JPH03281959A - Electronically controlled fuel injection device for internal combustion engine - Google Patents

Electronically controlled fuel injection device for internal combustion engine

Info

Publication number
JPH03281959A
JPH03281959A JP8132990A JP8132990A JPH03281959A JP H03281959 A JPH03281959 A JP H03281959A JP 8132990 A JP8132990 A JP 8132990A JP 8132990 A JP8132990 A JP 8132990A JP H03281959 A JPH03281959 A JP H03281959A
Authority
JP
Japan
Prior art keywords
engine
post
correction coefficient
increase correction
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8132990A
Other languages
Japanese (ja)
Other versions
JPH0833123B2 (en
Inventor
Hiroshi Kikuchi
菊池 裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP2081329A priority Critical patent/JPH0833123B2/en
Publication of JPH03281959A publication Critical patent/JPH03281959A/en
Publication of JPH0833123B2 publication Critical patent/JPH0833123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To effectively prevent an engine from being lowered in revolution after it has been started by resetting an increment correction factor to an increasing side after the engine has been started when the engine is lowered in revolution to the value less than a specified one for the definite time after the engine has been started, and accordingly resetting a decrement value to the increasing side. CONSTITUTION:An electronically controlled fuel injection device for an internal combustion engine is equipped with an after starting increment correction factor setting means (a) which sets up an after starting increment correction factor in such a way that the correction factor is gradually decreased from the initial value set up in response to engine temperature by a decrement set in response to the initial value with time for the definite period of time after the engine has been started, and is also equipped with an after starting increment correction means (b) which makes incremental correction for the quantity of fuel injection based on the aforesaid after starting increment correction factor. In this case, a revolution reduction detecting means (c) is provided, which detects that the engine is lowered in revolution to the value less than a specified one for the definite period of time, and an after starting increment correction factor resetting means is also provided, which resets the after starting increment correction factor to the increasing side of the after starting increment correction factor when an reduction in revolution is detected. In addition, a decrement value resetting means (e) is also provided, which resets the decrement value to the increasing side.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の電子制御燃料噴射装置に関し、特
に、燃料噴射量の始動後増量技術に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electronically controlled fuel injection device for an internal combustion engine, and particularly relates to a technique for increasing the amount of fuel injection after startup.

〈従来の技術〉 従来より、内燃機関の電子制御燃料噴射装置においては
、吸入空気流量と機関回転数とから基本燃料噴射量を設
定し、これに機関の運転状態等に応じた補正を加えて、
燃料噴射弁により噴射する燃料噴射量を設定するように
している。
<Prior art> Conventionally, in electronically controlled fuel injection systems for internal combustion engines, the basic fuel injection amount is set based on the intake air flow rate and the engine speed, and corrections are made to this according to the engine operating status. ,
The amount of fuel injected by the fuel injection valve is set.

ここで、前記補正の1つとして、始動後増量補正があり
、これは、第7図に示すように、機関始動後(スタート
スイッチS T/S WがONからOFFに切換ねって
から)一定時間、第8図のマツプに示すような、機関温
度(Il関の冷却水温Tw)が低い程大きくなるように
設定された初期値M K Asから、その初期値M K
 Asに応じて設定された漸減値分ずつ、時間経過と共
に漸減することにより、始動後増量補正係数KAsを設
定し、この始動後増量補正係数により、燃料噴射量を増
量補正するようにしている。
Here, as one of the above-mentioned corrections, there is a post-start increase correction, which is constant after the engine starts (after the start switch ST/SW is switched from ON to OFF) as shown in Fig. 7. As shown in the map of FIG. 8, the initial value M K
A post-start increase correction coefficient KAs is set by gradually decreasing over time by a gradual decrease value set according to As, and the fuel injection amount is increased by the post-start increase correction coefficient.

〈発明が解決しようとする課題〉 ところで、前述のマツプは、基準ガソリンに適合するよ
うに設定されているため、基準ガソリンよりも蒸発し難
い、低蒸気圧のガソリン(夏用ガソリン)を、気温の低
い冬に使用すると、燃料噴射弁から噴射された燃料のう
ち気化しないで、吸気マニホールドの壁に付着する量が
多くなり、その分が燃焼室への到達遅れを生じ、−時的
に、機関がリーンになって、始動後に回転落ちが生しる
(第7図X参照)等の問題点があった。
<Problems to be Solved by the Invention> By the way, the above-mentioned map is set to be compatible with standard gasoline, so gasoline with low vapor pressure (summer gasoline), which is less likely to evaporate than standard gasoline, can be used at different temperatures. When used in winter when temperatures are low, a large amount of the fuel injected from the fuel injector does not vaporize and adheres to the walls of the intake manifold, causing a delay in reaching the combustion chamber. There were problems such as the engine becoming lean and causing a drop in rotation after starting (see X in Figure 7).

本発明は、上記の問題点に鑑み、始動後に回転落ちの住
じない内燃機関の電子制御燃料噴射装置を捷供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide an electronically controlled fuel injection system for an internal combustion engine that does not suffer from rotation drop after startup.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明は、第1図に示すよ
うに、機開始動後一定時間、機関温度に応じて設定され
た初期値から、その初期値に応じて設定された漸減値分
ずつ、時間経過と共に漸減することにより、始動後増量
補正係数を設定する始動後増量補正係数設定手段(a)
と、この始動後増量補正係数により、燃料噴射量を増量
補正する始動後増量補正手段(b)とを有する内燃機関
の電子制御燃料噴射装置において、下記の(C)〜(e
)の手段を設ける構成とする。
<Means for Solving the Problems> In order to achieve the above object, the present invention, as shown in FIG. Post-starting increase correction coefficient setting means (a) for setting a post-starting increase correction coefficient by gradually decreasing over time by a gradual decrease value set according to the value;
and a post-start increase correction means (b) for increasing the fuel injection amount based on the post-start increase correction coefficient, the following (C) to (e) are provided.
).

(C)  前記一定時間中に、機関回転数の所定値以下
への低下を検知する回転低下検知手段 @ 該回転低下検知時に、そのときの始動後増量補正係
数を増大させるべく該始動後増量補正係数を再設定する
始動後増量補正係数再設定手段(e)  始動後増量補
正係数の再設定時に、前記漸減値を増大側に再設定する
漸減値再設定手段〈作用〉 上記の構成によると、下記の作用を得ることができる。
(C) Rotation reduction detection means for detecting a decrease in the engine rotation speed to a predetermined value or less during the certain period of time @ When the rotation reduction is detected, the post-start increase correction is performed to increase the post-start increase correction coefficient at that time. Post-start increase correction coefficient resetting means (e) for resetting the coefficient Gradual decrease value resetting means for resetting the gradual decrease value to the increasing side when resetting the post-start increase correction coefficient <Operation> According to the above configuration, The following effects can be obtained.

機関温度に応じて初期値を設定し、この初期値に応じて
漸減値を設定し、初期値から時間経過と共に漸減値分ず
つ漸減して、始動後増量補正係数を設定する。
An initial value is set according to the engine temperature, a gradual decrease value is set according to this initial value, and the increase correction coefficient after startup is set by gradually decreasing from the initial value by the gradual decrease value over time.

この始動後増量補正係数に基づいて、燃料噴射量を増量
補正する。
Based on this post-start increase correction coefficient, the fuel injection amount is corrected to increase.

そして、始動後一定時間中(増量補正中)に、機関回転
数の所定値以下への低下を検知すると、始動後増量補正
係数を増大させるべく再設定して、回転落ちを防止する
。また、これに伴って、漸減値を増大側に再設定し、始
動後増量補正係数を大きくしても、その分漸減速度を大
きくして、増量補正時間を大幅に変化させないようにし
ている。
If a drop in the engine speed below a predetermined value is detected during a certain period of time after startup (during increase correction), the post-start increase correction coefficient is reset to increase to prevent rotation drop. In addition, even if the gradual decrease value is reset to the increasing side and the increase correction coefficient after startup is increased, the gradual decrease speed is increased correspondingly so that the increase correction time does not change significantly.

〈実施例〉 以下に本発明の一実施例を第2図〜第6図に基づいて説
明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 6.

先ず、第2図を参照して、システムを説明する。First, the system will be explained with reference to FIG.

機関1には、エアクリーナ2から吸気ダクト3゜スロッ
トル弁4及び吸気マニホールド5を介して、空気が吸入
される。
Air is taken into the engine 1 from an air cleaner 2 through an intake duct 3, a throttle valve 4, and an intake manifold 5.

吸気マニホールド5のブランチ部には、各気筒毎に燃料
噴射弁6が設けられている。
A fuel injection valve 6 is provided in a branch portion of the intake manifold 5 for each cylinder.

燃料噴射弁6は、ソレノイドに通電されて開弁じ、通電
停止されて閉弁する電磁式燃料噴射弁であって、後述す
るコントロールユニット12からの駆動パルス信号によ
り通電されて開弁し、図示しない燃料ポンプから圧送さ
れてプレッシャレギュレータにより所定の圧力に調整さ
れた燃料を噴射供給する。
The fuel injection valve 6 is an electromagnetic fuel injection valve that opens when the solenoid is energized and closes when the energization is stopped. Fuel is injected and supplied from the fuel pump and adjusted to a predetermined pressure by the pressure regulator.

機関1の燃焼室には、点火栓7が設けられていて、これ
により、火花点火して混合気を着火燃焼させる。
The combustion chamber of the engine 1 is provided with an ignition plug 7, which ignites a spark to ignite and burn the air-fuel mixture.

コントロールユニット12は、CPU、ROM。The control unit 12 includes a CPU and a ROM.

RAM及び入出力インターフェイスを含んで構成される
マイクロコンピュータを備え、各種のセンサからの入力
信号を受け、後述の如く演算処理して、燃料噴射弁6の
作動を制御する。
It is equipped with a microcomputer including a RAM and an input/output interface, receives input signals from various sensors, performs arithmetic processing as described later, and controls the operation of the fuel injection valve 6.

前記各種のセンサとしては、吸気ダクト3中に熱線式の
エアフローメータ13が設けられていて、吸入空気流量
Qを検出する。
As the various sensors mentioned above, a hot wire type air flow meter 13 is provided in the intake duct 3 to detect the intake air flow rate Q.

また、クランク角七ンサ14が設けられていて、4気筒
の場合、クランク角180’毎の基準信号とクランク角
1〜2°毎の単位信号とを出力する。
Further, a crank angle sensor 14 is provided, and in the case of a four-cylinder engine, outputs a reference signal for every crank angle of 180' and a unit signal for every crank angle of 1 to 2 degrees.

ここで、基準信号の周期、或いは所定時間内における単
位信号の発生数を計測することにより、機関回転数Nを
算出可能である。
Here, the engine speed N can be calculated by measuring the cycle of the reference signal or the number of unit signals generated within a predetermined time.

また、機関1のウォータジャケットに臨ませて、冷却水
温Twを検出する水温センサ15が設けられている。こ
れから、機関温度を知ることができる。
Further, a water temperature sensor 15 is provided facing the water jacket of the engine 1 to detect the cooling water temperature Tw. From this you can know the engine temperature.

また、スタートスイッチ17からのON・OFF信号が
出力される。
Further, an ON/OFF signal from the start switch 17 is output.

ここにおいて、コントロールユニット12に内蔵された
マイクロコンピュータのCPUは、第3閲〜第5図にフ
ローチャートとして示すROM上のプログラム(燃料噴
射量設定ルーチン、第1始動後増量補正係数設定ルーチ
ン、第2始動後増量補正係数設定ルーチン)に従って、
演算処理を行い、燃料噴射量を制御する。
Here, the CPU of the microcomputer built in the control unit 12 executes the programs (fuel injection amount setting routine, first post-start increase correction coefficient setting routine, second According to the post-start increase correction coefficient setting routine),
Performs calculation processing and controls fuel injection amount.

先ず、第3図のフローチャートを参照して、燃料噴射量
設定ルーチンを説明する。
First, the fuel injection amount setting routine will be explained with reference to the flowchart shown in FIG.

ステップ1(図中81と記す。以下同様。)では、吸入
空気流量Q及び機関回転数Nを入力する。
In step 1 (denoted as 81 in the figure; the same applies hereinafter), the intake air flow rate Q and the engine speed N are input.

ステップ2では、基本燃料噴射量TPを、次式に従って
設定する。
In step 2, the basic fuel injection amount TP is set according to the following formula.

Tp=に−Q/N       ;には定数ステップ3
では、始動時増量補正係数に□を含む補正係数C0EF
を、次式に従って設定する。
Tp=to-Q/N; constant step 3
Then, the correction coefficient C0EF that includes □ in the starting increase correction coefficient
is set according to the following formula.

C0EF=4+Kyw+Ksy+KAs+ ” ’;に
71は水温補正係数、KSTは始動時増量補正係数 ステップ4では、バッテリ電圧に応じて、電圧補正分子
sを設定する。
C0EF=4+Kyw+Ksy+KAs+ "'; 71 is a water temperature correction coefficient, and KST is a start-up increase correction coefficient. In step 4, a voltage correction numerator s is set in accordance with the battery voltage.

ステップ5では、補正係数C0EF等により、燃料噴射
量Tiを、次式に従って設定する。
In step 5, the fuel injection amount Ti is set using the correction coefficient C0EF and the like according to the following equation.

Ti=Tp −C0EF+Ts ここで、ステップ3,5が始動時増量補正係数に相当す
る。
Ti=Tp -C0EF+Ts Here, steps 3 and 5 correspond to the start-up increase correction coefficient.

そして、燃料噴射量Tiに相当するパルス幅の信号を、
燃料噴射弁6に、機関の回転に同期した所定のタイミン
グで出力する。
Then, a signal with a pulse width corresponding to the fuel injection amount Ti is
The fuel is output to the fuel injection valve 6 at a predetermined timing synchronized with the rotation of the engine.

次に、第4図のフローチャートを参照して、第1始動後
増量補正係数設定ルーチンを説明する。
Next, the first post-start increase correction coefficient setting routine will be described with reference to the flowchart in FIG.

尚、第6図に、スタートスイッチ(ST/5W)17の
切換えタイミングと、始動後増量補正係数KA。
In addition, FIG. 6 shows the switching timing of the start switch (ST/5W) 17 and the post-start increase correction coefficient KA.

及び機関回転数Nの制御特性を示す。and the control characteristics of the engine speed N.

ステップ11では、スタートスイッチ17のON・OF
Fを判定する。
In step 11, the start switch 17 is turned on and off.
Determine F.

ONのとき(始動中)は、ステップ12に進んで、始動
後増量補正係数Kasに0を代入し、更に、ステップ1
3に進んで、再設定フラグFをリセットして、このルー
チンを終了する。
When ON (during startup), proceed to step 12, substitute 0 for the post-start increase correction coefficient Kas, and then proceed to step 1.
Proceed to step 3, reset the reset flag F, and end this routine.

一方、ステップ11の判定で、スタートスイッチ17が
OFFのとき(始動後)は、ステップ14に進んで、O
NからOFFへ切換わった直後か否かを判定する。
On the other hand, if it is determined in step 11 that the start switch 17 is OFF (after starting), the process proceeds to step 14 and the
It is determined whether it is immediately after switching from N to OFF.

直後(YES)のときは、ステップ15に進んで、水温
センサ15により検出される冷却水温Twに基づき、マ
ツプを参照して、始動後増量補正係数KASの初期値M
Kasを検索する。
Immediately (YES), proceed to step 15, and based on the cooling water temperature Tw detected by the water temperature sensor 15, refer to the map and set the initial value M of the post-start increase correction coefficient KAS.
Search for Kas.

ステップ16では、始動後増量補正係数の漸減値DKa
Sを、次式に従って設定する。
In step 16, a gradual decrease value DKa of the increase correction coefficient after startup is determined.
S is set according to the following formula.

DKA!”MKAS/CmaX  ; Ctaaxは一定の始動後増量時間 ステップ17では、始動後増量補正係数KA3に初期値
M K Asを代入する。
DKA! "MKAS/CmaX; Ctaax is a constant amount increase time after start-up. In step 17, the initial value M K As is substituted for the after-start increase correction coefficient KA3.

これにより、始動後増量補正が開始され、後述する第5
図のフローチャートに従って、時間経過と共に、始動後
増量補正係数KASは漸減される。
As a result, the post-start increase correction is started, and the fifth
According to the flowchart in the figure, the post-start increase correction coefficient KAS is gradually decreased as time passes.

一方、ステップ14の判定で、スタートスイッチ17が
ONからOFFに切換わった直後でない(NO)ときは
、ステップ18に進んで、再設定フラグFが立っている
か否かを判定する。
On the other hand, if the determination in step 14 is that the start switch 17 is not immediately after being switched from ON to OFF (NO), the process proceeds to step 18, where it is determined whether the reset flag F is set.

立っていないときは、ステップ19に進んで、機関回転
数Nが所定値A以下で、且つ機関回転数の変化量ΔNが
負(<O)(降下時)であるか否かを判定する。
If not, the process proceeds to step 19, where it is determined whether the engine speed N is less than a predetermined value A and the amount of change ΔN in the engine speed is negative (<O) (during descent).

尚、この判定条件は、機関の回転落ちを検出するための
ものであるが、更に、ガソリン性状2槻関状態により回
転落ちの起こり易い冷却水温の範囲を判定条件として、
付加してもよい。
Note that this judgment condition is for detecting a drop in engine speed, but the judgment condition is also set as a range of cooling water temperature where a drop in engine speed is likely to occur due to two-way gasoline properties.
May be added.

YESのとき、つまり、N≦A且つΔNくOのときは、
回転落ちを生じているので、ステップ20に進んで、そ
のときの始動後増量補正係数KA、に一定の追加分A 
K Asを加算して、始動後増量補正係数に0を、次式
に従って再設定する。
When YES, that is, when N≦A and ΔN×O,
Since a rotation drop has occurred, proceed to step 20 and add a certain amount A to the post-start increase correction coefficient KA at that time.
KAs is added and the post-start increase correction coefficient is reset to 0 according to the following formula.

K a s = K As + A K Asステップ
21では、漸減値DKAsを、次式に従って再設定する
K a s = K As + A K As In step 21, the gradual decrease value DKAs is reset according to the following formula.

D K As −K as/ (Cwax  C)ここ
で、Cは始動後の経過時間(後述する第5図のステップ
33にて計時される計時用のカウンタ値)で、Csaχ
−Cは、始動後増量補正を実施する一定の始動後増量時
間Cyaaxのうちの残り時間を示す。
D K As -K as/ (Cwax C) Here, C is the elapsed time after startup (the time counter value measured in step 33 in FIG. 5, which will be described later), and Csaχ
-C indicates the remaining time of the constant post-start increase time Cyaax during which the post-start increase correction is performed.

漸減値DKAsを再設定するのは、始動後増量補正係数
KA、が再設定されて大きくなっても、増量時間を変化
させないように、漸減速度を大きくするためである。
The reason for resetting the gradual decrease value DKAs is to increase the gradual decrease speed so that the increase time does not change even if the post-start increase correction coefficient KA is reset and becomes larger.

ステップ22では、再設定フラグFを立てて、このルー
チンを終了する。
In step 22, the reset flag F is set, and this routine ends.

一方、ステップ18の判定で、既に再設定フラグFが立
っているとき及びステップ19の判定で、NOのときは
、このまま、このルーチンを終了するここで、ステップ
19が回転低下検知手段に相当し、ステップ20が始動
後増量補正係数再設定手段に相当し、ステップ21が漸
減値再設定手段に相当する。
On the other hand, if the resetting flag F has already been set in step 18, and if the determination in step 19 is NO, this routine is terminated. , step 20 corresponds to a post-start increase correction coefficient resetting means, and step 21 corresponds to a gradual decrease value resetting means.

その次に、第5図のフローチャートを参照して、単位時
間毎に実行される第2始動後増量補正係数設定ルーチン
を説明する。
Next, the second post-start increase correction coefficient setting routine executed every unit time will be explained with reference to the flowchart of FIG.

ステップ31では、スタートスイッチ(ST/5W)1
7の0N−OFFを判定する。
In step 31, start switch (ST/5W) 1
7 is determined to be 0N-OFF.

ONのときは、ステップ32に進んで、計時用のカウン
タ値Cを0にして、このままこのルーチンを終了する。
When it is ON, the process proceeds to step 32, where the time counter value C is set to 0, and this routine is ended.

一方、ステップ31の判定で、スタートスイッチ17が
OFFのときは、ステップ33に進んで、計時用のカウ
ンタ値Cに1を加算して、ステップ34に進む。
On the other hand, if it is determined in step 31 that the start switch 17 is OFF, the process proceeds to step 33, where 1 is added to the time counter value C, and the process proceeds to step 34.

ステップ34では、計時用のカウンタ値Cを始動後増量
時間CIIIaxと比較して、カウンタ値Cが始動後増
量時間Cmax未満のときは、ステップ35に進んで、
始動後増量補正係数KAsを、次式に従って設定して、
このルーチンを終了する。
In step 34, the time counter value C is compared with the post-start fuel increase time CIIIax, and when the counter value C is less than the post-start fuel increase time Cmax, the process proceeds to step 35.
Set the post-start increase correction coefficient KAs according to the following formula,
Exit this routine.

K As= K As  D Kas ここで、ステップ35が始動後増量補正係数設定手段に
相当する。
K As= K As D Kas Here, step 35 corresponds to the post-start increase correction coefficient setting means.

また、C≧Cwaxのときは、このままこのルーチンを
終了する。
Moreover, when C≧Cwax, this routine is ended as it is.

このとき、始動後装置補正係数KASは0になっている
ので、増量補正はなされない。
At this time, since the post-start device correction coefficient KAS is 0, no increase correction is made.

尚、増量時間を一定にするのは、アイドルに安定するま
での時間は、はぼ一定であること、及びこの時間を変化
させると他の制御に影響を及ぼす等の理由による。
The reason for keeping the increase time constant is that the time required for the engine to stabilize at idle is approximately constant, and that changing this time will affect other controls.

〈発明の効果〉 以上説明したように、本発明によると、機関始動後の一
定時間中に、機関回転数が所定値以下に低下すると、始
動後増量補正係数を増大すべく、再設定し、また、これ
に伴って、漸減値を増大側に再設定するので、始動後の
回転落ちを効果的に防止することができるという効果が
得られる。
<Effects of the Invention> As explained above, according to the present invention, when the engine speed drops below a predetermined value during a certain period of time after the engine is started, the post-start increase correction coefficient is reset to increase; Additionally, since the gradual decrease value is reset to the increasing side, it is possible to effectively prevent rotational drop after startup.

【図面の簡単な説明】[Brief explanation of drawings]

第1閲は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例のシステム図、第3図は燃料噴射量設
定ルーチンのフローチャート、第4図は第1始動後増量
補正係数設定ルーチンのフローチャート、第5図は第2
始動後補正係数設定ルーチンのフローチャート、第6図
は制御特性を示す線図、第7図は従来の制御特性を示す
線図、第8図は冷却水温と始動後増量補正係数の初期値
との関係を示す線図である。 1・・・機関  6・・・燃料噴射弁  12・・・コ
ントロールユニット  13・・・エアフローメータ 
 14・・・クランク角センサ  15・・・水温セン
サ  17・・・スタートスイッチ
The first view is a functional block diagram showing the configuration of the present invention, the second is a system diagram of an embodiment of the present invention, the third is a flowchart of the fuel injection amount setting routine, and the fourth is the increase correction after the first start. The flowchart of the coefficient setting routine, Figure 5 is the second
A flowchart of the post-start correction coefficient setting routine, Fig. 6 is a diagram showing control characteristics, Fig. 7 is a diagram showing conventional control characteristics, and Fig. 8 is a diagram showing the relationship between cooling water temperature and the initial value of the post-start increase correction coefficient. It is a line diagram showing a relationship. 1... Engine 6... Fuel injection valve 12... Control unit 13... Air flow meter
14...Crank angle sensor 15...Water temperature sensor 17...Start switch

Claims (1)

【特許請求の範囲】 機関始動後一定時間、機関温度に応じて設定された初期
値から、その初期値に応じて設定された漸減値分ずつ、
時間経過と共に漸減することにより、始動後増量補正係
数を設定する始動後増量補正係数設定手段と、この始動
後増量補正係数により、燃料噴射量を増量補正する始動
後増量補正手段とを有する内燃機関の電子制御燃料噴射
装置において、 前記一定時間中に、機関回転数の所定値以下への低下を
検知する回転低下検知手段と、該回転低下検知時に、そ
のときの始動後増量補正係数を増大させるべく該始動後
増量補正係数を再設定する始動後増量補正係数再設定手
段と、始動後増量補正係数の再設定時に、前記漸減値を
増大側に再設定する漸減値再設定手段とを設けたことを
特徴とする内燃機関の電子制御燃料噴射装置。
[Claims] For a certain period of time after the engine is started, from the initial value set according to the engine temperature, by a gradual decrease value set according to the initial value,
An internal combustion engine having a post-start increase correction coefficient setting means for setting a post-start increase correction coefficient by gradually decreasing it over time, and a post-start increase correction coefficient for increasing the fuel injection amount based on the post-start increase correction coefficient. In the electronically controlled fuel injection system, the engine speed decrease detection means detects a decrease in the engine speed to a predetermined value or less during the certain period of time, and when the rotation decrease is detected, the current post-start increase correction coefficient is increased. a post-start increase correction coefficient resetting means for resetting the post-start increase correction coefficient; and a gradual decrease value resetting means for resetting the gradual decrease value to an increasing side when resetting the post-start increase correction coefficient. An electronically controlled fuel injection device for an internal combustion engine, characterized in that:
JP2081329A 1990-03-30 1990-03-30 Electronically controlled fuel injection device for internal combustion engine Expired - Fee Related JPH0833123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081329A JPH0833123B2 (en) 1990-03-30 1990-03-30 Electronically controlled fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081329A JPH0833123B2 (en) 1990-03-30 1990-03-30 Electronically controlled fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03281959A true JPH03281959A (en) 1991-12-12
JPH0833123B2 JPH0833123B2 (en) 1996-03-29

Family

ID=13743345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081329A Expired - Fee Related JPH0833123B2 (en) 1990-03-30 1990-03-30 Electronically controlled fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0833123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507265A (en) * 1994-06-16 1996-04-16 Nippondenso Co., Ltd. Compensation method and apparatus for fuel injection amount during engine warm-up

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4466364B2 (en) 2004-12-27 2010-05-26 トヨタ自動車株式会社 Fuel injection control device for in-cylinder internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249943A (en) * 1988-08-11 1990-02-20 Honda Motor Co Ltd Fuel supply control device of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249943A (en) * 1988-08-11 1990-02-20 Honda Motor Co Ltd Fuel supply control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507265A (en) * 1994-06-16 1996-04-16 Nippondenso Co., Ltd. Compensation method and apparatus for fuel injection amount during engine warm-up

Also Published As

Publication number Publication date
JPH0833123B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JP3694940B2 (en) Fuel property detection device for internal combustion engine
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JPH1122512A (en) Control device for direct injection spark ignition internal combustion engine
JP2001107796A (en) Fuel property determination device for internal combustion engine
JP3326000B2 (en) Fuel property detection device for internal combustion engine
JPH0429860B2 (en)
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPH03281959A (en) Electronically controlled fuel injection device for internal combustion engine
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS63189628A (en) Controlling method for fuel injection at starting time of internal combustion engine
JP2584299B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPS611841A (en) Fuel injection device for internal-combustion engine
JPH04231667A (en) Start controlling method for ffv engine
JPH01216040A (en) Electronic control fuel injection device for internal combustion engine
JPH0347471A (en) Ignition control device for internal combustion engine
JP2509020Y2 (en) Fail-safe device of mixed fuel supply control device
JPH07286547A (en) Fuel property detecting device of internal combustion engine
JPH0828320A (en) Fuel supply control device for internal combustion engine at starting
JPS5963327A (en) Method of controlling fuel injection in engine
JPH0810672Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2917183B2 (en) Start control device for fuel injection device of internal combustion engine
JP2754761B2 (en) Start-up fuel injection control device
JPH03249345A (en) Electronic control fuel injection system
JPH07286548A (en) Fuel property detecting device of internal combustion engine
JPH04228864A (en) Starting control method for engine for ffv

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees