JPH0476242A - Fuel injection quantity controller for internal combustion engine - Google Patents

Fuel injection quantity controller for internal combustion engine

Info

Publication number
JPH0476242A
JPH0476242A JP18826590A JP18826590A JPH0476242A JP H0476242 A JPH0476242 A JP H0476242A JP 18826590 A JP18826590 A JP 18826590A JP 18826590 A JP18826590 A JP 18826590A JP H0476242 A JPH0476242 A JP H0476242A
Authority
JP
Japan
Prior art keywords
air
injection amount
fuel ratio
starting
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18826590A
Other languages
Japanese (ja)
Other versions
JP2857914B2 (en
Inventor
Shiyouhei Uto
章平 鵜戸
Kenji Ikuta
生田 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP18826590A priority Critical patent/JP2857914B2/en
Publication of JPH0476242A publication Critical patent/JPH0476242A/en
Application granted granted Critical
Publication of JP2857914B2 publication Critical patent/JP2857914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To secure proper startability and operatability by compensating a basic injection quantity by means of an air-fuel ratio learning value at the starting time, and after starting an engine and controlling the engine with an injection quantity obtained through varying the basic injection quantity stepwise at the starting time in the case when the learning value is not stored. CONSTITUTION:Deviation of an air-fuel ratio from a theoretical air-fuel ratio is detected by an air-fuel ratio deviation detection means A, and a learning value which corrects the deviation of the air-fuel ratio is calculated and stored by an air-fuel ratio learning means B. There are provided a learning value confirmation means C which discriminates whether the learning value is stored or not, and a starting finish detection means D which detects the end of starting an engine. The basic injection quantity is varied stepwise by a variation means E at the starting time when the learning value is not stored, and the stepwise variation of the basic injection quantity is stopped by a stopping means F at the time of finishing starting. On the other hand, at the starting time when the learning compensation value is stored, the basic fuel injection quantity is compensated by the learning compensation value so that the air-fuel ratio becomes the air-fuel ratio by a learning compensation means G at the previous time of stopping the engine so as to control the fuel injection quantity by a control means H.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関に燃料を噴射制御する燃料噴射制御
装置に関し、特に始動時に燃料噴射量を好適な始動を可
能とする噴射量に制御する内燃機関用燃料噴射量制御装
置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel injection control device that controls injection of fuel into an internal combustion engine, and in particular controls the amount of fuel injection at the time of starting to an injection amount that enables a suitable start. The present invention relates to a fuel injection amount control device for an internal combustion engine.

〔従来の技術] 従来より、エンジン始動時の燃料を予めプログラムされ
た始動時基本燃料噴射量に従ってエンジンに供給し、こ
の始動時基本燃料噴射量が始動可能な燃料噴射量である
か否かを判別し、始動不可能と判別したときは、始動時
基本噴射量を一定時間ごとに増量していくものがある(
例えば特開昭58−133437号公報)。
[Prior Art] Conventionally, when starting an engine, fuel is supplied to the engine according to a pre-programmed basic fuel injection amount at starting, and whether or not this basic fuel injection amount at starting is a fuel injection amount that allows the engine to be started is determined. If it is determined that starting is not possible, the basic injection amount at startup is increased at regular intervals (
For example, Japanese Patent Application Laid-Open No. 58-133437).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記のものをF、  F、  V、  (フレ
キシブルフェーエルビークル)対応内燃機関に用いた場
合、燃料にアルコールを使用するとアルコールの理論空
燃比はガソリンの約半分であるため、燃料はガソリン使
用時の約2倍噴射する必要がある。
However, when the above is used in an internal combustion engine compatible with F, F, V, (flexible fuel vehicles), the stoichiometric air-fuel ratio of alcohol is about half that of gasoline, so when using gasoline, the fuel is It is necessary to inject approximately twice as much.

そのため、始動時は常に基本燃料噴射量を一定時間毎に
増量補正しなければならず始動性が悪いという問題があ
る。
Therefore, when starting the engine, the basic fuel injection amount must be increased and corrected at regular intervals, resulting in poor startability.

本発明は、FFV対応内燃機関における始動性を向上す
ることを目的とする。
An object of the present invention is to improve the startability of an FFV compatible internal combustion engine.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する手段として本発明第1図に示すエン
ジンの状態を検出する状態検出手段と、この状態検出手
段に基づいて基本噴射量を算出する算出手段と、 前記エンジンに供給された混合気の空燃比を検出する空
燃比検出手段と、 前記空燃比と理論空燃比とのズレを検出する空燃比ズレ
検出手段と、 この空燃比ズレ検出手段により検出された空燃比ズレを
修正する学習値を求め記憶する空燃比学習手段と、 前記学習値が記憶されているか否かを判別する学習値確
認手段と、 前記エンジンの始動完了を検出する始動完了検出手段と
、 前記学習値が記憶されていない始動時において、前記基
本噴射量を段階的に変化させる基本噴射量変化手段と、 始動が完了すると前記基本噴射量の段階的変化を停止す
る停止手段と、 始動完了時の前記変化に応じて前記基本噴射量を補正し
て始動後の噴射量を算出する始動後噴射量算出手段と、 前記学習補正値が記憶されている始動時には空燃比が前
記基本噴射量を前回のエンジン停止時の空燃比になるよ
うに前記学習補正値で補正する学習補正手段と、 前記基本噴射量変化手段と、始動後の噴射量算出手段と
学習補正手段とのうちいずれか1つからの出力に応じて
燃料噴射量を制御する制御手段とを備えたことを特徴と
する内燃機関用燃料噴射量制御装置を提案する。
As a means for solving the above problems, the present invention includes a state detection means for detecting the state of the engine as shown in FIG. 1, a calculation means for calculating a basic injection amount based on the state detection means, and an air-fuel mixture supplied to the engine. an air-fuel ratio detecting means for detecting an air-fuel ratio of the air-fuel ratio; an air-fuel ratio deviation detecting means for detecting a deviation between the air-fuel ratio and the stoichiometric air-fuel ratio; and a learning value for correcting the air-fuel ratio deviation detected by the air-fuel ratio deviation detecting means. air-fuel ratio learning means for determining and storing the learned value; learned value checking means for determining whether the learned value is stored; starting completion detecting means for detecting completion of starting of the engine; basic injection amount changing means for changing the basic injection amount in stages when starting is not completed; stopping means for stopping the stepwise change in the basic injection amount when starting is completed; and according to the change when starting is completed; post-start injection amount calculating means for calculating an injection amount after starting by correcting the basic injection amount; learning correction means for correcting the fuel ratio using the learning correction value, the basic injection amount changing means, the injection amount calculation means after startup, and the learning correction means according to an output from the fuel ratio. A fuel injection amount control device for an internal combustion engine is proposed, which is characterized by comprising a control means for controlling the injection amount.

〔作用〕[Effect]

これにより、始動時及び始動後は空燃比が前回のエンジ
ン停止時の空燃比になるようにエンジン状態により定ま
る基本噴射量を空燃比学習値により補正する。
As a result, the basic injection amount determined by the engine condition is corrected using the air-fuel ratio learning value so that the air-fuel ratio becomes the air-fuel ratio at the time of the previous engine stop during and after starting.

また空燃比学習値が記憶されていない場合、始動時は基
本噴射量を始動が完了するまで段階的に変化させる。始
動が完了すると、基本噴射量の始動完了までの変化量に
応じて基本噴射量を補正する。以上のように補正された
基本噴射量に基づいて燃料を噴射制御する。
Further, if the air-fuel ratio learning value is not stored, the basic injection amount is changed in stages at the time of starting until the starting is completed. When the start is completed, the basic injection amount is corrected according to the amount of change in the basic injection amount until the start is completed. Fuel injection is controlled based on the basic injection amount corrected as described above.

〔発明の効果〕〔Effect of the invention〕

本発明により、F、F、V、対応内燃機関において、燃
料にアルコールを使用しても、始動時。
According to the present invention, F, F, V compatible internal combustion engines can be started even if alcohol is used as fuel.

始動後は基本噴射量を空燃比学習値により補正すること
により最適な噴射量でエンジンが制御でき良好な始動性
及び運転性が得られる。またパンテリクリア等により学
習値が記憶されていない場合でも、始動時は基本噴射量
を段階的に変化させて得られる噴射量にて、また始動後
は始動完了時の基本噴射量の変化量に応じて基本噴射量
を補正して得られる噴射量にてエンジンが制御され、良
好な始動性、運転性が得られるという優れた効果がある
After starting, by correcting the basic injection amount using the air-fuel ratio learning value, the engine can be controlled with the optimum injection amount, resulting in good startability and drivability. In addition, even if the learned value is not memorized due to panteri clearing, etc., the injection amount obtained by changing the basic injection amount in stages will be used at the time of starting, and after starting, the amount will be adjusted according to the amount of change in the basic injection amount at the completion of starting. The engine is controlled by the injection amount obtained by correcting the basic injection amount, which has the excellent effect of providing good startability and drivability.

(実施例] 本発明実施例を図面に基づいて説明する。第2図は本発
明が実施されるエンジン及び制御回路の全体構成を示す
概略図である。
(Example) An example of the present invention will be described based on the drawings. Fig. 2 is a schematic diagram showing the overall configuration of an engine and a control circuit in which the present invention is implemented.

1はエンジンで、燃焼用空気をエアフィルタ2゜吸気’
W3.スロットルバルブ6を経て吸入する。
1 is the engine, and the combustion air is passed through the air filter 2゜intake'
W3. Inhale via throttle valve 6.

4はエアフロメータでありエンジン1に吸入される空気
量を検出する。5は吸気温センサであり吸入空気の温度
を検出する。7は電磁式燃料噴射弁で燃料をエンジン1
へ供給している。燃焼後の排気ガスは排気管8.三元触
媒9を経て大気に放出される。10は排気ガスより空燃
比を検出する空燃比センサである。エンジン1には冷却
水温を検出し、冷却水温に応じたアナログ電圧を出力す
るザーミスタ式水温センサ11が設置されており、回転
速度センサ12はエンジン1のクランク軸の回転速度を
検出し、回転速度に応した周波数パルス信号を出力する
。13は制御回路でありエアフロメータ4.吸気温セン
サ51回転速度センサ12、冷却水温センサ11、及び
空燃比センサ10の検出信号に基づいて燃料噴射蓋を演
算し、この演算に応じた噴射信号を燃料噴射弁7に出力
することにより燃料噴射量を調整する。14はバッテリ
でイグニッションスイッチ15を介し2て制御回路13
に電源を供給している。
Reference numeral 4 denotes an air flow meter that detects the amount of air taken into the engine 1. Reference numeral 5 denotes an intake air temperature sensor that detects the temperature of intake air. 7 is an electromagnetic fuel injection valve that supplies fuel to engine 1.
is supplied to. Exhaust gas after combustion is passed through the exhaust pipe 8. It passes through a three-way catalyst 9 and is released into the atmosphere. 10 is an air-fuel ratio sensor that detects the air-fuel ratio from exhaust gas. The engine 1 is equipped with a thermistor type water temperature sensor 11 that detects the coolant temperature and outputs an analog voltage according to the coolant temperature.The rotational speed sensor 12 detects the rotational speed of the crankshaft of the engine 1, and Outputs a frequency pulse signal corresponding to the 13 is a control circuit and an air flow meter 4. The fuel injection lid is calculated based on the detection signals of the intake air temperature sensor 51, the rotational speed sensor 12, the cooling water temperature sensor 11, and the air-fuel ratio sensor 10, and an injection signal corresponding to this calculation is output to the fuel injection valve 7. Adjust the injection amount. 14 is a battery connected to the control circuit 13 via the ignition switch 15;
supplies power to.

また制御回路13はイグニッションスイッチ15のオン
・オフにかかわらずバッテリ14から電源が供給されて
いるバックアップRAM13aを含んでいる。このRA
M13aは後述する学習補正係数を記憶している。
The control circuit 13 also includes a backup RAM 13a to which power is supplied from the battery 14 regardless of whether the ignition switch 15 is on or off. This R.A.
M13a stores learning correction coefficients to be described later.

第3図は制御回路13の作動を示すフローチャートであ
り、このルーチンはエンジン1回転毎に実行される。
FIG. 3 is a flowchart showing the operation of the control circuit 13, and this routine is executed every revolution of the engine.

まfイグニッションスイッチ15がオンするとステップ
101で、後述する学習補正係数KGが異常か否かをミ
ラーチエツクにより判別する。学習補正係数KGが異常
と判定されるとステップ102に進んで学習補正係数を
1として初期化する。
When the ignition switch 15 is turned on, in step 101, a mirror check is performed to determine whether or not a learning correction coefficient KG, which will be described later, is abnormal. If it is determined that the learning correction coefficient KG is abnormal, the process proceeds to step 102, where the learning correction coefficient is initialized to 1.

この学習補正係数K Gはバッテリ14からRAM13
aへの電源供給が遮断されると初期化されてしまう。次
にステップ103にてバッテリ14からRAM13aへ
の電源供給が遮断されると0になるバッテリクリアフラ
グB CI”をOとする。そしてステップ1.04に進
んでエンジン1が始動状態か否かを判定する。またステ
ップ101で学習補正係数KGが正常と判別された場合
もステップ104に進んで始動状態か否かを判別する。
This learning correction coefficient KG is calculated from the battery 14 to the RAM 13.
If the power supply to a is cut off, it will be initialized. Next, in step 103, the battery clear flag BCI'', which becomes 0 when the power supply from the battery 14 to the RAM 13a is cut off, is set to O.Then, the process proceeds to step 1.04, where it is determined whether or not the engine 1 is in the starting state. Also, if it is determined in step 101 that the learning correction coefficient KG is normal, the process proceeds to step 104 and it is determined whether or not the engine is in the starting state.

始動状態と判定されるとステップ105に進んでBCF
がOか否かを判別する。BCF=0のときすなわちバッ
テリ14の電源供給の遮断があり、学習補正係数KGが
初期化された後の始動時または、学習補正係数KGが異
常のときの始動時はステップ106に進んで、燃料噴射
蓋T A 1.Jを以下の式で算出する。
If it is determined that it is in the starting state, the process proceeds to step 105 and the BCF
It is determined whether or not is O. When BCF=0, that is, when starting after the power supply to the battery 14 has been cut off and the learning correction coefficient KG has been initialized, or when starting when the learning correction coefficient KG is abnormal, the process proceeds to step 106, and the fuel Spray lid T A 1. J is calculated using the following formula.

TAU=TAUSTAxFTHAx  (1+Kxt) ここで、T A、 U S T Aは始動時基本噴射量
、FTHAは吸気温補正係数、Kは定数、Lは始動開始
からの経過時間である。
TAU=TAUSTAxFTHAx (1+Kxt) Here, T A and US T A are the basic injection amounts at startup, FTHA is the intake temperature correction coefficient, K is a constant, and L is the elapsed time from the start of startup.

始動時基本噴射量TAUSTAに吸気温補正値を掛けて
、さらに始動開始からの紅過時はtに応じて階段状に増
える(1+に−t)を掛けて燃料噴射量T A IJを
算出している。これによりTAUはエンジンが始動完了
するまで階段状に増えていく。次にステップ107でバ
ッテリクリア時(学習値初期化時)の始動完了後の燃料
噴射量補正係数FBCを以下の式で算出する。
Calculate the fuel injection amount T A IJ by multiplying the basic injection amount TAUSTA at startup by the intake air temperature correction value, and then multiplying it stepwise according to t (1+ -t) during the reddening period from the start of startup. There is. As a result, TAU increases stepwise until the engine is completely started. Next, in step 107, the fuel injection amount correction coefficient FBC after the start is completed when the battery is cleared (when the learning value is initialized) is calculated using the following formula.

FBC= (1+KXt)XKT 定数KTは始動完了までの経過時間と始動時の冷却水温
により決定され、(1+KXt)は始動完了時の基本燃
料噴射量TAUSTAの変化量により決定される。第4
図、第5図は定数KTを決定する係数A、Bと始動後経
過時間、始動時冷却水温との関係を示したものである。
FBC= (1 + KXt) Fourth
5 shows the relationship between the coefficients A and B that determine the constant KT, the elapsed time after startup, and the cooling water temperature at startup.

係数Aは始動経過時間が増すにつれて徐々に小さくなり
、係数Bは始動時の冷却水が高いほど大きい値をとるよ
うになっている。係数A、 Bと定数KTには以下の関
係がある。
The coefficient A gradually becomes smaller as the starting elapsed time increases, and the coefficient B takes a larger value as the amount of cooling water at the time of starting is higher. The coefficients A and B and the constant KT have the following relationship.

KT=1 +A+B 以上のようにして始動後経過時間と始動時冷却水温によ
り定まるKTを(1+Kxl)に掛けて始動後の燃料噴
射量補正係数FBCを算出する。
KT=1 +A+B As described above, the post-start fuel injection amount correction coefficient FBC is calculated by multiplying (1+Kxl) by KT determined by the elapsed time after start and the coolant temperature at start.

ステップ105でBCFが0でないとき、すなわち学習
補正係数KGが初期化されていないときの始動時はステ
ップ108に進み以下の式にて燃料噴射量TAUを算出
する。
When the BCF is not 0 in step 105, that is, when the learning correction coefficient KG has not been initialized, the process proceeds to step 108 and calculates the fuel injection amount TAU using the following formula.

TAU=T、AUSTAxFTHAxKGTAUSTA
は始動時基本噴射量、FTHAは吸気温補正係数、KG
は学習補正係数である。つまり正しい学習補正係数が初
期化されずにあればその学習補正係数を反映させて噴射
量を算出する。
TAU=T, AUSTAxFTHAxKGTAUSTA
is the basic injection amount at startup, FTHA is the intake temperature correction coefficient, KG
is the learning correction coefficient. In other words, if the correct learning correction coefficient has not been initialized, the injection amount is calculated by reflecting the learning correction coefficient.

以上が始動時における燃料噴射量TAUを算出するステ
ップである。
The above are the steps for calculating the fuel injection amount TAU at the time of starting.

ステ・ンプ109〜117は始動完了後の燃料噴射量を
算出するステップである。
Steps 109 to 117 are steps for calculating the fuel injection amount after completion of starting.

ステップ104で始動が完了したと判別されると、すな
わちエンジン回転数が所定回転数以上と判別されるとス
テップ109に進んで0□センサ10による燃料噴射量
のフィードバックの補正が可能か否かを判別する。0□
センサ10によるフィードバック補正が不可能、すなわ
ち02センサの温度が低く正しく理論空燃比を検出でき
ないと判別されるとステップ110に進んでバッテリク
リアフラグBCFがOか否か判別する。0のときすなわ
ち、学習補正係数KGが初期化されているときはステッ
プ111にて以下の式より燃料噴射量TAUを算出する
If it is determined in step 104 that the starting has been completed, that is, if it is determined that the engine speed is equal to or higher than the predetermined rotation speed, the process proceeds to step 109, where it is determined whether or not the feedback of the fuel injection amount by the 0□ sensor 10 can be corrected. Discern. 0□
If it is determined that feedback correction by the sensor 10 is impossible, that is, the temperature of the 02 sensor is too low to accurately detect the stoichiometric air-fuel ratio, the process proceeds to step 110, where it is determined whether the battery clear flag BCF is O or not. When the learning correction coefficient KG is 0, that is, when the learning correction coefficient KG has been initialized, the fuel injection amount TAU is calculated from the following formula in step 111.

TAU=TPXFTHAXFBCXFALLTPは吸入
空気量1回転数等により定まる始動完了後の基本噴射量
、FTHAは吸気温補正係数、FBCはステップ107
で算出した始動完了時の噴射量、始動開始までの経過時
間、冷却水温により定まる補正係数、FALLはエンジ
ン温度(冷却水温)や過渡状態にかかわる補正係数であ
る。
TAU= TP
FALL is a correction coefficient determined by the injection amount at the completion of starting calculated, the elapsed time until the start of starting, and the cooling water temperature, and FALL is a correction coefficient related to the engine temperature (cooling water temperature) and transient state.

以上のように始動後の基本燃料噴射量をFTHA、FB
C,FALLにより補正して燃料噴射量TAUを算出し
ている。
As mentioned above, the basic fuel injection amount after starting is FTHA, FB.
The fuel injection amount TAU is calculated by correcting it using C and FALL.

またステップ110でBCF=Oではないときすなわち
学習補正係数が初期化されずに残っているときは、ステ
ップ112にて燃料噴射量TAUを以下の式で算出する
If BCF=O is not established in step 110, that is, if the learning correction coefficient remains uninitialized, the fuel injection amount TAU is calculated in step 112 using the following formula.

TAU=TPXFTHAXKGXFALLTPは始動完
了後の基本燃料噴射量、FTI(Aは吸気温補正値、F
ALLはエンジン温度にかがわる補正係数、KGは学習
補正係数である。
TAU=TPXFTHAXKGXFALLTP is the basic fuel injection amount after completion of starting, FTI (A is the intake air temperature correction value, F
ALL is a correction coefficient related to engine temperature, and KG is a learning correction coefficient.

以上のように燃料噴射量TAUを補正係数、FTHA、
KG、FA、LLにより補正して燃料噴射量を算出する
As described above, the fuel injection amount TAU is calculated using the correction coefficient, FTHA,
The fuel injection amount is calculated by correcting KG, FA, and LL.

ステップ109で0.センサによる空燃比フィードバッ
ク補正が可能と判別されると、ステップ113にてフィ
ードバック補正係数FAFを計算する。このステップ1
13での補正係数FAFの計算を第6図に示すフローチ
ャートに基づいてより詳細に説明する。
0 in step 109. If it is determined that air-fuel ratio feedback correction using the sensor is possible, a feedback correction coefficient FAF is calculated in step 113. This step 1
The calculation of the correction coefficient FAF in step 13 will be explained in more detail based on the flowchart shown in FIG.

まずステップ201で02センサ信号を入力する。次に
ステ・ノブ202でノイズを低減するために0□センサ
信号をデイレイ処理する。そしてステップ203でデイ
レイ処理した値がリッチカリーンかを判定する。リーン
と判定されるとステップ204に進み前回のデイレイ処
理した値がリッチか否か判別する。リーンと判別される
とすなわち今回、前回ともリーンと判別されると所定値
KIを前回の補正係数FAFに加え、その結果を今回の
フィードバック補正係数とする。ステップ204で前回
のデイレイ処理値がリッチと判別されると、すなわちデ
イレイ処理値がリッチがらリーンに切換ったときはスキ
ップ値R3を前回の補正係数FAFに加え、その結果を
今回のフィードバック補正係数とする。ところで所定値
Klとスキップ値R3はKl<R3なる関係が成立して
いる。
First, in step 201, the 02 sensor signal is input. Next, the 0□ sensor signal is subjected to delay processing using the steering knob 202 to reduce noise. Then, in step 203, it is determined whether the delay-processed value is rich or lean. If it is determined to be lean, the process proceeds to step 204, where it is determined whether or not the value subjected to the previous delay processing is rich. If it is determined to be lean, that is, if it is determined to be lean both this time and the previous time, a predetermined value KI is added to the previous correction coefficient FAF, and the result is set as the current feedback correction coefficient. When the previous delay processing value is determined to be rich in step 204, that is, when the delay processing value has switched from rich to lean, the skip value R3 is added to the previous correction coefficient FAF, and the result is used as the current feedback correction coefficient. shall be. By the way, the relationship Kl<R3 holds true between the predetermined value Kl and the skip value R3.

ステップ203で今回のデイレイ処理値がリッチと判定
されるとステップ207に進んで今回のデイレイ処理値
がリーンか否かを判別する。リッチと判別されたとき、
すなわち前回、今回ともりッチと判別されたときはステ
ップ208で所定数に■を前回の補正値FAFより減算
しその結果を今回のフィードバック補正値とする。また
ステ、プ207でリーンと判別されたとき、すなわちデ
イレイ処理値がリーンからリッチへ切換ったときはステ
ップ209でスキップ値R3を前回の補正係数FAFよ
り減算して得られる値を今回のフィードバック補正係数
としている。
If the current delay processing value is determined to be rich in step 203, the process proceeds to step 207, where it is determined whether the current delay processing value is lean. When judged as rich,
That is, when it is determined that the previous time and the present time are the same, in step 208, a predetermined number of ■ is subtracted from the previous correction value FAF, and the result is set as the current feedback correction value. In addition, when lean is determined in step 207, that is, when the delay processing value has switched from lean to rich, the value obtained by subtracting the skip value R3 from the previous correction coefficient FAF is used as the current feedback in step 209. It is used as a correction factor.

以」二の様にして02センサ10からの信号に基づいて
空燃比フィードバック補正値FAFを算出する。
The air-fuel ratio feedback correction value FAF is calculated based on the signal from the 02 sensor 10 in the following manner.

次に第3図に戻ってステップ114に進んで所定数のフ
ィードバック補正係数FAFの入力があったか否か判別
する。ないときはステップ115゜116はスルーする
。所定数のフィードバック補正係数FAFの入力があっ
たと判別されるとステップ115で学習補正係数KGを
算出し、記憶する。ここで第7図に基づいてステップ1
15の学習補正係数KGの算出時の作動をより詳細に説
明する。
Next, returning to FIG. 3, the process proceeds to step 114, where it is determined whether a predetermined number of feedback correction coefficients FAF have been input. If not, steps 115 and 116 are skipped. When it is determined that a predetermined number of feedback correction coefficients FAF have been input, a learning correction coefficient KG is calculated and stored in step 115. Now, based on Figure 7, step 1
The operation when calculating the learning correction coefficient KG of No. 15 will be explained in more detail.

まずステップ301で所定数のフィードバック補正係数
FAFの平均値F A F A Vを算出する。
First, in step 301, an average value F A F A V of a predetermined number of feedback correction coefficients FAF is calculated.

次にステップ3021こおいて算出した平均値FAF 
A Vを学習補正係数KGとして記憶する。以上のよう
にして学習補正係数を算出・記憶する。
Next, the average value FAF calculated in step 3021
AV is stored as a learning correction coefficient KG. The learning correction coefficient is calculated and stored as described above.

学習補正係数を算出・記憶すると、第3図に戻ってステ
ップ116にて、BCFを1としてステップ117に進
む。またステップ114で所定数のフィードバック補正
係数FAF入力がないと判別されたときもステップ11
7に進む。
After calculating and storing the learning correction coefficient, the process returns to FIG. 3 and in step 116, the BCF is set to 1 and the process proceeds to step 117. Also, when it is determined in step 114 that there is no input of a predetermined number of feedback correction coefficients FAF, step 11
Proceed to step 7.

ステップ117では以下の式より燃料噴射量TAUを算
出する。
In step 117, the fuel injection amount TAU is calculated using the following formula.

TAU=TPXFTHAXFAFXFALLここで、T
Pは基本燃料噴射量、FTHAは吸気温補正係数、FA
Fは空燃比フィードバック補正係数、FALLはエンジ
ン温度にかかわる補正係数である。以−1のように基本
燃料噴射量を補正係数FTHA、FAF、FALLによ
り補正して燃料噴射@ T A Uを算出している。
TAU=TPXFTHAXFAFXFALL where, T
P is the basic fuel injection amount, FTHA is the intake temperature correction coefficient, FA
F is an air-fuel ratio feedback correction coefficient, and FALL is a correction coefficient related to engine temperature. As shown in -1 above, the basic fuel injection amount is corrected using the correction coefficients FTHA, FAF, and FALL to calculate the fuel injection @TAU.

以上説明した制御装置を実際に用いたときの始動時にお
ける燃料噴射1TAU、回転数の動作を第8図、第9図
に基づいて説明する。第8図は学習補正係数KGが初期
化されたときのもので、第9図は学習補正係数KGを用
いて基本燃料噴射量を補正するものであり、いずれも燃
料にアルコールを使用している。アルコールの理論空燃
比は約7でありガソリンの理論空燃比の約半分であるた
めガソリン使用時の約2倍の燃料を噴射する必要がある
The operation of fuel injection 1TAU and rotational speed at the time of starting when the control device described above is actually used will be explained based on FIGS. 8 and 9. Figure 8 shows what happens when the learning correction coefficient KG is initialized, and Figure 9 shows how the basic fuel injection amount is corrected using the learning correction coefficient KG, both of which use alcohol as the fuel. . The stoichiometric air-fuel ratio of alcohol is about 7, which is about half of the stoichiometric air-fuel ratio of gasoline, so it is necessary to inject about twice as much fuel as when using gasoline.

第8図において、始動時には始動開始からの経過時間に
応じて、ガソリン使用時の始動時基本噴射量TAUST
Aより回転数が始動完了判定レベルNeoを越えるまで
階段状に増加していく。そして回転数がレベルNeoを
越えると噴射量TAUは始動完了時噴射量Tsの始動時
基本噴射量TAUSTAからの変化量に基づいてガソリ
ン使用時の始動後基本噴射量TPを補正するためのガソ
リン時の約2倍になる。そして所定時間経過すると02
センサにより空燃比制御が開始され噴射量TAUは、理
論空燃比になるように制御される。
In Fig. 8, at the time of starting, the basic injection amount TAUST at starting when using gasoline is determined according to the elapsed time from the start of starting.
From A, the rotational speed increases stepwise until it exceeds the starting completion determination level Neo. Then, when the rotation speed exceeds the level Neo, the injection amount TAU is changed to the gasoline injection amount TAU to correct the basic injection amount TP after starting when using gasoline based on the amount of change in the injection amount Ts at the time of completion of starting from the basic injection amount TAUSTA at the time of starting. It will be about twice as much. Then, after a predetermined period of time, 02
Air-fuel ratio control is started by the sensor, and the injection amount TAU is controlled to reach the stoichiometric air-fuel ratio.

第9図のように学習補正係数KGが記憶されている場合
、始動時はガソリン使用時の始動時基本噴射量TALI
STAを前回のエンジン停止時の空燃比にする学習補正
係数KGにより補正してTAUSTAの約2倍の噴射量
TAtJを噴射する。そして、回転数が始動完了判定レ
ベルNeoを越えると始動後基本噴射量TPを学習補正
係数KGにより補正してTPの約2倍の噴射量を噴射す
る。
When the learning correction coefficient KG is stored as shown in Fig. 9, the basic injection amount TALI at starting when using gasoline is used.
STA is corrected by a learning correction coefficient KG that makes the air-fuel ratio at the time of the previous engine stop, and an injection amount TAtJ approximately twice that of TAUSTA is injected. When the rotational speed exceeds the starting completion determination level Neo, the basic injection amount TP after starting is corrected by the learning correction coefficient KG, and an injection amount approximately twice the TP is injected.

そして所定時間経過すると02センサにより空燃比フィ
ードハック制御が開始され噴射量T A tJは理論空
燃比になるように制御される。
Then, after a predetermined period of time has elapsed, the air-fuel ratio feed-hack control is started by the 02 sensor, and the injection amount T A tJ is controlled to become the stoichiometric air-fuel ratio.

他の実施例を第10図に基づいて説明する。第3図に示
す実施例と異なる点は、バッテリクリアフラグBCFが
00ときすなわち学習補正係数KGが初期化されている
ときの始動時と始動後の処理部である。
Another embodiment will be described based on FIG. 10. The difference from the embodiment shown in FIG. 3 is the processing section at the time of startup and after startup when the battery clear flag BCF is 00, that is, when the learning correction coefficient KG is initialized.

第10図に示す実施例において、学習補正係数KGが初
期化状態の始動時は、ステップ406で始動開始経過時
間tと定数にとの積を学習補正係数KGに加え、その結
果を新しい学習補正係数とし、始動開始後経過時間に応
じて学習補正係数を段階的に変化させている。そしてス
テップ407で学習補正係数KGを記憶し、ステップ4
08で学習補正KGに始動後経過時間と始動時冷却水温
により定まる補正係数KTを掛けて始動完了後の学習補
正係数KGOを算出する。
In the embodiment shown in FIG. 10, at the time of starting when the learning correction coefficient KG is in the initialized state, in step 406, the product of the starting start elapsed time t and a constant is added to the learning correction coefficient KG, and the result is used as a new learning correction coefficient. The learning correction coefficient is changed in stages according to the elapsed time after starting the engine. Then, in step 407, the learning correction coefficient KG is stored, and in step 4
In step 08, the learning correction coefficient KGO after the completion of starting is calculated by multiplying the learning correction KG by the correction coefficient KT determined by the elapsed time after starting and the cooling water temperature at the time of starting.

そしてステップ409で始動開始後経過時間に応じて段
階的に変化する学習補正係数KGで始動時基本噴射量を
補正することにより噴射量TAUは段階的に変化する。
Then, in step 409, the basic injection amount at startup is corrected using a learning correction coefficient KG that changes in steps according to the elapsed time after the start of startup, thereby changing the injection amount TAU in steps.

BCF−0時の始動完了時はステップ412,413,
414に進み、ステップ408で算出した始動後の学習
補正係数KGOを反映させた噴射量TAUを算出する。
When starting is completed at BCF-0, steps 412, 413,
Proceeding to step 414, the injection amount TAU is calculated in which the post-start learning correction coefficient KGO calculated in step 408 is reflected.

また第3図に示すフローチャートでは0□センサによる
補正が開始してからBCF=1としていたが今回は始動
が開始した後ステップ413でBCF=1としている。
Furthermore, in the flowchart shown in FIG. 3, BCF=1 was set after the correction by the 0□ sensor started, but this time, BCF=1 is set in step 413 after starting has started.

他のステップにおける作動は第3図に示すフローチャー
トと同じである。
The operations in other steps are the same as in the flowchart shown in FIG.

以上のようにステップ406,407で始動後経過時間
りにより段階的に変化する学習補正係数KGを記憶する
ことにより、始動を失敗し、再始動時の噴射量は前始動
時の最終噴射量から開始される。
As described above, in steps 406 and 407, by storing the learning correction coefficient KG that changes step by step depending on the elapsed time after starting, the starting fails and the injection amount at restart is changed from the final injection amount at the previous start. will be started.

以上説明した実施例において学習補正係数KGの初期化
状態での始動時には、始動開始後経過時間に応じて噴射
量を変化させたが、噴射回数に応じて変化させるように
してもよい。
In the embodiments described above, when starting with the learning correction coefficient KG initialized, the injection amount was changed according to the elapsed time after starting the engine, but it may be changed according to the number of injections.

第3図は本発明実施例の制御回路の作動を示すフローチ
ャート、第4図は始動後経過時間と補正係数との関係を
示した関係図、第5図は始動時冷却水温と補正係数との
関係を示した関係図、第6図は02センサによるフィー
ドバック処理の作動を示したフローチャート、第7図は
学習補正係数の作成処理の作動を示したフローチャート
、第8図は学習補正係数が初期化されたときの始動時の
回転数と噴射量との関係を示した図、第9図は学習補正
時の回転数と噴射量との関係を示した図、第10図は他
の実施例における制御回路の作動を示したフローチャー
トである。
FIG. 3 is a flowchart showing the operation of the control circuit according to the embodiment of the present invention, FIG. 4 is a relationship diagram showing the relationship between the elapsed time after startup and the correction coefficient, and FIG. 5 is a relationship diagram showing the relationship between the cooling water temperature at startup and the correction coefficient. Figure 6 is a flowchart showing the operation of feedback processing by the 02 sensor, Figure 7 is a flowchart showing the operation of the learning correction coefficient creation process, and Figure 8 is the initialization of the learning correction coefficient. FIG. 9 is a diagram showing the relationship between the rotation speed and injection amount at the time of learning correction, and FIG. 10 is a diagram showing the relationship between the rotation speed and the injection amount at the time of learning correction. 5 is a flowchart showing the operation of the control circuit.

■・・・エンジン、4・・・エアフロメータ、5・・・
吸気温センサ、7・・・インジェクタ、10・・・02
センサ。
■...Engine, 4...Air flow meter, 5...
Intake temperature sensor, 7...injector, 10...02
sensor.

II・・・水温センサ、12・・・回転速度センサ、1
3・・・制御回路。
II...Water temperature sensor, 12...Rotation speed sensor, 1
3...Control circuit.

Claims (1)

【特許請求の範囲】 エンジンの状態を検出する状態検出手段と、この状態検
出手段に基づいて基本噴射量を算出する算出手段と、 前記エンジンに供給された混合気の空燃比を検出する空
燃比検出手段と、 前記空燃比と理論空燃比とのズレを検出する空燃比ズレ
検出手段と、 この空燃比ズレ検出手段により検出された空燃比ズレを
修正する学習値を求め記憶する空燃比学習手段と、 前記学習値が記憶されているか否かを判別する学習値確
認手段と、 前記エンジンの始動完了を検出する始動完了検出手段と
、 前記学習値が記憶されていない始動時において、前記基
本噴射量を段階的に変化させる基本噴射量変化手段と、 始動が完了すると前記基本噴射量の段階的変化を停止す
る停止手段と、 始動完了時の前記変化に応じて前記基本噴射量を補正し
て始動後の噴射量を算出する始動後噴射量算出手段と、 前記学習補正値が記憶されている始動時には空燃比が前
記基本噴射量を前回のエンジン停止時の空燃比になるよ
うに前記学習補正値で補正する学習補正手段と、 前記基本噴射量変化手段と、始動後の噴射量算出手段と
学習補正手段とのうちいずれか1つからの出力に応じて
燃料噴射量を制御する制御手段とを備えたことを特徴と
する内燃機関用燃料噴射量制御装置。
[Scope of Claims] Condition detection means for detecting the condition of the engine, calculation means for calculating the basic injection amount based on the condition detection means, and air-fuel ratio for detecting the air-fuel ratio of the air-fuel mixture supplied to the engine. a detection means, an air-fuel ratio deviation detection means for detecting a deviation between the air-fuel ratio and the stoichiometric air-fuel ratio, and an air-fuel ratio learning means for obtaining and storing a learning value for correcting the air-fuel ratio deviation detected by the air-fuel ratio deviation detection means. a learned value confirmation means for determining whether or not the learned value is stored; a start completion detection means for detecting completion of starting of the engine; basic injection amount changing means for changing the amount in steps; stopping means for stopping the stepwise change in the basic injection amount when starting is completed; and correcting the basic injection amount in accordance with the change at the completion of starting. a post-start injection amount calculation means for calculating an injection amount after startup; and the learning correction so that the air-fuel ratio changes from the basic injection amount to the air-fuel ratio at the time of the previous stop of the engine at the time of startup in which the learning correction value is stored. a learning correction means for correcting the fuel injection amount based on the value; a control means for controlling the fuel injection amount according to an output from any one of the basic injection amount changing means, the post-start injection amount calculation means, and the learning correction means; A fuel injection amount control device for an internal combustion engine, comprising:
JP18826590A 1990-07-17 1990-07-17 Fuel injection amount control device for internal combustion engine Expired - Fee Related JP2857914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18826590A JP2857914B2 (en) 1990-07-17 1990-07-17 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18826590A JP2857914B2 (en) 1990-07-17 1990-07-17 Fuel injection amount control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0476242A true JPH0476242A (en) 1992-03-11
JP2857914B2 JP2857914B2 (en) 1999-02-17

Family

ID=16220650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18826590A Expired - Fee Related JP2857914B2 (en) 1990-07-17 1990-07-17 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2857914B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107803A (en) * 2004-10-01 2006-04-20 Shin Kowa Kk Flash discharge tube
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2008106766A (en) * 2006-10-24 2008-05-08 Ford Global Technologies Llc System and method of controlling multiple fuel engine
JP2008287931A (en) * 2007-05-15 2008-11-27 Panasonic Corp High-pressure discharge lamp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107803A (en) * 2004-10-01 2006-04-20 Shin Kowa Kk Flash discharge tube
JP2007278254A (en) * 2006-04-11 2007-10-25 Honda Motor Co Ltd Control device of internal combustion engine
JP2008106766A (en) * 2006-10-24 2008-05-08 Ford Global Technologies Llc System and method of controlling multiple fuel engine
JP2008287931A (en) * 2007-05-15 2008-11-27 Panasonic Corp High-pressure discharge lamp

Also Published As

Publication number Publication date
JP2857914B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
JP2884472B2 (en) Fuel property detection device for internal combustion engine
JPH08158918A (en) Air fuel ratio learning control device for internal combustion engine
JPH0476242A (en) Fuel injection quantity controller for internal combustion engine
JP2927074B2 (en) Air-fuel ratio control device for internal combustion engine
KR940002958B1 (en) Air-fuel ratio controller
JPH0326841A (en) Fuel injector for engine
JP3183040B2 (en) Fuel injection control device for internal combustion engine
JPH055433A (en) Fuel supply device for internal combustion engine
JPH11190246A (en) Fuel injection control device and fuel injection method
JP3046847B2 (en) Air-fuel ratio control device for internal combustion engine
JPH10311237A (en) Idle rotation control device of engine
JPH04101032A (en) Fuel feeder of internal combustion engine
JP2715208B2 (en) Air-fuel ratio learning control device for internal combustion engine
US6901920B2 (en) Engine control apparatus having cylinder-by-cylinder feedback control
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JPH05149166A (en) Device for controlling feed of fuel during idling of internal combustion engine
JPH0543253Y2 (en)
JPH0734931A (en) Stability controller of engine
JPH0861115A (en) Fuel supply quantity controller of internal combustion engine
JP2548616B2 (en) Fuel supply device for internal combustion engine
JP2962981B2 (en) Control method of air-fuel ratio correction injection time during transient
JPH03124938A (en) Fuel supply controller of internal combustion engine
JPH0658081B2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH0255618B2 (en)
JPH0515910B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees