JPH0326842A - Fuel injector for engine - Google Patents

Fuel injector for engine

Info

Publication number
JPH0326842A
JPH0326842A JP16198389A JP16198389A JPH0326842A JP H0326842 A JPH0326842 A JP H0326842A JP 16198389 A JP16198389 A JP 16198389A JP 16198389 A JP16198389 A JP 16198389A JP H0326842 A JPH0326842 A JP H0326842A
Authority
JP
Japan
Prior art keywords
engine
fuel injection
temperature
engine stop
stop period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16198389A
Other languages
Japanese (ja)
Other versions
JP2737259B2 (en
Inventor
Kazuo Kojima
一雄 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1161983A priority Critical patent/JP2737259B2/en
Publication of JPH0326842A publication Critical patent/JPH0326842A/en
Application granted granted Critical
Publication of JP2737259B2 publication Critical patent/JP2737259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To secure the superior starting performance by calculating the engine stop period on the basis of a plurality of temperature values having different temperature lowering characteristics which represent the temperature state of the engine and correcting the fuel injection quantity on restart on the basis of the engine stop period. CONSTITUTION:A fuel injection quantity calculating means 2 calculates the fuel injection quantity on the basis of the engine operation state which is detected by a detecting means 1. On the restart of the engine, a plurality of engine temperature detecting means 3 detect the temperature of the respective parts which represent the temperature state of the engine, and the values are compared with a plurality of detection temperature values memorized at the engine stop time point, and a calculating means 4 calculates the engine stop time. The correction quantity for the fuel injection quantity on restart is calculated by a correcting means 5 on the basis of the detected engine stop period, and the fuel injection quantity calculated by the calculating means 2 is corrected. Thus, the large disturbance of the mixing ratio which is actually inhaled into a cylinder on the start or immediately after start is prevented, and the superior starting performance can be secured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの燃料噴射装置において、再始動時
の燃料噴射量制御に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to fuel injection amount control during restart in an engine fuel injection device.

(従米の技術およびそのam) 自動車用エンジン等では、電磁式燃料噴射弁を備えて、
電子制御により運転状態に応じて燃科′!n射カf行わ
れている。
(Japanese technology and its am) Automobile engines are equipped with electromagnetic fuel injection valves,
Fuel consumption according to driving conditions through electronic control! N shootings are being carried out.

一般にガソリンエンジンでは、燃料噴射弁が吸気管内に
臨んで取付けられているため、エンジンの冷間始動時は
吸気管に付着して壁流となる燃料量が多くなり、始動時
に必要な高い空燃比が得られない傾向があった. そこで、例えIr実開昭57−8326号公報で開示さ
れたものは、エンジンのメインキーの投入に応答して、
予定量の燃料を噴射させ、これにより始動時の燃料増量
を十分に行い、始動時に高い空燃比を供給するようにな
っている。
Generally, in a gasoline engine, the fuel injection valve is installed facing into the intake pipe, so when the engine is started cold, a large amount of fuel adheres to the intake pipe and becomes a wall flow, resulting in the high air-fuel ratio required at startup. There was a tendency that it was not possible to obtain Therefore, the device disclosed in Ir Utility Model Publication No. 57-8326, for example, responds to the input of the main key of the engine by
A predetermined amount of fuel is injected, thereby sufficiently increasing the amount of fuel at startup and supplying a high air-fuel ratio at startup.

ところが、エンジン停止後にあまり時間をおかないで再
始動が行われた場合、エンジン停止時点で吸気管の内壁
に付着した燃料が残留しており、始動時の燃料増量が過
大となって、始動性および始動直後の運転安定性が悪化
するという問題点があった. 本発明は、こうした従米の問題点に着目し、始動前から
付着している燃料壁流量を反吠して始動時の燃料噴射量
解り御が行われる装置を提供することを目的とする。
However, if the engine is restarted shortly after stopping, fuel adhering to the inner wall of the intake pipe remains when the engine is stopped, and the amount of fuel added at startup becomes excessive, resulting in poor starting performance. Another problem was that the operating stability immediately after startup deteriorated. The present invention has focused on these problems, and aims to provide a device that controls the amount of fuel injection at the time of starting by controlling the flow rate of fuel that has been deposited on the wall before starting.

(問題点を解決するための手Pi) 上記目的を達戊するため本発明では、第1図に示すよう
に、エンジンの作動状態を検出する手段lと、この検出
値に応じてエンジンへの燃料噴射量を算出する手段2と
を備えるエンジンの燃料噴射装置において、工冫ジンの
温度状態を代表する各部の温度を検出する手段3と、予
めエンジン停止時点で記憶された複数の検出温度値と、
次の始動時の検出温度値との比較に基づいてエンジン停
止期間を算出す.る手#5l4と、この算出したエンジ
ン停止期間に基づいて再始動時の燃料噴射量を補正する
手段5とを備えた。
(Measures Pi for Solving the Problems) In order to achieve the above object, the present invention, as shown in FIG. In the fuel injection device for an engine, the engine fuel injection device includes a means 2 for calculating a fuel injection amount, a means 3 for detecting the temperature of each part representative of the temperature state of the engine, and a plurality of detected temperature values stored in advance at the time the engine is stopped. and,
The engine stop period is calculated based on comparison with the detected temperature value at the next start. and means 5 for correcting the fuel injection amount at the time of restart based on the calculated engine stop period.

(作用) 第3図はエンジン停止後における冷却水温度Tw(実線
)および油温To(破線)の降下特性を示しており、両
者の比熱や放熱経路の相異に基づいてΔT=To−Tw
が図中斜線で示すようにエンジン停止期間に応じて所定
の特性で変化する。
(Function) Figure 3 shows the drop characteristics of the cooling water temperature Tw (solid line) and the oil temperature To (dashed line) after the engine is stopped.
As shown by diagonal lines in the figure, changes with a predetermined characteristic depending on the engine stop period.

本発明は例えば上記冷却水温度Twと油温′roの降下
特性の相異に基づいてエンジン停止期間を算出し、この
算出値がらエンジン始動前の燃料壁流量を推測して再始
動時の燃料噴射量を補正する。
The present invention calculates the engine stop period based on the difference in the drop characteristics of the cooling water temperature Tw and the oil temperature 'ro, for example, and estimates the fuel wall flow rate before the engine start based on this calculated value, and then calculates the fuel wall flow rate at the time of restart. Correct the injection amount.

これにより、始動時および始動直後に実際に気前に吸入
される混合比が大きく乱れることを回避して、点火栓の
かぶり等の始動性の悪化を防止できる. (実施例) 以下、本発明の実施例を添付図面に基づいて説明する。
This avoids a large disturbance in the mixture ratio that is actually generously drawn in during and immediately after starting, and prevents deterioration in startability such as fogging of the ignition plug. (Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第2図は自動車用工冫ジンの空燃比制御装置のシステム
図を表している。同図において、11は空気量センサ、
12はクランク角センサ、13は吸気管のウ才一タジャ
ケットに設けられた冷却水温度を検出する水温センサ、
15は潤滑油温度を検出する油温センサ、14は空燃比
を検出するための02センサである。コントロールユニ
ット20はこれらのセンサがらの信号を入力して燃料噴
射弁19からの燃料量を増減制御する。
FIG. 2 shows a system diagram of an air-fuel ratio control device for an automobile engine. In the same figure, 11 is an air amount sensor;
12 is a crank angle sensor; 13 is a water temperature sensor that detects the cooling water temperature provided on the intake pipe's jacket;
Reference numeral 15 is an oil temperature sensor for detecting lubricating oil temperature, and reference numeral 14 is an 02 sensor for detecting the air-fuel ratio. The control unit 20 receives signals from these sensors and controls the amount of fuel from the fuel injection valve 19 to increase or decrease.

コントロールユニット20では、1点火サイクル当たり
に必要とされる燃料噴射量に相当するパルスI[ T 
iは、基本的に T  i=  K  X Q/N  X(1  +K丁
14+KASX  Kt)+ Ts=(])にて計算さ
れる.ただし、Kは定数、Qは吸入空ス量、Nはエンジ
ン回転数、KT一は暖成増量分で水温TIlの関数とし
て求められ、KASは始動後の増量分で冷却水温Tll
Iと始動後の経過時間に応じて求められ、Ktは本発明
の始動前の燃料壁流量を反映した補正係数であり、Ts
はバ・冫テリ電圧に基づく無効パルス幅である。
In the control unit 20, a pulse I [ T
i is basically calculated as T i = K X Q/N However, K is a constant, Q is the amount of intake air, N is the engine speed, KT is the increase in amount due to warming and is determined as a function of the water temperature TIl, and KAS is the increase in amount after startup and is determined as a function of the cooling water temperature Tll.
It is determined according to I and the elapsed time after starting, Kt is a correction coefficient that reflects the fuel wall flow rate before starting the present invention, and Ts
is the invalid pulse width based on battery voltage.

第3図は冷却水温度が80℃の暖成後の状態からエンジ
ンを停止した場合の冷却水温度Tw(実線〉および油温
To(破#I)の降下特性をそれぞれ示しており、両者
の比熱や放熱経路の相異に基づいてΔT”To−Twは
図中斜線で示すようにエンジン停止時点からの経過時間
と外気温度に応じて所定の特性で変化する。
Figure 3 shows the drop characteristics of the coolant temperature Tw (solid line) and the oil temperature To (broken #I) when the engine is stopped from a warm-up state where the coolant temperature is 80°C. Based on the differences in specific heat and heat radiation paths, ΔT''To-Tw changes according to predetermined characteristics according to the time elapsed from the time the engine is stopped and the outside air temperature, as shown by diagonal lines in the figure.

上記冷却水温度Twと油温Toの降下特性の相異に基づ
いてエンジン停止時点からの経!4時問(および外A温
度Taの間には、以下の近時式が威立する9ただし、T
wbはエンジン停止時点の冷却水温度、Tabはエンジ
ン停止rIl点のif’A M!油温度、K.K2は定
数である. t=(Twb − Tw)/K 1(Tw− TaL・
l2 )t=(Toh−T(+>/K2(To−TaL
・・(3 )本実施例では上記(2)式と(3)式に基
づいてエンジン停止時点からの経過時間Lおよび外気温
度Taを算出し、この算出値からエンジン始動前の燃料
壁流量を推測して再始動時の燃料噴射量を補正する。な
お、外気温度Taは実際に測定することも可能である。
Based on the difference in the drop characteristics of the cooling water temperature Tw and the oil temperature To mentioned above, what happens after the engine stops? 4 hours (and the outside temperature Ta, the following recent formula is in place)9 However, T
wb is the cooling water temperature at the point when the engine stops, and Tab is if'A M! at the point when the engine stops. Oil temperature, K. K2 is a constant. t=(Twb-Tw)/K1(Tw-TaL・
l2 )t=(Toh-T(+>/K2(To-TaL
(3) In this embodiment, the elapsed time L and the outside air temperature Ta from the time the engine stopped are calculated based on the above equations (2) and (3), and the fuel wall flow rate before the engine starts is calculated from these calculated values. Estimate and correct fuel injection amount at restart. Note that it is also possible to actually measure the outside air temperature Ta.

このために、コントロールユニ.,}201.t.第4
図に示すように、ステップ21でエンジンの運転を停止
させるキースインチがOFFになったとtII定された
場合はステップ22で水温センサ13、油温センサ15
の各検出値に基づいてエンジン停止時点での冷却水温度
Twbと潤滑油温度Tabをそれぞれメモリーに記憶さ
せる. 再始動時はIIIJ5図に示すルーチンで燃料噴射童制
御が行われる。
For this purpose, the control unit. ,}201. t. Fourth
As shown in the figure, if it is determined in step 21 that the key inch that stops the engine operation is turned OFF, in step 22 the water temperature sensor 13, the oil temperature sensor 15
Based on each detected value, the cooling water temperature Twb and the lubricating oil temperature Tab at the time the engine is stopped are respectively stored in the memory. At the time of restart, fuel injection control is performed according to the routine shown in Figure IIIJ5.

まず、ステップ23で始動時点の冷却水温度Twと潤滑
油温度Toをそれぞれ読込み、ステンプ24で各検出値
T w, T o. T wb, T abに基づき(
2)式および(3)式でエンジン停止期間Eを算出する
First, in step 23, the cooling water temperature Tw and lubricating oil temperature To at the time of starting are read, and in step 24, each detected value Tw, To. Based on T wb, T ab (
The engine stop period E is calculated using equations (2) and (3).

次にステップ25でこの算出値しに基づいて補正係数K
Lを例えば第6図に示すようなテーブルからノレックア
ンプする。そしてステップ261こ進んで燃料噴射パル
ス中Tiを(1)式にて算出し、燃料噴射弁19に始動
前の燃料壁流量を反映した燃料噴射信号を出力する。
Next, in step 25, the correction coefficient K is calculated based on this calculated value.
For example, L is subjected to Noreck amplification from a table as shown in FIG. Then, the process proceeds to step 261, where Ti during the fuel injection pulse is calculated using equation (1), and a fuel injection signal reflecting the fuel wall flow rate before startup is output to the fuel injection valve 19.

第7図は(1・)式で用いられる始動後の補正係数κ^
Sの初期値のテーブル例で、冷却水温度Twに応じて減
少し、第8図に示すようにKASは始動後のU過時間t
′に応じて減少する. このように、冷却水温度T一と潤滑油温度TOに基づき
始動時にエンジン停止期間tを算出して、この停止期間
tに応じて補正係敗Ktをルンクアツプすることにより
、始動前に吸ス管に付着している燃料壁流量を反映して
噴射パルス巾Tiを補正することがでさる。これにより
、始動時および始動直後に実際に気簡に吸入される混合
比が大きく乱れることを回避して、点火栓のか』ζり等
、始動性の悪化を防止できる. また、第9図は工冫ジンの冷開始動後のI]3l8!運
転時に、冷却水温度Twと潤滑油温度TOがそれぞれ上
昇するのを測定した実験結果であるが、暖機中のエンジ
ンの停止時点で、両者の温度上昇特性の相異に基づいて
、暖磯状態がどの程度進んだかを判定し、次の再始動時
の燃料噴射量あるいは点火時期等に反映させても良い。
Figure 7 shows the correction coefficient κ^ after startup used in equation (1.)
In the table example of the initial value of S, it decreases according to the cooling water temperature Tw, and as shown in FIG.
′ decreases according to ′. In this way, by calculating the engine stop period t at the time of starting based on the cooling water temperature T and the lubricating oil temperature TO, and looking up the corrected loss Kt according to this stop period t, the suction pipe is adjusted before starting. It is possible to correct the injection pulse width Ti by reflecting the fuel wall flow rate adhering to the fuel wall. This avoids a large disturbance in the mixture ratio that is actually drawn in at the time of starting and immediately after starting, and prevents deterioration of starting performance such as ignition plug clenching. Also, Figure 9 shows I]3l8! after the start of cooling of Kojijin. This is an experimental result in which the cooling water temperature Tw and the lubricating oil temperature TO were measured to increase during operation. It is also possible to determine how far the situation has progressed and reflect it in the fuel injection amount or ignition timing at the next restart.

(発明の効果) 以上の通り本発明によれば、エンジンの燃料噴射装置に
おいて、エンジンの温度状態を代表して温度降下特性の
異なる複数の温度値に基づいてエンジン停止期間を算出
する手段と、この算出値に基づいて再始動時の燃料噴射
量を補正する手段とを備えたため、エンジン始動前から
吸気管に付着している燃料壁流量を推測して再始動時の
燃料噴射量を補正することができ、始動時および始動直
後に実際に気簡に吸入される冫昆合比が大きく乱れるこ
とを回避して、良好な始動性を確保できる。
(Effects of the Invention) As described above, according to the present invention, in an engine fuel injection device, means for calculating an engine stop period based on a plurality of temperature values representing the temperature state of the engine and having different temperature drop characteristics; Since it is equipped with means for correcting the fuel injection amount at the time of restart based on this calculated value, the fuel injection amount at the time of restart is corrected by estimating the flow rate of the fuel wall adhering to the intake pipe before the engine starts. Therefore, it is possible to avoid a large disturbance in the mixture ratio that is actually easily inhaled at the time of starting and immediately after starting, and to ensure good starting performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のクレーム対応図、第2図は実施例で本
発明に適用される制御系のシステム図、第3図は冷却水
温度および潤滑油温度の降下特性図、第4図,Q’S5
図はそれぞれ燃料噴射量を算出するための7ローチャー
ト、第6図、第7図、第8図はそれぞれ補正係数のテー
ブルおよびマップである。第9図は冷却水温度および潤
滑油温度の上昇特性図である。 1・・・エンジン作動状態検出手段、2・・・燃料噴射
量ヰ出手段、3・・・複数のエンジン温度検出手段、4
・・・エンジンの停止期間算出手段、5・・・燃料噴射
量補正手段。 第 3 図 第 4 図 第 5 図 第6図
Fig. 1 is a diagram corresponding to claims of the present invention, Fig. 2 is a system diagram of a control system applied to the present invention in an embodiment, Fig. 3 is a drop characteristic diagram of cooling water temperature and lubricating oil temperature, Fig. 4, Q'S5
The figures are seven flowcharts for calculating the fuel injection amount, and FIGS. 6, 7, and 8 are tables and maps of correction coefficients, respectively. FIG. 9 is a diagram showing the rise characteristics of cooling water temperature and lubricating oil temperature. DESCRIPTION OF SYMBOLS 1... Engine operating state detection means, 2... Fuel injection amount detection means, 3... Plural engine temperature detection means, 4
. . . Engine stop period calculation means; 5. Fuel injection amount correction means. Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] エンジンの作動状態を検出する手段と、この検出値に応
じてエンジンへの燃料噴射量を算出する手段とを備える
エンジンの燃料噴射装置において、エンジンの温度状態
を代表する各部の温度を検出する手段と、予めエンジン
停止時点で記憶された複数の検出温度値と、次の始動時
の検出温度値との比較に基づいてエンジン停止期間を算
出する手段と、この算出したエンジン停止期間に基づい
て再始動時の燃料噴射量を補正する手段とを備えたこと
を特徴とするエンジンの燃料噴射装置。
Means for detecting the temperature of each part representative of the temperature state of the engine in an engine fuel injection device comprising means for detecting the operating state of the engine and means for calculating the amount of fuel injected into the engine according to the detected value. means for calculating an engine stop period based on a comparison between a plurality of detected temperature values stored in advance at the time of engine stop and a detected temperature value at the next start; and a means for calculating an engine stop period based on the calculated engine stop period. 1. A fuel injection device for an engine, comprising means for correcting a fuel injection amount at the time of starting.
JP1161983A 1989-06-23 1989-06-23 Engine fuel injection device Expired - Lifetime JP2737259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1161983A JP2737259B2 (en) 1989-06-23 1989-06-23 Engine fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1161983A JP2737259B2 (en) 1989-06-23 1989-06-23 Engine fuel injection device

Publications (2)

Publication Number Publication Date
JPH0326842A true JPH0326842A (en) 1991-02-05
JP2737259B2 JP2737259B2 (en) 1998-04-08

Family

ID=15745801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1161983A Expired - Lifetime JP2737259B2 (en) 1989-06-23 1989-06-23 Engine fuel injection device

Country Status (1)

Country Link
JP (1) JP2737259B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136963A (en) * 2010-12-24 2012-07-19 Mitsubishi Motors Corp Fuel injection quantity control device
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117134A (en) * 1986-11-04 1988-05-21 Nippon Denso Co Ltd Fuel injection quantity control device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117134A (en) * 1986-11-04 1988-05-21 Nippon Denso Co Ltd Fuel injection quantity control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260577B2 (en) 2009-07-14 2016-02-16 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
US10301447B2 (en) 2009-07-14 2019-05-28 Toray Plastics (America), Inc. Crosslinked polyolefin foam sheet with exceptional softness, haptics, moldability, thermal stability and shear strength
JP2012136963A (en) * 2010-12-24 2012-07-19 Mitsubishi Motors Corp Fuel injection quantity control device

Also Published As

Publication number Publication date
JP2737259B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JPH09108543A (en) Estimation device for catalyst temperature in engine and diagnostic device for catalyst
JPS626096B2 (en)
JPH07229419A (en) Catalyst warming control device of internal combustion engine
JPH11148402A (en) Deceleration timing control device for internal combustion engine
CN110056444B (en) Internal combustion engine control method, device, equipment and storage medium
JP3284395B2 (en) Throttle valve control device for internal combustion engine
JPH04159432A (en) Electronic control fuel injection system
US7707999B2 (en) Exhaust protecting device and protecting method for internal combustion engine
JPH07122627B2 (en) Heater controller for oxygen concentration sensor
JP2002070706A (en) Ignition timing control system of internal combustion engine
JPS5944494B2 (en) Electronically controlled fuel injection system for internal combustion engines
JPH03160131A (en) Fuel injection controller
JPH0326842A (en) Fuel injector for engine
JP3627335B2 (en) Heater control device for catalyst downstream air-fuel ratio sensor
JPH0814079A (en) Fuel control device for engine
JP2003227379A (en) Fuel injection control device for internal combustion engine
JP3183040B2 (en) Fuel injection control device for internal combustion engine
JP3355287B2 (en) Fuel injection control device for internal combustion engine
JPH0742875B2 (en) Air-fuel ratio controller for engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
CN109973230B (en) Internal combustion engine starting method, internal combustion engine starting device, engine control apparatus, and storage medium
JP3687128B2 (en) Engine air-fuel ratio control device
JPH08177552A (en) Fuel injection control device for internal combustion engine
JPH03281959A (en) Electronically controlled fuel injection device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine