JPS5963327A - Method of controlling fuel injection in engine - Google Patents

Method of controlling fuel injection in engine

Info

Publication number
JPS5963327A
JPS5963327A JP17100982A JP17100982A JPS5963327A JP S5963327 A JPS5963327 A JP S5963327A JP 17100982 A JP17100982 A JP 17100982A JP 17100982 A JP17100982 A JP 17100982A JP S5963327 A JPS5963327 A JP S5963327A
Authority
JP
Japan
Prior art keywords
engine
amount
fuel injection
engine speed
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17100982A
Other languages
Japanese (ja)
Other versions
JPH0211730B2 (en
Inventor
Tokuo Kosuge
小菅 徳男
Koji Kano
狩野 公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Original Assignee
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automob Antipollut & Saf Res Center, Automobile Appliance Anti Pollution and Safety Research Center filed Critical Automob Antipollut & Saf Res Center
Priority to JP17100982A priority Critical patent/JPS5963327A/en
Publication of JPS5963327A publication Critical patent/JPS5963327A/en
Publication of JPH0211730B2 publication Critical patent/JPH0211730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Abstract

PURPOSE:To aim at improvement in engine start performance, by increasing an amount of fuel injection when engine speed just after complete explosion of an engine is less than a target engine speed, and increase velocity of the engine speed after a fixed time is elapsed is less than a target velocity. CONSTITUTION:Engine speed Ne1 just after complete explosion of an engine is measured, and it is compared with a target engine speed Nup (about 2,000rpm) after complete explosion of the engine. If the engine speed Ne1<Nup, Ne1 is detected and then engine speed Ne2 at a time of ts is countered, thereby calculating thetaN=(Ne2-Ne1)/tS. thetaN is an increasing velocity of engine speed. If thetaN< thetaNset(thetaNset is a target increasing velocity of engine speed.), an amount of fuel is increased, so as to increase engine speed. Thus, engine start performance may be improved.

Description

【発明の詳細な説明】 本発明はエンジンの燃料噴射制御方法に係り、更に具体
的にはエンジン完爆後のエンジン回転数を早期に目標回
転数に到達させるのに好適なエンジンの燃料噴射制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine fuel injection control method, and more specifically to an engine fuel injection control method suitable for quickly bringing the engine rotation speed to a target rotation speed after an engine complete explosion. Regarding the method.

従来技術を第1図によシ説明する。第1図は、始動およ
び暖機時の燃料供給方法を示したものである。供給する
燃料量は、エンジン回転数、吸入空気量、吸気圧力等で
決まる基本噴射量、吸入空気温による吸気温増量、冷却
水温により定まる水温増量、エンジン状態によシ定まる
始動増量、始動後槽量そしてアイドル増量から構成され
る。スタートスイッチをオンすると図示のような燃料を
スタートスイッチがオフするまでの期間中噴射する。エ
ンジンが完爆すると同時に始動瑠彊−は、始動後槽量に
移行し、実質空燃比を暖機に必要な空燃比とする。この
暖機時の空燃比は、排気規制、燃費規制の而からリーン
にセットされているため完爆後のエンジン回転数Net
よ、図示のように目像回転数(2000聯前後)に到達
するまでrPAなる時間がかかる。この時間TAは、エ
ンジン温度が低くなればなるほど大きくなシ、エンジン
の暖機速度を遅くするばかりか目標回転数に到達する前
に負荷をかけた場合(ライト、オン、エアコン。
The prior art will be explained with reference to FIG. FIG. 1 shows a fuel supply method during startup and warm-up. The amount of fuel to be supplied is determined by the basic injection amount determined by engine speed, intake air amount, intake pressure, etc., intake temperature increase determined by intake air temperature, water temperature increase determined by cooling water temperature, starting amount determined by engine condition, and post-start tank. Consists of volume and idle volume. When the start switch is turned on, fuel as shown is injected until the start switch is turned off. At the same time as the engine completely explodes, the starting operation shifts to the after-start tank amount and sets the actual air-fuel ratio to the air-fuel ratio required for warm-up. The air-fuel ratio during warm-up is set to be lean due to exhaust gas and fuel economy regulations, so the engine speed Net after complete detonation is
As shown in the figure, it takes rPA time to reach the number of rotations of the eye image (around 2000 units). This time TA becomes larger as the engine temperature becomes lower.In addition to slowing down the warm-up speed of the engine, if a load is applied before the engine reaches the target rotation speed (lights, on, air conditioner, etc.).

オン等)にはエンストする原因ともなっていた。(on, etc.) could cause the engine to stall.

本発明の目的は、完爆後の目標回転数への到達時間の短
縮を図ったエンジンの燃料噴射制御方法を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel injection control method for an engine that reduces the time required to reach a target rotational speed after a complete explosion.

本発明の第1の特徴はエンジン完爆直後のエンジン回転
数か目標回転数以下であり且つエンジン完爆後、所定時
間経過時におけるエンジン回転数上昇速度が目標速度以
下である場合には前記燃料噴射量のうち始動後増量分に
相当する燃料1%:を増大させるようにした点にある。
The first feature of the present invention is that if the engine rotation speed immediately after the engine complete explosion is equal to or lower than the target rotation speed, and the rate of increase in the engine rotation speed after a predetermined time elapses after the engine complete explosion is equal to or lower than the target speed, the fuel The point is that 1% of the injection amount is increased, which corresponds to the amount increased after starting.

本発明の第2の特徴はエンジン完爆直後の吸入空気量が
目標吸入空気量以下であり且つエンジン完爆後、所定時
間経過時における吸入空気量の時間変化率が目標値以下
である場合には前記燃料噴射量のうち始動後増量分に相
当する燃料量を増大さぜるようにした点にある。
The second feature of the present invention is that when the intake air amount immediately after the engine completely explodes is less than or equal to the target intake air amount, and the time rate of change in the intake air amount after a predetermined period of time has elapsed after the engine complete explosion is less than or equal to the target value, The second feature is that the amount of fuel in the fuel injection amount is increased by an amount corresponding to the amount increased after starting.

仄に第2図と第3図により本発明の一実施例を説明する
。第2図においてスタートSWかオンするとエンジンが
クラ/キンク状態に入る。この時の燃料供給は、従来技
術(第1図のスタータスイッチオンの状態)と同様な始
動ルーチンにより燃料噴射制御が行われ、エンジンが完
爆するとスター)SWがオフとなり完爆ルーチンに入る
。完爆ルーチンでは、ます完爆直後のエンジン回転数N
e+を計測し、完爆後の目標回転数Nup(2000聯
前後)と比較する。ここでNe1≧Nup の場合には
エンジン状態に応じたエンジン回転数、空燃比を制御す
る暖機ルーチンに移行する。Ne1≧Nup  の場合
にはNe、を検出後16時の工/ジン出する。ここでθ
Nはエンジン(9)転数上杵速度(aNe/at)であ
る。ここでθN≧θNas費θNe5t費目Ne5tン
回転数上昇速度を表わす)の場合には、始動後増量を変
更することなく前途の暖機ルーチンに移行する。ところ
がθ、くθ81.lの場合には、始動後増量分に相当す
る燃料量を増大させてエンジン回転数の上昇を図る。燃
料量増大後のエンジン回転数は次のエンジン回転数Ne
1として記憶され前述の処理手順に基づきNel≧Nu
 p、SるいはθN≧θN1..の条件を満たす址で始
動後増景分に相当する燃料量の増大を図る。これをエン
ジン回転数と時間の関係で示う“と第3図に示すように
なる。実線は、従来例の場合、点線は本発明の場合の夫
々のエンジン回転数の変化特性を示し、一点鎖線は、前
述の目標エンジン回転数特性を示し1、該肴性曲線の勾
配はエンジン回転数上昇速度θNum lを示す。本実
施例によるエンジン回転数は、θN5etとの比較によ
る燃料増量に伴ない円滑に目標回転数に到達し、従来例
に比して目標回転数に到達するまでの時間が短縮される
ことが判る。
An embodiment of the present invention will be briefly described with reference to FIGS. 2 and 3. In FIG. 2, when the start switch is turned on, the engine enters a crack/kink state. At this time, fuel supply is controlled by fuel injection according to a starting routine similar to that of the prior art (the state in which the starter switch is on in FIG. 1), and when the engine completely explodes, the star switch is turned off and the complete explosion routine begins. In the complete explosion routine, the engine speed N immediately after the complete explosion is
Measure e+ and compare it with the target rotation speed Nup (around 2000 yen) after complete explosion. If Ne1≧Nup, the routine shifts to a warm-up routine that controls the engine speed and air-fuel ratio according to the engine state. In the case of Ne1≧Nup, after detecting Ne, 16 o'clock work/jin is output. Here θ
N is the engine (9) revolution speed (aNe/at). Here, if θN≧θNas (representing the rate of increase in rotational speed), the engine moves to the previous warm-up routine without changing the amount increased after starting. However, θ81. In the case of 1, the engine speed is increased by increasing the amount of fuel corresponding to the amount increased after starting. The engine speed after increasing the amount of fuel is the next engine speed Ne
1 and based on the above procedure, Nel≧Nu
p, S or θN≧θN1. .. If the following conditions are met, the amount of fuel will be increased to correspond to the increase in scenery after startup. This is shown in Figure 3 as a relationship between engine speed and time.The solid line shows the change characteristics of the engine speed in the case of the conventional example, and the dotted line shows the change characteristics of the engine speed in the case of the present invention. The chain line indicates the above-mentioned target engine speed characteristic 1, and the slope of the applicability curve indicates the rate of increase in engine speed θNum l.The engine speed according to this example is determined by increasing the amount of fuel compared to θN5et. It can be seen that the target rotational speed is reached smoothly and the time required to reach the target rotational speed is shortened compared to the conventional example.

第4図は、本発明の他の実施例を示し、エンジン回転数
の代シに吸入空気量(エアフローメータ等により検出す
る)を制御変数として用いるもので、同様な効果が得ら
れる。なお、同図においてG A Iはエンジン完爆直
後の吸入空気量、GAupは目標吸入空気量、θAは完
爆後から時間is経過時点における吸入空気量の時間変
化率、θAsetはその目標値である。
FIG. 4 shows another embodiment of the present invention, in which the amount of intake air (detected by an air flow meter or the like) is used as a control variable instead of the engine speed, and similar effects can be obtained. In addition, in the same figure, G A I is the intake air amount immediately after the engine complete explosion, GAup is the target intake air amount, θA is the time change rate of the intake air amount at the time is elapsed after the complete explosion, and θAset is the target value. be.

以上に説明した如く本発明によれは、目標回転数又は目
標吸入空気量への到達時間を短縮でき、円滑な始動性能
が得られる。
As explained above, according to the present invention, the time required to reach the target rotational speed or the target intake air amount can be shortened, and smooth starting performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における燃料噴射制御方法を説明するだめ
の図、第2図は本発明に係る燃料噴射制御方法を示すフ
ローチャート、第3図は始動、暖機時のエンジン回転数
の変化特性を従来例との比較において示しだ図、第4図
は本発明の他の実施¥ Z 図 ′¥ 3 口 ¥40
Fig. 1 is a diagram for explaining the conventional fuel injection control method, Fig. 2 is a flowchart showing the fuel injection control method according to the present invention, and Fig. 3 shows the change characteristics of the engine speed during startup and warm-up. Figure 4 shows another embodiment of the present invention in comparison with the conventional example.

Claims (1)

【特許請求の範囲】 1、エンジ/の運転状態を検出する各種センサの検出出
力に基づいてエンジン始動時の燃料噴射量を1171J
御するエンジンの燃料噴射制御方法においで、エンジン
完爆直後のエンジン回転数が目標回転数以下であシ且つ
エンジン完爆後、所定時間経過時におけるエンジン回転
数上昇速度が目標速度以下である場合には前記燃料噴射
量のうら始動後増量分に相当する燃料量を増大させるこ
とを特徴とするエンジンの燃料噴射制御方法。 2、エンジンの運転状態を検出する各種センサの検出出
力に基づいてエンジン始動時の燃料噴射量を制御するエ
ンジンの燃料噴射制御方法において、エンジン完爆直後
の吸入空気量が目標吸入空気量以下であり且つエンジン
完爆後、所定時間経過時における吸入空気量の時間変化
率が目標(直以下である場合には前記燃料噴射量のうち
始動後増量分に相当する燃料量を増大さることを%徴と
するエンジ/の燃料噴射制御方法。
[Claims] 1. The fuel injection amount at engine startup is set to 1171J based on the detection outputs of various sensors that detect the operating state of the engine.
In the fuel injection control method for the engine to be controlled, when the engine speed immediately after the engine complete explosion is below the target speed, and when the engine speed increase rate after a predetermined period of time has elapsed after the engine complete explosion is below the target speed. A method for controlling fuel injection for an engine, characterized in that the fuel amount is increased by an amount corresponding to an amount increased after starting the fuel injection amount. 2. In an engine fuel injection control method that controls the fuel injection amount at engine startup based on the detection output of various sensors that detect the engine operating state, if the intake air amount immediately after the engine completes explosion is less than the target intake air amount, If the time change rate of the intake air amount after a predetermined period of time has elapsed after the engine complete explosion is less than the target (directly below), increase the amount of fuel corresponding to the increase after starting of the fuel injection amount by %. A fuel injection control method for an engine.
JP17100982A 1982-10-01 1982-10-01 Method of controlling fuel injection in engine Granted JPS5963327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17100982A JPS5963327A (en) 1982-10-01 1982-10-01 Method of controlling fuel injection in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17100982A JPS5963327A (en) 1982-10-01 1982-10-01 Method of controlling fuel injection in engine

Publications (2)

Publication Number Publication Date
JPS5963327A true JPS5963327A (en) 1984-04-11
JPH0211730B2 JPH0211730B2 (en) 1990-03-15

Family

ID=15915400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17100982A Granted JPS5963327A (en) 1982-10-01 1982-10-01 Method of controlling fuel injection in engine

Country Status (1)

Country Link
JP (1) JPS5963327A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601779A1 (en) * 1985-01-25 1986-07-31 Suzuki Jidosha Kogyo K.K., Kami, Shizuoka FUEL INJECTION CONTROL METHOD
JPS63132854U (en) * 1987-02-20 1988-08-30
EP0606106A2 (en) * 1992-10-15 1994-07-13 Nippondenso Co., Ltd. Fuel supply system for internal combustion engines
US5577482A (en) * 1992-10-15 1996-11-26 Nippondenso Co., Ltd. Fuel supply system for internal combustion engines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601779A1 (en) * 1985-01-25 1986-07-31 Suzuki Jidosha Kogyo K.K., Kami, Shizuoka FUEL INJECTION CONTROL METHOD
US4681079A (en) * 1985-01-25 1987-07-21 Suzuki Jidosha Kogyo Kabushiki Kaisha Method of controlling fuel injection
JPS63132854U (en) * 1987-02-20 1988-08-30
EP0606106A2 (en) * 1992-10-15 1994-07-13 Nippondenso Co., Ltd. Fuel supply system for internal combustion engines
EP0606106A3 (en) * 1992-10-15 1995-02-15 Nippon Denso Co Fuel supply system for internal combustion engines.
US5577482A (en) * 1992-10-15 1996-11-26 Nippondenso Co., Ltd. Fuel supply system for internal combustion engines

Also Published As

Publication number Publication date
JPH0211730B2 (en) 1990-03-15

Similar Documents

Publication Publication Date Title
JPS6324140B2 (en)
JP2001214732A (en) Control device for internal combustion engine
US6959242B2 (en) Engine fuel injection control device
JPS5963327A (en) Method of controlling fuel injection in engine
JPS5825524A (en) Fuel injection method of electronically controlled fuel injection engine
JPS593135A (en) Control of idle revolution number of internal- combustion engine
JPS61135948A (en) Method of controlling injection quantity of fuel in internal combustion engine
JPS611841A (en) Fuel injection device for internal-combustion engine
JPH0379543B2 (en)
JP4153865B2 (en) Device for determining failure of catalyst temperature rise control for an internal combustion engine
JPH0615829B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH06307270A (en) Starting fuel injection controller for internal combustion engine
JPH03249345A (en) Electronic control fuel injection system
JP2681565B2 (en) Fuel injection device for internal combustion engine
JPS61223239A (en) Starting fuel injection controller of internal-combustion engine
JP2001132519A (en) Control device for internal combustion engine
JP2712556B2 (en) Fuel injection amount control device for internal combustion engine
JPS63113174A (en) Air-fuel ratio control method for internal combustion engine
JP2922902B2 (en) Fuel injection control method and fuel injection control device
JPS63113171A (en) Air-fuel ratio control method for internal combustion engine for vehicle
JPH03281959A (en) Electronically controlled fuel injection device for internal combustion engine
JPS58158371A (en) Electronically controlled ignition timing controlling apparatus
JPH03124931A (en) Fuel feed device of multiple cylinder combustion engine
JPS6181551A (en) Air-fuel ratio controlling method
JPH055440A (en) Fuel control device for engine