JPH03175124A - Fuel supply device of internal combustion engine - Google Patents

Fuel supply device of internal combustion engine

Info

Publication number
JPH03175124A
JPH03175124A JP31430289A JP31430289A JPH03175124A JP H03175124 A JPH03175124 A JP H03175124A JP 31430289 A JP31430289 A JP 31430289A JP 31430289 A JP31430289 A JP 31430289A JP H03175124 A JPH03175124 A JP H03175124A
Authority
JP
Japan
Prior art keywords
engine
amount
fuel
fuel supply
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31430289A
Other languages
Japanese (ja)
Other versions
JP2548616B2 (en
Inventor
Fumihiro Yoshihara
吉原 文博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP1314302A priority Critical patent/JP2548616B2/en
Publication of JPH03175124A publication Critical patent/JPH03175124A/en
Application granted granted Critical
Publication of JP2548616B2 publication Critical patent/JP2548616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent lowering of the rotating speed of an engine and the stall of the engine at start so as to enhance the starting performance of the engine by stopping correction of the amount of fuel flowing on the wall surface of the engine until a predetermined period of time elapses from the start of cranking. CONSTITUTION:A controller 1 computers the amount of intake air according to the flow passage cross section of an air intake passage and an engine rotating speed output from a rotating speed sensor 2, and then retrieves the amount of fuel attached to the wall surface of the engine according to the amount of intake air and computes the difference in the amount of fuel between the routine of this time and the previous routine. The difference in the amount of fuel is multiplied by a constant and a transient coefficient of correction is computed as a corrected amount of fuel flowing on the wall surface. The difference in the amount of fuel is set to zero until a predetermined period of time elapses after a starter switch 5 is turned on, so as to stop correction of the amount of fuel flowing on the wall surface. The most suitable amount of fuel supplied at the start of the engine is thus secured to prevent lowering of the rotating speed of the engine and the stall of the engine to enhance the starting performance of the engine.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の燃料供給装置に関し、特に始動性
の向上技術に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fuel supply device for an internal combustion engine, and particularly to a technique for improving startability.

〈従来の技術〉 内燃機関の燃料供給装置の従来例として、以下のような
ものがある。
<Prior Art> Conventional examples of fuel supply devices for internal combustion engines include the following.

即ち、予めスロットル弁開度と機関回転速度とをパラメ
ータとする複数の運転領域毎に各運転領域に対応する吸
入空気流量Q若しくは基本燃料噴射量T、のデータをR
OM (又はRAM)に記憶させておき、スロットル弁
開度と機関回転速度との検出値に基づいて前記ROMか
ら該当する運転領域におけるデータを検索するように構
成する。
That is, data on the intake air flow rate Q or the basic fuel injection amount T corresponding to each operating range is prepared in advance for each of a plurality of operating ranges using the throttle valve opening degree and the engine rotational speed as parameters.
It is configured to be stored in the OM (or RAM) and retrieve data in the corresponding operating range from the ROM based on the detected values of the throttle valve opening and the engine rotational speed.

そして、吸入空気流IQを検索する場合には、検索され
た吸入空気流NQから基本噴射量TP(=に−Q/N;
には定数)を演算した後、燃料噴射量T五= T p 
X COE F Xα十T、を演算する。
When searching for the intake air flow IQ, the basic injection amount TP (= to -Q/N;
After calculating the fuel injection amount T5 = T p
X COE F Xα+T is calculated.

そして、演算された燃料噴射ITtに対応する噴射パル
ス信号を燃料噴射弁に出力し、機関に燃料を噴射供給す
るようにしている。
Then, an injection pulse signal corresponding to the calculated fuel injection ITt is output to the fuel injection valve to inject and supply fuel to the engine.

また、基本噴射量TPをROMに記憶させる場合には、
スロットル弁開度と機関回転速度とにより検索された基
本噴射量T、を、前記燃料噴射量T、の演算式に代入し
燃料噴射量T、を演算するようにしている。
In addition, when storing the basic injection amount TP in the ROM,
The basic injection amount T, which is retrieved based on the throttle valve opening degree and the engine rotational speed, is substituted into the calculation formula for the fuel injection amount T, to calculate the fuel injection amount T.

ここで、過渡運転時の空燃比を最適に維持するために、
吸気通路内壁に沿って液状に流れる燃料(以下、壁流燃
料と称す)量を以下の如く補正するようにしている。
Here, in order to maintain the optimal air-fuel ratio during transient operation,
The amount of fuel flowing in liquid form along the inner wall of the intake passage (hereinafter referred to as wall flow fuel) is corrected as follows.

すなわち、スロットル弁開度により求められた吸気通路
の流路断面積Aと機関回転速度Nとに基づいて吸入空気
流量Q(A/N’)を演算した後このQによりマツプか
ら壁面付着IMFHを検索し、この壁面付着量MFHと
前回ルーチンで求められた壁面付着31MFとに基づい
て次式により過渡補正係数KATHO3を演算する。
That is, after calculating the intake air flow rate Q (A/N') based on the flow passage cross-sectional area A of the intake passage obtained from the throttle valve opening and the engine rotation speed N, the wall surface adhesion IMFH is calculated from the map using this Q. Based on this wall surface adhesion amount MFH and the wall surface adhesion 31MF determined in the previous routine, a transient correction coefficient KATHO3 is calculated using the following equation.

KATHO3= (MFH−MF)xKMF ; KM
Fは定数である。
KATHO3= (MFH-MF)xKMF; KM
F is a constant.

そして、演算された過渡補正係数KAT HOSは前記
各種補正係数C0EFに加算することにより、燃料噴射
量T、を壁流補正するようにしている。
The calculated transient correction coefficient KAT HOS is added to the various correction coefficients C0EF, thereby correcting the wall flow of the fuel injection amount T.

ここで、壁流補正はスタータスイッチがオンからオフに
切換わった時点から開始されるようになっている。
Here, the wall flow correction is started from the time the starter switch is turned from on to off.

〈発明が解決しようとする課題〉 しかしながら、このような従来の燃料供給装置において
は、スタータスイッチがオンからオフに切換わった時点
から壁流補正を行うと共に、壁流補正時の壁面付着量M
FHをスロットル弁開度に基づいて求めるようにしてい
るので、始動時にエンジンキースイッチを素早く操作す
ると、以下の不具合がある。
<Problems to be Solved by the Invention> However, in such a conventional fuel supply device, wall flow correction is performed from the time when the starter switch is switched from on to off, and the wall surface adhesion amount M at the time of wall flow correction is
Since FH is determined based on the throttle valve opening, if the engine key switch is operated quickly at startup, the following problems will occur.

すなわち、スタータスイッチは、通常のクランキング時
には第4図中破緑石の如く、約0.8〜1秒間オンされ
、このオン中に機関回転速度が所定回転速度まで上昇し
不具合は発生しない。
That is, during normal cranking, the starter switch is turned on for about 0.8 to 1 second, as shown in Fig. 4, and during this time the engine rotational speed increases to a predetermined rotational speed and no trouble occurs.

これに対し、スタータスイッチを第4図中実緑石の如く
素早く操作すると、機関回転速度が上昇する前に過渡補
正が開始される。このため、過渡補正中に前記スロット
ル弁開度が一定に拘わらず機関回転速度が急激に上昇す
るので、スロ7)ル弁開度と機関回転速度とから求めら
れる前記吸入空気流量がスロットル弁開度が一定にも拘
わらず機関回転速度の上昇に伴って小さくなる。したが
って、これに伴って、壁面付着量M F H及び過渡補
正係数KAT HOSが第4図中実緑石の如く低下する
ので、機関への燃料供給量が低下するため、回転速度の
低下(第4図中鎖緑石)を招いたりエンジンストールの
発生(第4図中実緑石)を招くという不具合がある。
On the other hand, if the starter switch is operated quickly as shown in the solid green stone in FIG. 4, the transient correction is started before the engine rotational speed increases. Therefore, during transient correction, the engine rotational speed increases rapidly regardless of the throttle valve opening being constant, so that the intake air flow rate determined from the throttle valve opening and the engine rotational speed is different from the throttle valve opening. Even though the degree is constant, it decreases as the engine rotation speed increases. Therefore, along with this, the wall surface adhesion amount M F H and the transient correction coefficient KAT HOS decrease as shown in the solid green stone in Figure 4, and the amount of fuel supplied to the engine decreases, resulting in a decrease in rotational speed ( This has the disadvantage of causing engine stall (Fig. 4, solid green stone) or engine stall (Fig. 4, solid green stone).

本発明は、このような実状に鑑みてなされたもので、始
動時における回転速度の低下、エンジンストールの発生
を防止して始動性を向上できる内燃機関の燃料供給装置
を提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to provide a fuel supply device for an internal combustion engine that can improve startability by preventing a decrease in rotational speed and occurrence of engine stall at the time of starting. do.

〈課題を解決するための手段〉 このため、本発明は第1図に示すように、機関運転状態
に基づいて燃料供給量を設定する燃料供給量設定手段A
と、機関運転状態に基づいて壁流燃料補正量を設定する
補正量設定手段Bと、設定された壁流燃料補正量に基づ
いて前記設定された燃料供給量を補正する壁流補正手段
Cと、補正された燃料供給量に基づいて燃料供給手段り
を駆動制御する駆動制御手段Eと、を備えるものにおい
て、クランキング時を検出するクランキング時検出手段
Fと、クランキング開始時若しくはクランキング終了時
から所定時間経過したか否かを判定する判定手段Gと、
前記クランキング開始から所定時間内は前記壁流補正手
段Cの作動を停止させ前記所定時間経過後に前記壁流補
正手段Cを作動させる動作手段Hと、を備えるようにし
た。
<Means for Solving the Problem> Therefore, as shown in FIG. 1, the present invention provides a fuel supply amount setting means A that sets the fuel supply amount based on the engine operating state.
, a correction amount setting means B for setting a wall flow fuel correction amount based on the engine operating state, and a wall flow correction means C for correcting the set fuel supply amount based on the set wall flow fuel correction amount. , a drive control means E for driving and controlling the fuel supply means based on the corrected fuel supply amount, and a cranking time detection means F for detecting the cranking time, and a cranking time detection means F for detecting the cranking time, and a cranking time detection means F for detecting the cranking time, and a cranking time detection means F for detecting the cranking time. determination means G for determining whether a predetermined time has elapsed since the end;
The apparatus is provided with operation means H that stops the operation of the wall flow correction means C within a predetermined time from the start of cranking, and operates the wall flow correction means C after the elapse of the predetermined time.

〈作用〉 このようにして、クランキング開始から所定時間内は壁
流補正を停止させることにより、始動時の燃料噴射量を
最適に維持し、もって始動性を向上させるようにした。
<Operation> In this way, by stopping the wall flow correction within a predetermined period of time after the start of cranking, the fuel injection amount at the time of starting is maintained at an optimum level, thereby improving startability.

〈実施例〉 以下に、本発明の一実施例を第2図及び第3図に基づい
て説明する。
<Example> An example of the present invention will be described below with reference to FIGS. 2 and 3.

第2図において、マイクロコンピュータ等からなる制御
装置工には、回転速度センサ2からの機関回転速度検出
信号と、ストツロルセンサ3からのスロットル弁開度検
出信号と、水温センサ4からの冷却水温検出信号と、ク
ランキング時検出手段としてのスタータスイッチ5から
のオン・オフ信号と、が入力されている。
In FIG. 2, a control device consisting of a microcomputer etc. receives an engine rotational speed detection signal from a rotational speed sensor 2, a throttle valve opening detection signal from a throttle sensor 3, and a cooling water temperature detection signal from a water temperature sensor 4. and an on/off signal from a starter switch 5 serving as cranking detection means.

制御装置工は、第3図のフローチャートに従って作動し
、駆動回路6を介して燃料供給手段としての燃料噴射弁
7に噴射パルス信号を出力する。
The control device operates according to the flowchart shown in FIG. 3, and outputs an injection pulse signal to the fuel injection valve 7 as a fuel supply means via the drive circuit 6.

前記燃料噴射弁7はスロットル弁上流の吸気通路に介装
されるいわゆる5PI(シングルポイントインジェクシ
ョン)方式のものである。
The fuel injection valve 7 is of the so-called 5PI (single point injection) type, which is installed in the intake passage upstream of the throttle valve.

ここでは、制御装置1が燃料供給量設定手段と補正量設
定手段と壁流補正手段と判定手段と動作手段とを構成す
る。また、制御装置lと駆動回路6とが駆動制御手段を
構成する。
Here, the control device 1 constitutes a fuel supply amount setting means, a correction amount setting means, a wall flow correction means, a determining means, and an operating means. Further, the control device 1 and the drive circuit 6 constitute a drive control means.

次に作用を第3図のフローチャートに従って説明する。Next, the operation will be explained according to the flowchart shown in FIG.

SLでは、回転速度センサ2等の各種信号を読込む。SL reads various signals from the rotational speed sensor 2 and the like.

S2では、検出された機関回転速度とスロットル弁開度
に基づいて基本噴射ITpをマツプから検索する。
In S2, basic injection ITp is searched from the map based on the detected engine speed and throttle valve opening.

S3では、例えばスロットル弁開度の変化率に基づいて
、現在の運転状態が加速運転か否かを判定し、YESの
ときにはS5に進みNOのときにはS4に進む。
In S3, it is determined whether the current driving state is accelerated driving, for example, based on the rate of change of the throttle valve opening. If YES, the process proceeds to S5, and if NO, the process proceeds to S4.

S4では、スタータスイッチ5がオンした時点(クラン
キング開始時)から所定時間(例えば1秒〜2秒)が経
過したか否かを判定し、YESのときにはS5に進みN
oのときにはS6に進む。
In S4, it is determined whether a predetermined time (for example, 1 to 2 seconds) has elapsed since the starter switch 5 was turned on (when cranking started), and if YES, the process advances to S5 and N.
If o, the process advances to S6.

前記所定時間は冷却水温度に応じて変化させてもよい。The predetermined time may be changed depending on the cooling water temperature.

S5では、燃料流量差VMFを演算する。すなわち、ス
ロットル弁開度により求められた吸気通路の流路断面積
Aと機関回転速度Nとに基づいて吸入空気流量(=A/
N)を演算した後、この吸入空気流量に基づいて壁面付
着量MFHを検索する。そして、検索された壁面付着量
MFHから前回ルーチンで設定された壁面付着量MFを
滅じ、燃料流量差VMF (=MFH−MF)を演算す
る。
In S5, a fuel flow rate difference VMF is calculated. That is, the intake air flow rate (=A/
After calculating N), the wall surface adhesion amount MFH is searched based on this intake air flow rate. Then, the wall adhesion amount MF set in the previous routine is deleted from the retrieved wall adhesion amount MFH, and the fuel flow rate difference VMF (=MFH - MF) is calculated.

S6では、前回ルーチンで設定された燃料流量差VMF
が零を超えているか否かを判定し、YESのときには前
記S5に進みNoのときにはS7に進む。
In S6, the fuel flow rate difference VMF set in the previous routine
It is determined whether or not exceeds zero. If YES, the process proceeds to S5, and if NO, the process proceeds to S7.

S7では、壁流補正を停止させるべく燃料流量差VMF
を零に設定する。
In S7, the fuel flow rate difference VMF is adjusted to stop the wall flow correction.
Set to zero.

S8では、S5若しくはS7にて設定された燃料流量差
VMFに定数KMFを乗じて、壁流燃料補正量としての
過渡補正係数KATHO3を演算する。
In S8, the fuel flow rate difference VMF set in S5 or S7 is multiplied by a constant KMF to calculate a transient correction coefficient KATHO3 as a wall flow fuel correction amount.

S9では、各種補正係数C0EFを次式により演算する
In S9, various correction coefficients C0EF are calculated using the following equations.

C0EF= 1 +KATHO3+KTW+・・・+K
AS KTWは水温補正係数、KASは始動及び始動後増量補
正係数である。
C0EF= 1 +KATHO3+KTW+...+K
AS KTW is a water temperature correction coefficient, and KAS is a starting and post-start increase correction coefficient.

310では、燃料噴射量T、を次式により演算する。At 310, the fuel injection amount T is calculated using the following equation.

T、=T、XC0EFXαxTs αは空燃比フィードバック補正係数、Tsはバッテリ電
圧による電圧補正分である。
T,=T,XC0EFXαxTs α is the air-fuel ratio feedback correction coefficient, and Ts is the voltage correction amount based on the battery voltage.

このようにして演算された燃料噴射量T、に対応する噴
射パルス信号を駆動回路6を介して燃料噴射弁7に出力
し、燃料を機関に供給する。
An injection pulse signal corresponding to the fuel injection amount T calculated in this way is output to the fuel injection valve 7 via the drive circuit 6, and fuel is supplied to the engine.

以上説明したように、スタータスイッチ5のオン時から
所定時間内でかつ燃料流量差VMFが零以下のときに燃
料流量差VMFを零に設定して壁流補正を停止させるよ
うにしたので、始動時に必要な燃料噴射量を確保できる
ため、回転速度の低下やエンジンストールの発生を防止
でき始動性を向上できる。また、加速運転時には所定時
間内であっても壁流補正を行うようにしたので、加速性
能を最適に維持できる。
As explained above, since the fuel flow difference VMF is set to zero and the wall flow correction is stopped within a predetermined time from when the starter switch 5 is turned on and when the fuel flow difference VMF is less than zero, the wall flow correction can be stopped. Since the necessary fuel injection amount can be secured at the same time, it is possible to prevent a decrease in rotational speed and the occurrence of engine stall, and improve startability. Moreover, since wall flow correction is performed even within a predetermined time during acceleration operation, acceleration performance can be maintained optimally.

〈発明の効果〉 本発明は、以上説明したように、クランキング開始から
所定時間内は壁流補正を停止するようにしたので、始動
時に最適な燃料供給量を確保できるため、回転速度の低
下、エンジンストールの発生を防止して始動性を向上で
きる。
<Effects of the Invention> As explained above, in the present invention, wall flow correction is stopped within a predetermined time from the start of cranking, so that an optimal fuel supply amount can be ensured at the time of startup, and a decrease in rotational speed can be prevented. , it is possible to prevent the occurrence of engine stall and improve startability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図は同上のフローチャート、
第4図は従来の欠点を説明するための図である。
Fig. 1 is a claim correspondence diagram of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Fig. 3 is a flowchart of the same as above,
FIG. 4 is a diagram for explaining the conventional drawbacks.

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に基づいて燃料供給量を設定する燃料供給
量設定手段と、機関運転状態に基づいて壁流燃料補正量
を設定する補正量設定手段と、設定された壁流燃料補正
量に基づいて前記設定された燃料供給量を補正する壁流
補正手段と、補正された燃料供給量に基づいて燃料供給
手段を駆動制御する駆動制御手段と、を備える内燃機関
の燃料供給装置において、クランキング時を検出するク
ランキング時検出手段と、クランキング開始時若しくは
クランキング終了時から所定時間経過したか否かを判定
する判定手段と、前記クランキング開始から所定時間内
は前記壁流補正手段の作動を停止させ前記所定時間経過
後に前記壁流補正手段を作動させる動作手段と、を備え
たことを特徴とする内燃機関の燃料供給装置。
a fuel supply amount setting means for setting the fuel supply amount based on the engine operating state; a correction amount setting means for setting the wall flow fuel correction amount based on the engine operating state; In the fuel supply device for an internal combustion engine, the fuel supply device for an internal combustion engine includes a wall flow correction means for correcting the set fuel supply amount, and a drive control means for driving and controlling the fuel supply means based on the corrected fuel supply amount. a cranking time detection means for detecting the cranking time; a determination means for determining whether a predetermined time has elapsed from the start of cranking or the end of cranking; and an operation of the wall flow correction means within a predetermined time from the start of cranking. a fuel supply device for an internal combustion engine, comprising: operating means for stopping the wall flow correction means and operating the wall flow correction means after the predetermined time has elapsed.
JP1314302A 1989-12-05 1989-12-05 Fuel supply device for internal combustion engine Expired - Lifetime JP2548616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314302A JP2548616B2 (en) 1989-12-05 1989-12-05 Fuel supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314302A JP2548616B2 (en) 1989-12-05 1989-12-05 Fuel supply device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03175124A true JPH03175124A (en) 1991-07-30
JP2548616B2 JP2548616B2 (en) 1996-10-30

Family

ID=18051725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314302A Expired - Lifetime JP2548616B2 (en) 1989-12-05 1989-12-05 Fuel supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2548616B2 (en)

Also Published As

Publication number Publication date
JP2548616B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JPS6324140B2 (en)
JPH11148402A (en) Deceleration timing control device for internal combustion engine
US6973926B2 (en) Air-fuel ratio control apparatus for internal combustion engine and method thereof
JP2833020B2 (en) Engine fuel injection device
JPH03175124A (en) Fuel supply device of internal combustion engine
JP3355287B2 (en) Fuel injection control device for internal combustion engine
JP3183040B2 (en) Fuel injection control device for internal combustion engine
JP2566832B2 (en) Fuel supply device for internal combustion engine
JPH02104942A (en) Device for feeding mixed fuel of internal combustion engine
JPH11315747A (en) Atmospheric pressure detection unit of internal combustion engine
JPS6313012B2 (en)
JPH0211730B2 (en)
JP2555211B2 (en) Internal combustion engine control method
JPH0476242A (en) Fuel injection quantity controller for internal combustion engine
JPS59196932A (en) Air-fuel ratio controlling apparatus for internal-combustion engine
JPH0510163A (en) Internal combustion engine controller
JPS63230942A (en) Fuel injection quantity controller for abnormal cooling water system
JP2565345B2 (en) Fuel supply device for internal combustion engine
JP2520608B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0326842A (en) Fuel injector for engine
JPH055439A (en) Fuel injection device for engine
JP2528324B2 (en) Fuel supply device for internal combustion engine
JPH03281959A (en) Electronically controlled fuel injection device for internal combustion engine
JPS60237137A (en) Fuel injection amount controller on starting for electronic controlled injection controller for internal-combustion engine
JPH05171977A (en) Fuel supply device of internal combusti0n engine