐火組成物100質量%中2質量%以上15質量%未満であるのが好ましい。 The amount of CaO component derived from the alumina cement is preferably 2% by mass or more and less than 15% by mass based on 100% by mass of the refractory composition.

本発明のキャスタブル耐火物は、前記粒径1 mm以上の耐火性骨材に、軽量耐火性骨材を含む断熱性のキャスタブル耐火物であるのが好ましい。 The castable refractory of the present invention is preferably an insulating castable refractory that includes lightweight refractory aggregate in the refractory aggregate having a particle size of 1 mm or more.

本発明のキャスタブル耐火物は、前記粒径1 mm以上の耐火性骨材に、CaO・6Al2O3組成の軽量耐火性骨材を含む断熱性のキャスタブル耐火物であるのが好ましい。 The castable refractory of the present invention is preferably an insulating castable refractory that includes a lightweight refractory aggregate having a composition of CaO.6Al 2 O 3 in the refractory aggregate having a particle size of 1 mm or more.

本発明は、アルミナ微粉とアルミナセメントを含むキャスタブル耐火物に酸化亜鉛微粉を添加することで、CA2の生成膨張を抑制し、亀裂や剥離、せり出しといった問題を低減することができる。加えて主にCaOとAl2O3とを含む組成からなる断熱性キャスタブル耐火物に酸化亜鉛微粉を添加することで、特に大きい抑制効果を得ることができる。 In the present invention, by adding fine zinc oxide powder to a castable refractory containing fine alumina powder and alumina cement, it is possible to suppress the generation and expansion of CA2 and reduce problems such as cracking, peeling, and protrusion. In addition, a particularly large suppressing effect can be obtained by adding zinc oxide fine powder to a heat-insulating castable refractory whose composition mainly includes CaO and Al 2 O 3 .

比較例1のキャスタブル耐火物の試験片をそれぞれ1000℃、1100℃、1200℃、及び1300℃で6時間保温した際の熱間膨張率の時間変化を示すグラフである。2 is a graph showing the change in thermal expansion coefficient over time when test pieces of the castable refractory of Comparative Example 1 were kept at 1000°C, 1100°C, 1200°C, and 1300°C for 6 hours, respectively. 比較例1及び実施例2~5のキャスタブル耐火物の試験片を1000℃で6時間保温した際の熱間膨張率の時間変化を示すグラフである。2 is a graph showing the change in thermal expansion coefficient over time when test pieces of castable refractories of Comparative Example 1 and Examples 2 to 5 were kept at 1000° C. for 6 hours. 比較例1及び実施例2~5のキャスタブル耐火物の試験片を1100℃で6時間保温した際の熱間膨張率の時間変化を示すグラフである。2 is a graph showing the change in thermal expansion coefficient over time when test pieces of castable refractories of Comparative Example 1 and Examples 2 to 5 were kept at 1100° C. for 6 hours. 比較例1及び実施例2~5のキャスタブル耐火物の試験片を1200℃で6時間保温した際の熱間膨張率の時間変化を示すグラフである。2 is a graph showing the change in thermal expansion coefficient over time when test pieces of castable refractories of Comparative Example 1 and Examples 2 to 5 were kept at 1200° C. for 6 hours. 比較例1及び実施例5のキャスタブル耐火物の試験片を1000℃、1100℃、及び1200℃で6時間保温した際の熱間膨張率の時間変化を示すグラフである。2 is a graph showing the change in thermal expansion coefficient over time when test pieces of castable refractories of Comparative Example 1 and Example 5 were kept at 1000°C, 1100°C, and 1200°C for 6 hours.

以下、本発明の一実施形態について説明する。なお、本明細書中において粒子の粒径がd以上とは、その粒子がJIS-Z8801に規定する目開きdの標準篩上に残ることを意味し、粒子の粒径がd未満とは、その粒子が同篩を通過することを意味する。 An embodiment of the present invention will be described below. In addition, in this specification, the particle size of a particle of d or more means that the particle remains on a standard sieve with aperture d specified in JIS-Z8801, and the particle size of a particle of less than d means that the particle remains on a standard sieve with aperture d defined in JIS-Z8801 This means that the particles pass through the same sieve.

[1] キャスタブル耐火物
(A) 化学成分構成
本発明のキャスタブル耐火物は、粒径1 mm以上の耐火性骨材及び粒径1 mm未満の耐火性微粉からなる耐火組成物と施工水とを含んでなり、前記粒径1 mm未満の耐火性微粉はアルミナセメント、アルミナ微粉、及び酸化亜鉛微粉を含み、前記アルミナセメント中のAl2O3成分量が70質量%以上であり、前記耐火組成物100質量%中に、前記アルミナセメントが8質量%以上50質量%未満、及び前記酸化亜鉛微粉が0.5質量%以上25質量%未満配合されている。
[1] Castable refractories
(A) Chemical component composition The castable refractory of the present invention comprises a refractory composition consisting of a refractory aggregate with a particle size of 1 mm or more and a refractory fine powder with a particle size of less than 1 mm, and construction water. The refractory fine powder with a diameter of less than 1 mm includes alumina cement, alumina fine powder, and zinc oxide fine powder, and the amount of Al 2 O 3 component in the alumina cement is 70% by mass or more, and in 100% by mass of the refractory composition. , the alumina cement is blended in an amount of 8% by mass or more and less than 50% by mass, and the zinc oxide fine powder is blended in an amount of 0.5% by mass or more but less than 25% by mass.

本発明のキャスタブル耐火物は酸化亜鉛が配合されていることを特徴とする。酸化亜鉛はフリーのアルミナと反応して亜鉛スピネル(ZnAl2O4)を生成する。この反応によりフリーのアルミナが消費され、その結果CA2の生成を抑制することができる。 The castable refractory of the present invention is characterized by containing zinc oxide. Zinc oxide reacts with free alumina to form zinc spinel (ZnAl 2 O 4 ). This reaction consumes free alumina, and as a result, the generation of CA2 can be suppressed.

(1)アルミナセメント
本発明で用いるアルミナセメントは、前述の通り、耐火度や耐食性、耐スケール性等の点から、セメント中のAl2O3成分量が70質量%以上であるのが好ましい。アルミナセメントの配合量を少なくすればCA2による生成膨張の問題は生じないものの施工体としての強度が不足するため、アルミナセメントの配合量は8質量%以上であるのが好ましい。加熱炉のスキッドポストやスキッドビーム用のキャスタブル耐火物のように強度が必要とされる場合、さらに好ましいアルミナセメントの配合量は20質量%以上である。一方で、アルミナセメントの配合量が50質量%以上であると流動性や断熱性が悪くなるため、配合量は50質量%未満であるのが好ましい。また、アルミナセメント由来のCaO成分量は、耐火組成物100質量%中2質量%以上15質量%未満であるのが好ましい。
(1) Alumina Cement As mentioned above, the alumina cement used in the present invention preferably has an Al 2 O 3 content of 70% by mass or more from the viewpoint of fire resistance, corrosion resistance, scale resistance, etc. If the amount of alumina cement blended is small, the problem of generation expansion due to CA2 will not occur, but the strength of the construction body will be insufficient, so it is preferable that the amount of alumina cement blended is 8% by mass or more. When strength is required, such as in castable refractories for skid posts and skid beams in heating furnaces, a more preferred amount of alumina cement is 20% by mass or more. On the other hand, if the blending amount of alumina cement is 50% by mass or more, fluidity and heat insulation properties will deteriorate, so the blending amount is preferably less than 50% by mass. Further, the amount of CaO component derived from alumina cement is preferably 2% by mass or more and less than 15% by mass based on 100% by mass of the refractory composition.

(2)アルミナ微粉
アルミナ微粉はキャスタブルの流動性、耐食性、耐火性等を確保するため、少なくとも1200℃以上の雰囲気下でフリーの酸化亜鉛が生じないように配合するのが好ましい。フリーの酸化亜鉛が生じない配合量は、亜鉛スピネル(ZnAl2O4)中のAl2O3(モル質量:102.0)とZnO(モル質量:81.4)とのモル比が1以上となるような配合量、すなわち、粒径1 mm未満の耐火性微粉中のAl2O3/ZnOの質量比が1.25 以上となる配合量である。なお粒径1 mm未満の耐火性微粉中のAl2O3量は、アルミナセメント由来のものとアルミナ微粉由来のものとの合計である。
(2) Fine alumina powder In order to ensure fluidity, corrosion resistance, fire resistance, etc. of the castable, fine alumina powder is preferably blended in such a way that free zinc oxide is not generated in an atmosphere of at least 1200°C or higher. The blending amount that does not produce free zinc oxide is such that the molar ratio of Al 2 O 3 (molar mass: 102.0) to ZnO (molar mass: 81.4) in zinc spinel (ZnAl 2 O 4 ) is 1 or more. The amount is such that the mass ratio of Al 2 O 3 /ZnO in the refractory fine powder with a particle size of less than 1 mm is 1.25 or more. Note that the amount of Al 2 O 3 in the refractory fine powder with a particle size of less than 1 mm is the total of that derived from alumina cement and that derived from alumina fine powder.

(3)酸化亜鉛微粉
酸化亜鉛微粉の配合量は、耐火組成物100質量%中に0.5質量%以上25質量%未満である。酸化亜鉛微粉の配合量に比例してCA2生成抑制の効果が見られるが、1100~1200℃の膨張がどの程度抑えられるかはアルミナセメントの配合量によるため、正確には計算できない。そこで耐火組成物100質量%に対してアルミナセメントを50質量%配合した場合(粒径1 mm未満の耐火性微粉に含まれるCaO成分量は耐火組成物100質量%中12.7質量%)と耐火組成物100質量%に対してアルミナセメントを8質量%配合した場合(粒径1 mm未満の耐火性微粉に含まれるCaO成分量は耐火組成物100質量%中2質量%)について試験を行ったところ、いずれにおいても酸化亜鉛微粉を0.5質量%以上添加することで膨張抑制効果が確認できたが、0.5質量%未満では膨張抑制量が不十分であった。よって酸化亜鉛微粉は少なくとも耐火組成物100質量%中0.5質量%以上配合するのが好ましい。また配合量が25質量%を超えると骨材との比重差が大きくなり、骨材とマトリックスの分離が起き、施工体としての均一性が失われやすくなるため、配合量は25質量%未満であるのが好ましい。より好ましい酸化亜鉛微粉の配合量は、3質量%以上15質量%未満である。
(3) Zinc oxide fine powder The blending amount of zinc oxide fine powder is 0.5% by mass or more and less than 25% by mass in 100% by mass of the fireproof composition. The effect of suppressing CA2 generation can be seen in proportion to the amount of zinc oxide fine powder mixed, but the extent to which expansion at 1100 to 1200°C is suppressed cannot be calculated accurately because it depends on the amount of alumina cement mixed. Therefore, when 50% by mass of alumina cement is mixed with 100% by mass of the refractory composition (the amount of CaO contained in the refractory fine powder with a particle size of less than 1 mm is 12.7% by mass in 100% by mass of the refractory composition), the refractory composition A test was conducted when 8% by mass of alumina cement was mixed with 100% by mass of the composition (the amount of CaO contained in the refractory fine powder with a particle size of less than 1 mm was 2% by mass in 100% by mass of the refractory composition). In all cases, the expansion suppression effect was confirmed by adding 0.5% by mass or more of zinc oxide fine powder, but the amount of expansion suppression was insufficient when it was less than 0.5% by mass. Therefore, it is preferable that the zinc oxide fine powder be blended in an amount of at least 0.5% by mass or more based on 100% by mass of the refractory composition. In addition, if the blending amount exceeds 25% by mass, the difference in specific gravity with the aggregate will increase, causing separation between the aggregate and the matrix, and the uniformity of the construction body will be likely to be lost. It is preferable to have one. A more preferable amount of zinc oxide fine powder is 3% by mass or more and less than 15% by mass.

酸化亜鉛微粉はアルミナとの反応性を向上させるため、粒径が小さいものほど良い。好ましい平均粒径は30μm未満である。 In order to improve the reactivity of zinc oxide fine powder with alumina, the smaller the particle size, the better. The preferred average particle size is less than 30 μm.

金属亜鉛は融点が419.5℃であり、耐火物の昇温中に酸化するため酸化亜鉛の添加と同様の効果が得られるため、金属亜鉛粉末を用いても良い。しかし、コストの面から酸化亜鉛微粉として添加するのが好ましい。また酸化亜鉛の代わりに水酸化亜鉛を用いてもよい。 Metallic zinc has a melting point of 419.5°C and oxidizes while the temperature of the refractory increases, so that the same effect as adding zinc oxide can be obtained, so metal zinc powder may be used. However, from the viewpoint of cost, it is preferable to add zinc oxide fine powder. Also, zinc hydroxide may be used instead of zinc oxide.

(4)軽量耐火性骨材
本発明を断熱性キャスタブル耐火物に適用する場合、粒径1 mm以上の耐火性骨材に軽量耐火性骨材を含むのが好ましい。軽量耐火性骨材は例えばCA6骨材やAl2O3組成を有する中空質のものが使用可能であるが、断熱性と耐火性に優れたCA6骨材を使用するのが好ましい。CA6骨材としてはAl2O3成分量を90質量%以上含み、かさ比重1.0未満であるものを使用するのが好ましい。具体例としてアルコア社製の「SLA-92」が挙げられる。また、耐火物全体の耐火性、軽量性、断熱性、耐スケール性を十分なものとするため耐火組成物100質量%に対して30質量%以上含むのが好ましい。
(4) Lightweight refractory aggregate When the present invention is applied to heat-insulating castable refractories, it is preferable that the refractory aggregate with a particle size of 1 mm or more contains a lightweight refractory aggregate. As the lightweight fire-resistant aggregate, for example, CA6 aggregate or a hollow material having an Al 2 O 3 composition can be used, but it is preferable to use CA6 aggregate, which has excellent heat insulation and fire resistance. It is preferable to use CA6 aggregate that contains 90% by mass or more of the Al 2 O 3 component and has a bulk specific gravity of less than 1.0. A specific example is "SLA-92" manufactured by Alcoa. Further, in order to ensure sufficient fire resistance, light weight, heat insulation, and scale resistance of the entire refractory, it is preferably contained in an amount of 30% by mass or more based on 100% by mass of the refractory composition.

(B)CA2の生成量
CA2の生成量には1 mm未満の微粒域におけるAl2O3、CaO及びZnOの含有量が影響する。前述したように、粒径1 mm未満の耐火性微粉が、CaO/Al2O3の質量比(C/A)が0.55以上となる化学成分構成を有することによりCA2の生成が抑制できる。ここで、Al2O3と酸化亜鉛とが反応することによりAl2O3の実効濃度(フリーのアルミナ量)が低下していると考えた場合、粒径1 mm未満の耐火性微粉が、次式:
(CaO質量)/(Al2O3質量-1.25×ZnO質量)
(以下、C/(A-1.25Z) と略する。)で表される値が0.55以上となるような化学成分構成を有することによりCA2の生成が抑制できると考えられる。
(B) Production amount of CA2
The amount of CA2 produced is affected by the contents of Al 2 O 3 , CaO and ZnO in the fine grain region of less than 1 mm. As mentioned above, the generation of CA2 can be suppressed by having a refractory fine powder with a particle size of less than 1 mm having a chemical composition with a CaO/Al 2 O 3 mass ratio (C/A) of 0.55 or more. Here, if we consider that the effective concentration of Al 2 O 3 (the amount of free alumina) is decreasing due to the reaction between Al 2 O 3 and zinc oxide, the refractory fine powder with a particle size of less than 1 mm will The following formula:
(CaO mass) / (Al 2 O 3 mass - 1.25 x ZnO mass)
(Hereinafter abbreviated as C/(A-1.25Z).) It is thought that the production of CA2 can be suppressed by having a chemical composition such that the value expressed by C/(A-1.25Z) is 0.55 or more.

しかし実際の酸化亜鉛によるCA2の生成抑制効果は、添加した酸化亜鉛による亜鉛スピネル生成によってフリーのアルミナが消費されることにより見込まれる効果よりも大きい。つまり、酸化亜鉛微粉を添加したキャスタブルのC/(A-1.25Z)の値が、酸化亜鉛微粉を添加しないキャスタブルのC/Aの値と同じであったとしても、酸化亜鉛微粉を添加したキャスタブルの方が1100℃以上の雰囲気下におけるCA2の生成が大きく抑制されている場合がある。従って、酸化亜鉛は、亜鉛スピネル生成によって消費される量以上に、何らかの要因でフリーのアルミナを減少させていると推測される。 However, the actual effect of zinc oxide on suppressing the production of CA2 is greater than the expected effect due to the consumption of free alumina due to the formation of zinc spinel due to the added zinc oxide. In other words, even if the value of C/(A-1.25Z) of castable with zinc oxide fine powder added is the same as the C/A value of castable without zinc oxide fine powder, castable with zinc oxide fine powder added In some cases, the generation of CA2 in an atmosphere of 1100°C or higher is more suppressed. Therefore, it is presumed that zinc oxide reduces free alumina by some factor beyond the amount consumed by zinc spinel formation.

例えば酸化亜鉛を添加したキャスタブル(C/A=0.19及びC/(A-1.25Z)=0.22)の試験片を1000℃と1200℃との雰囲気下で6時間保温し、鉱物組成を調査すると、1000℃及び1200℃の両方の条件でCA2は新たに生成していなかった。これに対して酸化亜鉛を添加しないC/A=0.17のキャスタブルで同じ実験を行うと、1000℃及び1200℃の両方の条件でCA2の生成が見られ、特に1200℃で生成量が多かった。従って、酸化亜鉛を添加したキャスタブルの場合、C/(A-1.25Z)の値が0.55を大きく下回るにもかかわらず、CA2の生成をほぼ抑制できていたのである。 For example, when a test piece of castable (C/A=0.19 and C/(A-1.25Z)=0.22) to which zinc oxide was added was kept warm in an atmosphere of 1000℃ and 1200℃ for 6 hours and the mineral composition was investigated. No new CA2 was generated under both 1000°C and 1200°C conditions. On the other hand, when the same experiment was carried out using castable with C/A=0.17 without adding zinc oxide, CA2 generation was observed under both conditions of 1000°C and 1200°C, and the amount produced was particularly large at 1200°C. Therefore, in the case of castable with zinc oxide added, the generation of CA2 was almost suppressed even though the value of C/(A-1.25Z) was much lower than 0.55.

加えて酸化亜鉛微粉の添加量が少量でCA2の生成を完全に抑制できなかったとしても、酸化亜鉛の添加量に応じてCA2の生成量は減少するため、1100℃以降の熱間の膨張量は減少する。酸化亜鉛の添加量と1100℃以降の熱間の膨張の抑制量には、後述するように比例関係が見られるため、1100~1200℃における耐火物の膨張をどの程度を抑えようとするかは、アルミナセメント及び酸化亜鉛の配合量を適宜調整することによってコントロールすることが可能である。 In addition, even if the amount of zinc oxide fine powder added is small and the generation of CA2 cannot be completely suppressed, the amount of CA2 generated will decrease depending on the amount of zinc oxide added, so the amount of hot expansion after 1100℃ decreases. As explained later, there is a proportional relationship between the amount of zinc oxide added and the amount of suppression of hot expansion after 1100℃, so how much expansion of refractories should be suppressed at 1100 to 1200℃? , can be controlled by appropriately adjusting the blending amounts of alumina cement and zinc oxide.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to these examples.

本願実施例及び比較例において使用した耐火性骨材及び耐火性微粉の化学組成を表1に示す。 Table 1 shows the chemical compositions of the refractory aggregate and refractory fine powder used in the Examples and Comparative Examples of the present application.

Figure 0007341771000001
注(1):SiO2、Na2O、Fe2O3等の不純物が含まれる。
Figure 0007341771000001
Note (1): Contains impurities such as SiO 2 , Na 2 O, and Fe 2 O 3 .

比較例1
従来の断熱性キャスタブル耐火物における熱間での体積膨張を調べるため、表2に示す配合の耐火組成物に水を添加し、混錬後、所定の型枠に流し込み、養生、硬化後、脱枠、110℃24時間乾燥して断熱性キャスタブル耐火物の試験片を得た。この試験片を用いて熱間での膨張率等を以下のようにして測定した。熱間膨張率は、電気炉内に置いた試験片について光走査法にて測定した。炉内の最高温度(保温温度)の設定は100℃刻みとし、昇温速度は5℃/min、炉内が最高温度に達した後の保温時間は反応時間を鑑みて6時間とし、以降常温まで自然冷却した。最高温度1000℃、1100℃、1200℃、及び1300℃における熱間膨張率の測定結果を図1に示す。
Comparative example 1
In order to investigate the hot volume expansion of conventional heat-insulating castable refractories, water was added to the refractory composition with the composition shown in Table 2, and after kneading, it was poured into a prescribed formwork, cured, hardened, and desorbed. The frame was dried at 110°C for 24 hours to obtain a test piece of heat-insulating castable refractory. Using this test piece, the hot expansion coefficient, etc., were measured as follows. The coefficient of thermal expansion was measured using an optical scanning method on a test piece placed in an electric furnace. The maximum temperature inside the furnace (heat retention temperature) is set in 100℃ increments, the temperature increase rate is 5℃/min, and the heat retention time after the furnace reaches the maximum temperature is 6 hours, taking into account the reaction time. Naturally cooled until Figure 1 shows the measurement results of the coefficient of thermal expansion at maximum temperatures of 1000°C, 1100°C, 1200°C, and 1300°C.

Figure 0007341771000002
注1:耐火組成物100質量%に対する質量%を示す
Figure 0007341771000002
Note 1: Shows mass % based on 100 mass % of fireproof composition

図1に示す通り、断熱性キャスタブル耐火物は1000℃雰囲気では保温中に体積変化が見られないが、1100℃雰囲気では保温中に体積膨張が進む。1200℃以上の雰囲気では昇温中又は昇温直後までに膨張が収束し、1200℃保温中では体積変化が少なく、1300℃雰囲気では焼結の影響からか保温中に膨張が減少する。 As shown in Figure 1, a heat-insulating castable refractory exhibits no volume change during heat retention in an atmosphere of 1000°C, but volumetric expansion progresses during heat retention in an atmosphere of 1100°C. In an atmosphere of 1200°C or higher, expansion converges during or immediately after temperature rise, while there is little change in volume during incubation at 1200°C, and in an atmosphere of 1300°C, expansion decreases during incubation, probably due to the effect of sintering.

1100℃雰囲気と1200℃雰囲気でのグラフの傾きの差は反応速度の差である。高温雰囲気の方が反応は進みやすいので、1200℃雰囲気と比べて1100℃雰囲気の方が反応は緩やかである。故に昇温直後は1100℃雰囲気と1200℃雰囲気とで膨張差が大きいが、6時間保温後を比較すると1000℃雰囲気と1100℃雰囲気とでの膨張差が大きくなっている。 The difference in slope of the graph between the 1100°C atmosphere and the 1200°C atmosphere is the difference in reaction rate. The reaction progresses more easily in a high-temperature atmosphere, so the reaction is slower in a 1100°C atmosphere than in a 1200°C atmosphere. Therefore, immediately after the temperature is raised, there is a large expansion difference between the 1100°C atmosphere and the 1200°C atmosphere, but when compared after 6 hours of heat retention, the expansion difference between the 1000°C atmosphere and the 1100°C atmosphere becomes large.

各温度で保温した試験片の鉱物組成をそれぞれX線によって調査したところ、1100℃以上の雰囲気で保温した試験片においてCA2の増加が確認されたことから、この膨張の原因となる反応が、CA2の生成反応であると考えられる(表5-2参照)。 When the mineral composition of the specimens kept warm at each temperature was investigated by X-ray, an increase in CA2 was confirmed in the specimens kept warm in an atmosphere of 1100°C or higher, indicating that the reaction that causes this expansion is the cause of CA2 This is thought to be a reaction that produces (see Table 5-2).

実施例1~5及び比較例2
表3に示す配合の耐火組成物を用いた以外は比較例1と同様にして断熱性キャスタブル耐火物の試験片を作製し、比較例1と同様にして熱間での膨張率を測定した。最高温度1000℃、1100℃、及び1200℃における熱間膨張率の測定結果を表4及び図2~図5に示す。
Examples 1 to 5 and comparative example 2
A test piece of a heat-insulating castable refractory was prepared in the same manner as in Comparative Example 1, except that the refractory composition having the formulation shown in Table 3 was used, and the hot expansion coefficient was measured in the same manner as in Comparative Example 1. The measurement results of the coefficient of thermal expansion at maximum temperatures of 1000°C, 1100°C, and 1200°C are shown in Table 4 and Figures 2 to 5.

なお、1300℃以上の雰囲気で保温した試験片はいずれも比較例1(図1を参照)と同様に保温中に焼結が進んで膨張が減少したが、各試験片共に焼結による膨張減少量に差異は見られなかったため割愛する。また900℃以下の雰囲気で保温した試験片はほぼ同一の膨張曲線であったため割愛する。 In addition, all of the test pieces that were kept warm in an atmosphere of 1300°C or higher experienced sintering and decreased expansion during the heat keeping, as in Comparative Example 1 (see Figure 1). Since no difference was observed in the amount, it is omitted. In addition, the test pieces kept at temperatures below 900°C had almost the same expansion curves, so they are omitted.

Figure 0007341771000003
注(1):耐火組成物100質量%に対する質量%を示す
Figure 0007341771000003
Note (1): Shows mass % based on 100 mass % of fireproof composition

Figure 0007341771000004
注(1):耐火組成物100質量%に対する質量%を示す。
Figure 0007341771000004
Note (1): Shows mass % based on 100 mass % of fireproof composition.

Figure 0007341771000005
Figure 0007341771000005

(1)熱間膨張率について
表4及び図2~図4から、試験片を1000℃雰囲気で保温した場合(図2)、比較例1と比べて実施例3~5では保温中に熱間膨張率が増加しているのに対して、試験片を1100℃雰囲気及び1200℃雰囲気で保温した場合(図3及び4)、酸化亜鉛微粉の添加量が増加するに従って熱間膨張率が減少しており、1100℃雰囲気及び1200℃雰囲気では酸化亜鉛微粉の添加量に応じて膨張が抑制されることが分かった。
(1) About the coefficient of hot expansion From Table 4 and Figures 2 to 4, it can be seen that when the test piece is kept warm in an atmosphere of 1000℃ (Figure 2), compared to Comparative Example 1, Examples 3 to 5 are On the other hand, when the test pieces were kept at 1100°C and 1200°C (Figures 3 and 4), the thermal expansion coefficient decreased as the amount of zinc oxide fine powder added increased. It was found that expansion was suppressed depending on the amount of zinc oxide fine powder added in an atmosphere of 1100°C and 1200°C.

試験片を1000℃雰囲気で保温したときに、酸化亜鉛微粉の添加量が増加するに従って熱間膨張率が増加しているのは亜鉛スピネル生成による膨張であると考えられる。しかしこの1000℃での膨張があるため、結果的に1100℃以上の温度との膨張差をより低減することができた。 When the test piece was kept in an atmosphere of 1000°C, the thermal expansion coefficient increased as the amount of zinc oxide fine powder added increased, which is thought to be due to expansion due to the formation of zinc spinel. However, because of this expansion at 1000°C, we were able to further reduce the difference in expansion with temperatures above 1100°C.

すなわち表4及び図5に示す通り、酸化亜鉛微粉を添加していない比較例1と、酸化亜鉛微粉を7質量%添加した実施例5を比較すると、比較例1では1000℃雰囲気での保温後と1100℃雰囲気での保温後の膨張率の差が1.01%であったのに対し、実施例5では0.26%に低下しており、膨張ギャップが低減している。また1100℃雰囲気での保温時間が6時間では反応が終わっていなかったとしても、1200℃雰囲気での保温中の膨張率曲線は保温中にフラットになっており、反応がある程度終わっていると思われるため、1000℃雰囲気と1200℃雰囲気とでの保温後の膨張差を比較すると比較例1では1.13%であるのに対し、実施例5では0.45%であり、やはり膨張低減効果が見られる。 In other words, as shown in Table 4 and Figure 5, when comparing Comparative Example 1, in which no zinc oxide fine powder was added, and Example 5, in which 7% by mass of zinc oxide fine powder was added, in Comparative Example 1, after heating in an atmosphere of 1000°C, The difference in expansion rate after incubation in an atmosphere of 1100° C. was 1.01%, whereas in Example 5, it decreased to 0.26%, indicating a reduction in the expansion gap. Furthermore, even if the reaction was not completed after 6 hours of incubation in a 1100°C atmosphere, the expansion rate curve during incubation in a 1200°C atmosphere became flat during incubation, indicating that the reaction had finished to some extent. Therefore, when comparing the difference in expansion after incubation between a 1000° C. atmosphere and a 1200° C. atmosphere, it is 1.13% in Comparative Example 1, while it is 0.45% in Example 5, which again shows an expansion reduction effect.

一方で酸化亜鉛微粉の添加量が0.3質量%の比較例2では、酸化亜鉛微粉を添加しない比較例1の熱間膨張率とほとんど差がなく、CA2の生成抑制効果が見られなかった。 On the other hand, in Comparative Example 2 in which the amount of zinc oxide fine powder added was 0.3% by mass, there was almost no difference in the thermal expansion coefficient from Comparative Example 1 in which no zinc oxide fine powder was added, and no effect of suppressing the generation of CA2 was observed.

(2)反応生成物について
各温度で6時間保温した実施例5及び比較例1の試験片の鉱物組成をX線回折で分析した結果をそれぞれ表5-1及び表5-2に示す。1100℃及び1200℃の雰囲気下で保温した後の実施例5の試験片のCA2量は1000℃雰囲気で保温した後の試験片と比べてほとんど変化していなかった。すなわち、保温温度1000℃以上でのCA2の生成を抑制していると考えられる。
(2) Regarding reaction products The mineral compositions of the test pieces of Example 5 and Comparative Example 1 that were kept at each temperature for 6 hours were analyzed by X-ray diffraction, and the results are shown in Tables 5-1 and 5-2, respectively. The amount of CA2 in the test piece of Example 5 after being kept warm in an atmosphere of 1100°C and 1200°C was almost unchanged compared to the test piece kept being kept warm in an atmosphere of 1000°C. In other words, it is thought that the generation of CA2 at a heat retention temperature of 1000°C or higher is suppressed.

Figure 0007341771000006
(X線回析によって求めた各種成分の相対強度比を+で表現した。)
注(1) Z:酸化亜鉛
注(2) ZA:亜鉛スピネル
Figure 0007341771000006
(The relative intensity ratio of various components determined by X-ray diffraction is expressed as +.)
Note (1) Z: Zinc oxide Note (2) ZA: Zinc spinel

これに対して比較例1の試験片のCA2量は、700℃から1100℃、1100℃及び1200℃と保温温度を高くするに従って増加していた。 On the other hand, the amount of CA2 in the test piece of Comparative Example 1 increased as the insulating temperature was increased from 700°C to 1100°C, 1100°C, and 1200°C.

Figure 0007341771000007
(X線回析によって求めた各種成分の相対強度比を+で表現した。)
Figure 0007341771000007
(The relative intensity ratio of various components determined by X-ray diffraction is expressed as +.)

さらに、実施例5のX線回折の測定により、保温温度800℃以上の試験片から亜鉛スピネルが検出された。保温温度の上昇に伴い亜鉛スピネル量は増加し、酸化亜鉛及びアルミナの量は減少していた。1200℃雰囲気での保温後の試験片では酸化亜鉛及びアルミナがほぼ無くなり、亜鉛スピネル化の反応が完了していると考えられる。このことからキャスタブル耐火物中において、亜鉛スピネルは800~1200℃の雰囲気下において生成することが分かった。 Further, according to the X-ray diffraction measurement of Example 5, zinc spinel was detected in the test piece whose heat retention temperature was 800°C or higher. As the insulation temperature increased, the amount of zinc spinel increased, and the amounts of zinc oxide and alumina decreased. Zinc oxide and alumina are almost completely gone in the test piece after being kept warm in an atmosphere of 1200°C, indicating that the zinc spinel reaction has been completed. This indicates that zinc spinel is formed in castable refractories under an atmosphere of 800 to 1200°C.

一方で、酸化亜鉛を添加しない比較例1に比べて酸化亜鉛を添加した実施例5では、1000℃雰囲気での保温後の試験片においてCAが増加したことが確認された。一方、CA2の量は変化が見られなかった。このことから酸化亜鉛は、800~1200℃の雰囲気下において、キャスタブル耐火物のマトリックス中のフリーのアルミナをスピネル化によって減少させ、その結果、マトリックス中にはCA2の生成が抑制され、代わりにCAが多く生成されると考えられる。 On the other hand, in Example 5 in which zinc oxide was added compared to Comparative Example 1 in which zinc oxide was not added, it was confirmed that CA increased in the test piece after being kept warm in an atmosphere of 1000°C. On the other hand, no change was observed in the amount of CA2. From this, zinc oxide reduces free alumina in the matrix of castable refractories by turning it into spinel in an atmosphere of 800 to 1200℃, and as a result, the formation of CA2 in the matrix is suppressed, and instead CA It is thought that a large amount of is generated.

以上のことから、亜鉛スピネルの生成も膨張を伴う反応ではあるが、CA2の生成膨張よりも膨張率が低く、1100~1200℃雰囲気でのキャスタブル全体の膨張に与える影響は小さいことが分かった。すなわち、1100℃雰囲気において膨張するキャスタブル耐火物に膨張性原料を加えたにもかかわらず、膨張を低減することができる。また酸化亜鉛はスピネル化してもスケールや溶銑と高温域で接すると蒸発しやすいが、蒸発するのは表面側の一部分であるため、キャスタブルの各種特性を損なうことがない。 From the above, it was found that although the formation of zinc spinel is also a reaction that involves expansion, the expansion rate is lower than that of CA2 formation, and the effect on the expansion of the entire castable in an atmosphere of 1100 to 1200°C is small. That is, even though an expandable raw material is added to a castable refractory that expands in an atmosphere of 1100°C, expansion can be reduced. Furthermore, even when zinc oxide is turned into spinel, it tends to evaporate when it comes into contact with scale or hot metal at high temperatures, but since only a portion of the surface side evaporates, it does not impair the various properties of the castable.

本発明は均熱炉や熱処理炉、鋼片加熱炉のスキッドポスト、スキッドビーム等で使用される断熱性キャスタブル耐火物において好ましく利用することができるが、その他にもアルミナ微粉、アルミナセメントを使用するキャスタブル耐火物であれば、膨張抑制効果を利用できる。また、本発明のキャスタブル耐火物は、流し込み施工のみならず、保形剤や急結剤などを添加して鏝塗り施工や湿式吹付施工などの方法によっても施工体を構築することができる。 The present invention can be preferably used in heat-insulating castable refractories used in soaking furnaces, heat treatment furnaces, skid posts of billet heating furnaces, skid beams, etc., but alumina fine powder and alumina cement can also be used in other applications. Castable refractories can be used to suppress expansion. Moreover, the castable refractory of the present invention can be constructed not only by pouring construction, but also by methods such as troweling construction and wet spraying construction by adding a shape retaining agent, quick setting agent, etc.

Claims (4)

粒径1 mm以上の耐火性骨材及び粒径1 mm未満の耐火性微粉からなる耐火組成物と水とを含んでなるキャスタブル耐火物であって、
前記粒径1 mm未満の耐火性微粉は、アルミナセメント、アルミナ微粉、及び酸化亜鉛微粉を含み、
前記アルミナセメント中のAl2O3成分量が70質量%以上であり、
前記耐火組成物100質量%中に、前記アルミナセメントが8質量%以上50質量%未満、及び前記酸化亜鉛微粉が0.5質量%以上25質量%未満配合されているキャスタブル耐火物。
A castable refractory comprising a refractory composition consisting of a refractory aggregate with a particle size of 1 mm or more and a refractory fine powder with a particle size of less than 1 mm, and water,
The refractory fine powder with a particle size of less than 1 mm includes alumina cement, alumina fine powder, and zinc oxide fine powder,
The amount of Al 2 O 3 component in the alumina cement is 70% by mass or more,
A castable refractory, wherein 8% by mass or more and less than 50% by mass of the alumina cement and 0.5% by mass or more and less than 25% by mass of the zinc oxide fine powder are blended in 100% by mass of the refractory composition.
請求項1 に記載のキャスタブル耐火物において、
前記アルミナセメント由来のCaO成分量が、前記耐火組成物100質量%中2質量%以上15質量%未満であるキャスタブル耐火物。
The castable refractory according to claim 1,
A castable refractory in which the amount of CaO component derived from the alumina cement is 2% by mass or more and less than 15% by mass based on 100% by mass of the refractory composition.
請求項1又は2に記載のキャスタブル耐火物において、
前記粒径1 mm以上の耐火性骨材に、軽量耐火性骨材を含む断熱性のキャスタブル耐火物。
The castable refractory according to claim 1 or 2,
A heat-insulating castable refractory that includes lightweight fire-resistant aggregate in the fire-resistant aggregate with a particle size of 1 mm or more.
請求項1~3のいずれかに記載のキャスタブル耐火物において、
前記粒径1 mm以上の耐火性骨材に、CaO・6Al2O3組成の軽量耐火性骨材を含む断熱性のキャスタブル耐火物。
The castable refractory according to any one of claims 1 to 3,
A heat-insulating castable refractory comprising a lightweight refractory aggregate having a composition of CaO.6Al 2 O 3 in the refractory aggregate having a particle size of 1 mm or more.
JP2019138820A 2019-07-29 2019-07-29 castable refractories Active JP7341771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019138820A JP7341771B2 (en) 2019-07-29 2019-07-29 castable refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019138820A JP7341771B2 (en) 2019-07-29 2019-07-29 castable refractories

Publications (2)

Publication Number Publication Date
JP2021020829A JP2021020829A (en) 2021-02-18
JP7341771B2 true JP7341771B2 (en) 2023-09-11

Family

ID=74574056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019138820A Active JP7341771B2 (en) 2019-07-29 2019-07-29 castable refractories

Country Status (1)

Country Link
JP (1) JP7341771B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014925B1 (en) * 2021-09-15 2022-02-01 黒崎播磨株式会社 Amorphous refractory for pouring work
CN114940607B (en) * 2022-04-18 2023-07-07 苏州培麟畅电气科技有限公司 GFRP concrete-based refractory bus duct castable and preparation method thereof
CN116462521B (en) * 2023-05-04 2024-02-27 武汉科技大学 Method for preparing lightweight heat-insulating refractory castable from residues generated in production of magnesium hydroxide by bischofite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203090A (en) 2008-02-26 2009-09-10 Kurosaki Harima Corp Heat insulating castable refractory
JP2009221081A (en) 2008-03-18 2009-10-01 Kurosaki Harima Corp Gas-permeable refractory
JP2018108902A (en) 2016-12-28 2018-07-12 品川リフラクトリーズ株式会社 Light-weight heat insulating unshaped refractory

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06263527A (en) * 1993-03-12 1994-09-20 Kyushu Refract Co Ltd Alumina refractory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203090A (en) 2008-02-26 2009-09-10 Kurosaki Harima Corp Heat insulating castable refractory
JP2009221081A (en) 2008-03-18 2009-10-01 Kurosaki Harima Corp Gas-permeable refractory
JP2018108902A (en) 2016-12-28 2018-07-12 品川リフラクトリーズ株式会社 Light-weight heat insulating unshaped refractory

Also Published As

Publication number Publication date
JP2021020829A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP7341771B2 (en) castable refractories
JP5735158B2 (en) Alumina cement
BR112015016855B1 (en) magnesia-carbon brick
JP6499464B2 (en) Insulated refractory
JP4234330B2 (en) Amorphous refractory composition
KR930006333B1 (en) Magnesia-alumina type spinel clinker and method of producing refractory by using same
JP5769313B2 (en) Low thermal expansion insulation castable
JP2010280540A (en) Chromia-enriched castable refractory substance, and precast block using the same
WO2017170840A1 (en) Refractory aggregate, method for manufacturing same, and refractory employing same
JP7052664B2 (en) Castable refractory
WO2014126095A1 (en) Castable refractory for blast furnace trough
EP3421571B1 (en) Precast refractory block for coke oven
JP2018016526A (en) Aggregate for refractory, manufacturing method therefor and refractory using the same
JP5995315B2 (en) Irregular refractory
JP6926717B2 (en) Alumina-Magnesian Castable Refractory
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP7089448B2 (en) Aggregate for refractory, its manufacturing method, and refractory using it
US10093576B2 (en) Unshaped refractory material
JP7135691B2 (en) Evaluation Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
CN108025985B (en) Monolithic refractory
JP6503798B2 (en) Explosion Proof Castable
JPS5811388B2 (en) Amorphous fireproof composition for pouring
JPH02221164A (en) Castable refractory containing silicon carbide
JP6927054B2 (en) Alumina-magnesian castable refractory and its manufacturing method
RU2625580C1 (en) Refractory concrete mixture for hearth lining of thermal units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230830

R150 Certificate of patent or registration of utility model

Ref document number: 7341771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150