JPH08177552A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH08177552A
JPH08177552A JP6326508A JP32650894A JPH08177552A JP H08177552 A JPH08177552 A JP H08177552A JP 6326508 A JP6326508 A JP 6326508A JP 32650894 A JP32650894 A JP 32650894A JP H08177552 A JPH08177552 A JP H08177552A
Authority
JP
Japan
Prior art keywords
fuel
injection time
temperature
time
fuel pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6326508A
Other languages
Japanese (ja)
Inventor
Takahiko Kimura
隆彦 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6326508A priority Critical patent/JPH08177552A/en
Publication of JPH08177552A publication Critical patent/JPH08177552A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE: To enable the injection of the fuel quantity necessary for the start of an engine even at the time of voltage being lowered so as to secure excellent startability by multiplying the start time effective injection time by correction factors, obtained according to the driving voltage of a fuel pump, to correct the start time effective injection time at the time of starting the engine. CONSTITUTION: In case of reading the output signals of a water temperature sensor 22, an intake air temperature sensor 23, and the like for detecting an engine operating state into a fuel injection control device 19 to control the injection timing of each injector 18, the effective injection time is obtained on the basis of the cooling water temperature at the time of starting an engine. When the cooling water temperature is the specified temperature or lower, individual correction factors are respectively obtained on the basis of battery voltage and intake air temperature, and the effective injection time is multiplied by these correction factors to obtain the corrected effective injection time at the start time. The invalid injection time obtained from the battery voltage is then added to the corrected effective injection time to obtain the fuel injection time at the start time, and each injector 18 is controlled on the basis of this fuel injection time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料ポンプにより供給
される燃料を内燃機関(以下「エンジン」という)に噴
射するインジェクタを制御する内燃機関の燃料噴射制御
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for an internal combustion engine, which controls an injector for injecting fuel supplied by a fuel pump into the internal combustion engine (hereinafter referred to as "engine").

【0002】[0002]

【従来の技術】一般に、エンジン始動時のインジェクタ
の燃料噴射時間は次式により算出される。始動時の燃料
噴射時間=有効噴射時間+無効噴射時間ここで、無効噴
射時間とは、インジェクタに供給される電気信号に対
し、実際の弁の開閉作動遅れにより燃料噴射量に寄与し
ない時間である。一方、有効噴射時間(基本噴射時間)
とは実際に燃料を噴射する時間であり、始動時の冷却水
温に基づいて決められる時間である。
2. Description of the Related Art Generally, the fuel injection time of an injector at the time of engine start is calculated by the following equation. Fuel injection time at startup = effective injection time + ineffective injection time Here, the invalid injection time is a time that does not contribute to the fuel injection amount due to an actual valve opening / closing operation delay with respect to the electric signal supplied to the injector. . On the other hand, effective injection time (basic injection time)
Is the time when fuel is actually injected, and is the time determined based on the cooling water temperature at the time of starting.

【0003】ところで、エンジン始動時は、スタータの
作動によりバッテリ電圧が一時的に低下し、インジェク
タの印加電圧も低下するため、インジェクタの作動遅れ
による無効噴射時間が増大する。また、冬期にエンジン
が冷えている状態で始動する場合、燃料(ガソリン)の
気化作用が低下する。このような気化作用の低下や無効
噴射時間が増大は、エンジンの始動性を悪くする原因と
なるので、特開昭58−28537号公報に示すよう
に、始動時有効噴射時間に、吸気温度に応じた補正係数
を乗算して、始動時有効噴射時間を補正すると共に、無
効噴射時間をバッテリ電圧に応じた時間に設定し、これ
らを合算して始動時燃料噴射時間を求めることで、始動
性を向上させるようにしたものがある。
By the way, when the engine is started, the battery voltage is temporarily lowered by the operation of the starter and the voltage applied to the injector is also lowered, so that the invalid injection time is increased due to the delay in the operation of the injector. Further, when the engine is started in a cold state in winter, the vaporization effect of fuel (gasoline) is reduced. Such a decrease in the vaporization effect and an increase in the invalid injection time cause a deterioration in the startability of the engine. Therefore, as shown in JP-A-58-28537, the effective injection time at the start and the intake air temperature are changed. The effective injection time at startup is corrected by multiplying it by the appropriate correction coefficient, and the invalid injection time is set to a time corresponding to the battery voltage, and the fuel injection time at startup is calculated by summing these to obtain the startability. There are things that are designed to improve.

【0004】[0004]

【発明が解決しようとする課題】上記従来構成では、エ
ンジン始動時のバッテリ電圧低下による始動性低下に対
して、インジェクタの作動遅れを補う無効噴射時間を増
加させることで対処するようにしている。しかし、バッ
テリ電圧が低下すると、インジェクタに燃料を供給する
燃料ポンプの印加電圧も低下して燃料ポンプの回転速度
が低下し、図3に示すように燃料ポンプの吐出圧力−吐
出流量特性が低下する。また、燃料ポンプの温度が極低
温の時には、燃料ポンプを駆動するポンプモータの磁石
の磁界が強くなって、同じ印加電圧でもポンプモータの
駆動力が低下するので、この場合も、燃料ポンプの回転
速度が低下して吐出圧力−吐出流量特性が低下する。従
って、冬期の極低温始動時にはバッテリ電圧低下により
低下したポンプ能力が、低温によるポンプモータの駆動
力低下により更に低下することになり、燃料配管内の燃
料圧力(以下「燃圧」という)が調圧弁の設定圧以下と
なることがある。この場合には、上記従来構成のように
無効噴射時間をバッテリ電圧に応じて補正しただけで
は、実際に燃料噴射に寄与する有効噴射時間は変わらな
いので、燃圧が低下する分だけ噴射燃料量が不足して、
エンジンが始動不能になることもある。
In the above-mentioned conventional structure, the deterioration of the startability due to the decrease of the battery voltage at the time of starting the engine is dealt with by increasing the invalid injection time for compensating the operation delay of the injector. However, when the battery voltage decreases, the applied voltage of the fuel pump that supplies the fuel to the injector also decreases, the rotation speed of the fuel pump decreases, and the discharge pressure-discharge flow rate characteristic of the fuel pump decreases as shown in FIG. . In addition, when the temperature of the fuel pump is extremely low, the magnetic field of the magnet of the pump motor that drives the fuel pump becomes strong, and the driving force of the pump motor decreases even with the same applied voltage. The speed decreases, and the discharge pressure-discharge flow rate characteristic decreases. Therefore, at the time of extremely low temperature starting in winter, the pump capacity that has decreased due to the battery voltage decrease will further decrease due to the decrease in the driving force of the pump motor due to low temperature, and the fuel pressure in the fuel pipe (hereinafter referred to as "fuel pressure") will be reduced. It may be less than the set pressure of. In this case, the effective injection time that actually contributes to the fuel injection does not change just by correcting the ineffective injection time according to the battery voltage as in the above-described conventional configuration. Running out,
The engine may not start.

【0005】これを防ぐ方法として、燃料ポンプの流量
を増加させることが考えられるが、この場合には、燃料
ポンプ自体のコストアップを招くばかりか、通常の運転
状態においてはエンジンの消費燃料量より遥かに多い燃
料を燃料ポンプから吐出することになる。このため、調
圧弁側から燃料タンクへ戻される燃料量が増加して、燃
料タンク内の燃料温度が上昇し、それによってベーパ量
が増大して、ベーパを吸着するキャニスタの容量を増加
させる必要が生じたり、燃料臭が漏れ出す等の不具合が
発生する。
As a method of preventing this, it is conceivable to increase the flow rate of the fuel pump, but in this case, not only the cost of the fuel pump itself is increased but also the fuel consumption of the engine is higher than the fuel consumption of the engine under normal operating conditions. Much more fuel will be discharged from the fuel pump. Therefore, it is necessary to increase the amount of fuel returned from the pressure regulating valve side to the fuel tank, raise the fuel temperature in the fuel tank, thereby increasing the vapor amount, and increasing the capacity of the canister that adsorbs vapor. Problems such as occurrence of fuel odor and leakage of fuel odor will occur.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、通常の運転状態で適
した容量の燃料ポンプを使用しながら、低バッテリ電圧
時又は低温時でも良好な始動性を確保することができる
内燃機関の燃料噴射制御装置を提供することにある。
The present invention has been made in view of the above circumstances, and therefore an object of the present invention is to use a fuel pump having a suitable capacity under normal operating conditions, and at the same time, at a low battery voltage or at a low temperature. An object of the present invention is to provide a fuel injection control device for an internal combustion engine, which is capable of ensuring various startability.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の燃料噴射制御装置
は、燃料ポンプにより供給される燃料を内燃機関に噴射
するインジェクタを制御するものにおいて、前記燃料ポ
ンプの駆動電圧に関する情報を検出する電圧情報検出手
段と、前記内燃機関の始動時に前記燃料ポンプの駆動電
圧に応じて補正係数を求める補正係数決定手段と、前記
補正係数を始動時の有効噴射時間に乗算して始動時の有
効噴射時間を補正する有効噴射時間補正手段と、補正さ
れた始動時の有効噴射時間に無効噴射時間を加算して始
動時の燃料噴射時間を求める噴射時間算出手段とを備え
た構成としたものである。
To achieve the above object, a fuel injection control device for an internal combustion engine according to claim 1 of the present invention controls an injector for injecting fuel supplied by a fuel pump into the internal combustion engine. In this case, voltage information detecting means for detecting information on the drive voltage of the fuel pump, correction coefficient determining means for obtaining a correction coefficient according to the drive voltage of the fuel pump at the time of starting the internal combustion engine, and starting the correction coefficient. Effective injection time correction means for multiplying the effective injection time at the time to correct the effective injection time at the start, and the invalid injection time added to the corrected effective injection time at the start to obtain the fuel injection time at the start The injection time calculating means is provided.

【0008】この構成において、請求項2のように、前
記電圧情報検出手段は、前記燃料ポンプの駆動電圧に関
する情報としてバッテリ電圧を検出するようにしても良
い。更に、請求項3のように、前記燃料ポンプの温度に
関する情報を検出するポンプ温度情報検出手段を備え、
前記補正係数決定手段は、前記燃料ポンプの駆動電圧と
前記燃料ポンプの温度とによる個々の補正係数若しくは
両者を総合した補正係数を求めるようにしても良い。
In this structure, the voltage information detecting means may detect the battery voltage as the information on the driving voltage of the fuel pump. Further, as in claim 3, a pump temperature information detecting means for detecting information on the temperature of the fuel pump is provided,
The correction coefficient determining means may obtain an individual correction coefficient based on the drive voltage of the fuel pump and the temperature of the fuel pump or a correction coefficient that is a combination of both.

【0009】この場合、請求項4のように、前記ポンプ
温度情報検出手段は、前記燃料ポンプの温度に関する情
報として、燃料温度、外気温度、吸気温度のうちの少な
くとも一つを検出するようにしても良い。
In this case, as described in claim 4, the pump temperature information detecting means detects at least one of the fuel temperature, the outside air temperature and the intake air temperature as the information about the temperature of the fuel pump. Is also good.

【0010】また、請求項5のように、前記内燃機関の
冷却水温に関する情報を検出する水温情報検出手段を備
え、前記有効噴射時間補正手段は、前記冷却水温が所定
温度以上のときには前記補正係数による前記有効噴射時
間の補正を行わないようにしても良い。
According to a fifth aspect of the present invention, there is provided water temperature information detecting means for detecting information on the cooling water temperature of the internal combustion engine, and the effective injection time correcting means is the correction coefficient when the cooling water temperature is equal to or higher than a predetermined temperature. The effective injection time may not be corrected by.

【0011】[0011]

【作用】請求項1によれば、内燃機関(エンジン)の始
動時に、燃料ポンプの駆動電圧に関する情報を電圧情報
検出手段により検出し、燃料ポンプの駆動電圧に応じて
補正係数決定手段により補正係数を求める。次いで、こ
の補正係数を始動時の有効噴射時間に乗算して始動時の
有効噴射時間を有効噴射時間補正手段により補正し、噴
射時間算出手段により補正後の始動時の有効噴射時間に
無効噴射時間を加算して始動時の燃料噴射時間を求め
る。この場合、燃料ポンプの駆動電圧に応じて始動時の
有効噴射時間が補正されるので、電圧低下によるポンプ
能力の低下を始動時の有効噴射時間の延長によって補う
ことができる。
According to the present invention, when the internal combustion engine (engine) is started, the information about the driving voltage of the fuel pump is detected by the voltage information detecting means, and the correction coefficient is determined by the correction coefficient determining means according to the driving voltage of the fuel pump. Ask for. Next, this correction coefficient is multiplied by the effective injection time at the start to correct the effective injection time at the start by the effective injection time correction means, and the effective injection time at the start after correction by the injection time calculation means is made into the invalid injection time. Is added to obtain the fuel injection time at the start. In this case, since the effective injection time at the start is corrected according to the drive voltage of the fuel pump, it is possible to compensate for the decrease in the pump performance due to the voltage decrease by extending the effective injection time at the start.

【0012】ところで、燃料ポンプの駆動電圧は、バッ
テリ電圧からハーネス等による電圧降下分を差し引いた
ものであり、バッテリ電圧が低下すれば、それに応じて
燃料ポンプの駆動電圧が低下するという関係にある。そ
こで、請求項2では、電圧情報検出手段は、燃料ポンプ
の駆動電圧に関する情報としてバッテリ電圧を検出し、
換言すれば、燃料ポンプの駆動電圧をバッテリ電圧によ
り間接的に検出し、その検出電圧に応じた補正係数を求
める。バッテリ電圧は、燃料噴射制御装置に電源として
供給されるため、燃料ポンプの駆動電圧を直接検出する
よりも、バッテリ電圧を検出した方が部品点数の増加を
招かず、コスト的に有利である。
By the way, the drive voltage of the fuel pump is obtained by subtracting the voltage drop due to the harness from the battery voltage, and there is a relationship that if the battery voltage decreases, the drive voltage of the fuel pump decreases accordingly. . Therefore, in claim 2, the voltage information detecting means detects the battery voltage as the information about the driving voltage of the fuel pump,
In other words, the drive voltage of the fuel pump is indirectly detected by the battery voltage, and the correction coefficient corresponding to the detected voltage is obtained. Since the battery voltage is supplied to the fuel injection control device as a power supply, detecting the battery voltage is more advantageous in terms of cost than directly detecting the drive voltage of the fuel pump, since the number of parts does not increase.

【0013】更に、請求項3では、燃料ポンプの温度に
関する情報をポンプ温度情報検出手段により検出し、燃
料ポンプの駆動電圧と燃料ポンプの温度とによる個々の
補正係数を求めるか若しくは両者を総合した補正係数を
マップ等により求め、当該補正係数を始動時の有効噴射
時間に乗算して始動時の有効噴射時間を補正する。これ
により、冬期に低温によるポンプモータの駆動力低下に
よって引き起こされるポンプ能力低下も始動時の有効噴
射時間に反映させることができる。
Further, in the third aspect of the present invention, information relating to the temperature of the fuel pump is detected by the pump temperature information detecting means, and an individual correction coefficient depending on the driving voltage of the fuel pump and the temperature of the fuel pump is obtained or both are combined. The correction coefficient is obtained from a map or the like, and the effective injection time at the start is multiplied by the correction coefficient to correct the effective injection time at the start. As a result, a decrease in pump capacity caused by a decrease in driving force of the pump motor due to a low temperature in winter can be reflected in the effective injection time at startup.

【0014】ところで、燃料ポンプの温度を変動させる
要因としては、燃料温度、外気温度、吸気温度があり、
これらは密接な関係がある。そこで、請求項4では、ポ
ンプ温度情報検出手段は、燃料ポンプの温度に関する情
報として、燃料温度、外気温度、吸気温度のうちの少な
くとも一つを検出し、換言すれば、燃料ポンプの温度を
燃料温度、外気温度、吸気温度のうちの少なくとも一つ
から間接的に検出する。これら燃料温度、外気温度、吸
気温度は、他のエンジン制御にも利用できるため、シス
テム構成上、燃料ポンプの温度を直接検出するよりも部
品点数の増加を招かずに済み、コスト的に有利である。
By the way, factors that change the temperature of the fuel pump include the fuel temperature, the outside air temperature, and the intake air temperature.
These are closely related. Therefore, in claim 4, the pump temperature information detecting means detects at least one of the fuel temperature, the outside air temperature, and the intake air temperature as the information about the temperature of the fuel pump. In other words, the temperature of the fuel pump is the fuel temperature. It is indirectly detected from at least one of temperature, outside air temperature, and intake air temperature. These fuel temperature, outside air temperature, and intake air temperature can also be used for other engine controls, so the system configuration does not require an increase in the number of parts compared to directly detecting the temperature of the fuel pump, which is advantageous in terms of cost. is there.

【0015】また、請求項5では、エンジンの冷却水温
に関する情報を水温情報検出手段により検出し、冷却水
温が所定温度以上のときには前記補正係数による始動時
の有効噴射時間の補正を行わないようにする。つまり、
エンジン暖機後のように、冷却水温が所定温度以上のと
きには、空燃比は、低温時よりもリーンとなるが、エン
ジンのフリクションが小さいため、上記補正を行わなく
ても、エンジンを始動可能である。
Further, in the present invention, the information about the cooling water temperature of the engine is detected by the water temperature information detecting means, and when the cooling water temperature is equal to or higher than the predetermined temperature, the effective injection time at the start is not corrected by the correction coefficient. To do. That is,
When the cooling water temperature is equal to or higher than the predetermined temperature, such as after warming up the engine, the air-fuel ratio becomes leaner than when the temperature is low, but because the engine friction is small, the engine can be started without the above correction. is there.

【0016】[0016]

【実施例】以下、本発明の一実施例を図1乃至図4に基
づいて説明する。まず、図2に基づいて燃料噴射システ
ム全体の概略構成を説明する。燃料タンク11内には、
燃料ポンプ12、フィルタ13及び調圧弁14が設けら
れ、燃料ポンプ12から吐出された燃料は、フィルタ1
3、調圧弁14及び燃料配管15を通してデリバリパイ
プ16に供給され、余分な燃料は、燃料タンク11内の
調圧弁14からリターン管17を通して燃料タンク11
内に戻される。上記デリバリパイプ16には、エンジン
の各気筒に対応してインジェクタ18が取り付けられて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. First, a schematic configuration of the entire fuel injection system will be described based on FIG. In the fuel tank 11,
A fuel pump 12, a filter 13 and a pressure regulating valve 14 are provided, and the fuel discharged from the fuel pump 12 is filtered by the filter 1
3, the pressure regulating valve 14 and the fuel pipe 15 are supplied to the delivery pipe 16, and excess fuel is passed from the pressure regulating valve 14 in the fuel tank 11 through the return pipe 17 to the fuel tank 11
Returned inside. An injector 18 is attached to the delivery pipe 16 corresponding to each cylinder of the engine.

【0017】各インジェクタ18の噴射タイミングは、
燃料噴射制御装置19によって制御される。この燃料噴
射制御装置19は、イグニッションキー(図示せず)の
オン後の数秒間とエンジン運転中に、バッテリ20と燃
料ポンプ12との間に設けられたリレー21をオンさせ
て燃料ポンプ12を作動させる。また、燃料噴射制御装
置19は、エンジンの冷却水温THWを検出する水温セ
ンサ22(水温情報検出手段に相当)、吸気温度THA
を検出する吸気温度センサ23等、エンジン運転状態を
検出する各種センサから出力される信号を読み込んで、
図1に示す燃料噴射時間演算ルーチンに従って燃料噴射
時間TSTAを算出し、この燃料噴射時間TSTAに相
当するパルス幅の噴射パルス信号をインジェクタ18に
出力してエンジンに最適量の燃料を噴射する。本実施例
では、吸気温度センサ23は燃料ポンプ12の温度を間
接的に検出するポンプ温度情報検出手段として機能す
る。
The injection timing of each injector 18 is
It is controlled by the fuel injection control device 19. The fuel injection control device 19 turns on the relay 21 provided between the battery 20 and the fuel pump 12 for a few seconds after the ignition key (not shown) is turned on and during engine operation to turn on the fuel pump 12. Activate. Further, the fuel injection control device 19 includes a water temperature sensor 22 (corresponding to water temperature information detecting means) for detecting the engine cooling water temperature THW, and an intake air temperature THA.
The signals output from various sensors that detect the engine operating state, such as the intake air temperature sensor 23 that detects the
The fuel injection time TSTA is calculated according to the fuel injection time calculation routine shown in FIG. 1, and an injection pulse signal having a pulse width corresponding to this fuel injection time TSTA is output to the injector 18 to inject an optimum amount of fuel into the engine. In the present embodiment, the intake air temperature sensor 23 functions as pump temperature information detecting means for indirectly detecting the temperature of the fuel pump 12.

【0018】ところで、燃料ポンプ12の吐出圧力−吐
出流量特性は、図3に示すように、駆動電圧により大き
く変化する。例えば、設定燃圧を300kPaとした場
合、駆動電圧が8V未満では、吐出圧力が設定燃圧より
低くなる。この場合には、調圧弁14は作動せず、吐出
圧力=燃圧となる。更に、燃料ポンプ12の温度が低温
の時には、燃料ポンプ12を駆動するポンプモータの磁
石の磁界が強くなって燃料ポンプの回転速度が低下し、
吐出圧力−吐出流量特性が一層低下し、燃圧が一層低下
する。
By the way, the discharge pressure-discharge flow rate characteristic of the fuel pump 12 largely changes depending on the driving voltage, as shown in FIG. For example, when the set fuel pressure is 300 kPa, the discharge pressure becomes lower than the set fuel pressure when the drive voltage is less than 8V. In this case, the pressure regulating valve 14 does not operate, and the discharge pressure = fuel pressure. Further, when the temperature of the fuel pump 12 is low, the magnetic field of the magnet of the pump motor that drives the fuel pump 12 becomes strong and the rotation speed of the fuel pump decreases.
The discharge pressure-discharge flow rate characteristics are further reduced, and the fuel pressure is further reduced.

【0019】このような条件下でも、エンジン始動性を
確保するために、エンジン始動時に図1に示す燃料噴射
時間演算ルーチンに従って始動時の燃料噴射時間TST
Aを算出する。このルーチンでは、まず、ステップ10
1で、水温センサ22にから出力される冷却水温THW
の信号を読み込み、ステップ102で、この冷却水温T
HWに基づいて始動時の有効噴射時間TSTA0 を演算
する。続くステップ103で、冷却水温THWをエンジ
ンのフリクション増大が顕著になる所定温度THW0
比較し、冷却水温THWが所定温度THW0 以下のとき
には、ステップ104に進み、燃料噴射制御装置19に
電源電圧として印加されるバッテリ電圧VB を判定し、
続くステップ105で、このバッテリ電圧VB を燃料ポ
ンプ12の駆動電圧に関する情報として代用して、バッ
テリ電圧低下による燃圧低下を補うための補正係数FV
Bをバッテリ電圧VB に基づいて求める。
Even under such a condition, in order to secure the engine startability, the fuel injection time TST at the time of starting the engine is started according to the fuel injection time calculation routine shown in FIG.
Calculate A. In this routine, first, step 10
1, the cooling water temperature THW output from the water temperature sensor 22
Signal is read, and at step 102, this cooling water temperature T
The effective injection time TSTA 0 at the start is calculated based on HW. In the following step 103, the cooling water temperature THW is compared with a predetermined temperature THW 0 at which the increase in friction of the engine becomes remarkable. When the cooling water temperature THW is equal to or lower than the predetermined temperature THW 0 , the process proceeds to step 104 and the fuel injection control device 19 is supplied with the power supply voltage. The battery voltage V B applied as
In the following step 105, the battery voltage V B is used as information regarding the driving voltage of the fuel pump 12, and a correction coefficient FV for compensating for the fuel pressure drop due to the battery voltage drop.
B is calculated based on the battery voltage V B.

【0020】次いで、ステップ106で、吸気温度セン
サ23から出力される吸気温度THAの信号を読み込
み、続くステップ107で、この吸気温度THAを燃料
ポンプ12の温度に関する情報として代用して、低温に
よる燃圧低下を補うための補正係数FTHAを吸気温度
THAに基づいて求める。この後、ステップ108で、
前記ステップ102で求めた始動時の有効噴射時間TS
TA0 に、上述した2つの補正係数FVB,FTHAを
乗算して、始動時の有効噴射時間を補正し、TSTA’
とする。一方、前述したステップ103で、冷却水温T
HWが所定温度THW0 より高いと判定されたときに
は、ステップ109に進んで、前記ステップ102で求
めた始動時の有効噴射時間TSTA0 を補正せずにその
まま使用し、TSTA0 をTSTA’とする。この理由
は冷却水温THWが所定温度THW0 以上のときには、
空燃比は低温時や低燃圧時よりもリーンとなるが、エン
ジンのフリクションが小さいため、上記補正を行わなく
ても、エンジンを始動できるからである。
Next, at step 106, the intake air temperature sensor is
Read the signal of intake air temperature THA output from server 23
Then, in the following step 107, this intake air temperature THA is used as fuel.
Substituting as information about the temperature of the pump 12,
The correction coefficient FTHA for compensating the decrease in fuel pressure due to
Calculate based on THA. After this, in step 108,
Effective injection time TS at start-up obtained in step 102
TA0To the above-mentioned two correction factors FVB and FTHA
Multiply to correct the effective injection time at the start, TSTA '
And On the other hand, in step 103 described above, the cooling water temperature T
HW is the predetermined temperature THW0When it is determined to be higher
Proceeds to step 109 and is calculated in step 102.
Effective injection time at start0Without correcting that
Use as it is, TSTA0Be TSTA '. The reason for this
Is the cooling water temperature THW is the predetermined temperature THW0 When above,
The air-fuel ratio is leaner than at low temperature and low fuel pressure, but
Since the gin friction is small, the above correction is not necessary.
Even so, the engine can be started.

【0021】以上のようにしてステップ108又は10
9で、最終的に始動時の有効噴射時間TSTA’を求め
た後、ステップ110に進んで、バッテリ電圧VB より
無効噴射時間TVを演算し、続くステップ111で始動
時の有効噴射時間TSTA’に無効噴射時間TVを加算
して始動時の燃料噴射時間TSTAを算出する。この
後、始動時の燃料噴射時間TSTAに相当するパルス幅
の噴射パルス信号をインジェクタ18に出力して、エン
ジンに燃料を噴射してエンジンを始動させる。
As described above, step 108 or 10
After finally obtaining the effective injection time TSTA 'at 9 in step 9, the process proceeds to step 110 to calculate the invalid injection time TV from the battery voltage V B , and at step 111, the effective injection time TSTA' at start is calculated. Is added to the invalid injection time TV to calculate the fuel injection time TSTA at the time of starting. Thereafter, an injection pulse signal having a pulse width corresponding to the fuel injection time TSTA at the time of starting is output to the injector 18 to inject fuel into the engine to start the engine.

【0022】以上説明した本実施例では、ステップ10
4の処理が電圧情報検出手段として機能し、ステップ1
05,107の処理が補正係数決定手段として機能し、
ステップ108の処理が有効噴射時間補正手段として機
能し、ステップ110の処理が無効噴射時間設定手段と
して機能し、ステップ111の処理が噴射時間算出手段
として機能する。
In the present embodiment described above, step 10
The process of 4 functions as a voltage information detecting means, and step 1
The processing of 05 and 107 functions as a correction coefficient determination means,
The process of step 108 functions as effective injection time correction means, the process of step 110 functions as invalid injection time setting means, and the process of step 111 functions as injection time calculation means.

【0023】この場合、ステップ102で、冷却水温T
HWより求めた始動時の有効噴射時間TSTA0 に、ス
テップ105,107でバッテリ電圧VB (燃料ポンプ
12の駆動電圧)と吸気温度THA(燃料ポンプ12の
温度)に応じて求めた補正係数FVB,FTHAを乗算
して、始動時の有効噴射時間をTSTA’に補正するよ
うにしたので、電圧低下や極低温によって引き起こされ
るポンプ能力低下を、始動時の有効噴射時間(実際に燃
料を噴射する時間)の延長によって補うことができ、電
圧低下時や極低温時でもエンジン始動に必要な燃料量を
噴射することができて、良好な始動性を確保することが
できる。しかも、ステップ110で、バッテリ電圧VB
より無効噴射時間TVを演算するようにしたので、バッ
テリ電圧VB の低下によるインジェクタ18の作動遅れ
時間の増大に対しても、無効噴射時間TVの増大によっ
て対処することができ、最終的にステップ111で求め
る始動時の燃料噴射時間TSTAを、電圧,温度,有効
噴射時間及び無効噴射時間を全て考慮したほぼ理想的な
ものとすることができる。
In this case, in step 102, the cooling water temperature T
A correction coefficient FVB obtained in steps 105 and 107 according to the battery voltage V B (driving voltage of the fuel pump 12) and the intake air temperature THA (temperature of the fuel pump 12) at the effective injection time TSTA 0 at startup obtained from HW. , FTHA are multiplied to correct the effective injection time at the start to TSTA '. Therefore, the effective injection time at the start (actually, the fuel is injected by This can be compensated for by extending the time), and the amount of fuel required for starting the engine can be injected even when the voltage drops or when the temperature is extremely low, and good startability can be secured. Moreover, in step 110, the battery voltage V B
Since the invalid injection time TV is calculated more, an increase in the operation delay time of the injector 18 due to a decrease in the battery voltage V B can be dealt with by the increase in the invalid injection time TV, and finally the step The fuel injection time TSTA at the time of starting, which is obtained by 111, can be made substantially ideal in consideration of all of the voltage, temperature, effective injection time and invalid injection time.

【0024】以上説明した本実施例による燃料噴射時間
の補正を行った場合のエンジン始動時の挙動を図4
(a)に示し、電圧,温度による有効噴射時間の補正が
ない場合のエンジン始動時の挙動を図4(b)に示して
いる。この試験は、調圧弁14の設定燃圧が300kP
a、冷却水温が−20℃の条件下で行ったものである。
この試験結果からも明らかなように、エンジン始動直後
には、バッテリ電圧が12Vから7〜8Vに急低下し、
そのバッテリ電圧低下による燃料ポンプ12の吐出能力
低下によって燃圧も設定燃圧300kPaから220k
Pa前後に急低下してしまう。従来は、無効噴射時間を
バッテリ電圧に応じて補正するだけで実際に燃料噴射に
寄与する有効噴射時間は変わらないので、エンジン始動
時に燃圧が低下する分だけ噴射燃料量が不足して、図4
(b)に示すようにエンジンを始動させることができな
い。
FIG. 4 shows the behavior at the time of starting the engine when the fuel injection time is corrected according to the present embodiment described above.
FIG. 4B shows the behavior at the time of starting the engine when the effective injection time is not corrected by the voltage and temperature shown in FIG. In this test, the set fuel pressure of the pressure regulating valve 14 is 300 kP.
a, the cooling water temperature was -20 ° C.
As is clear from the test results, the battery voltage suddenly dropped from 12V to 7 to 8V immediately after the engine was started,
Due to the decrease in the discharge capacity of the fuel pump 12 due to the decrease in the battery voltage, the fuel pressure is also set from the set fuel pressure of 300 kPa to 220 k.
It drops sharply around Pa. Conventionally, the effective injection time that actually contributes to the fuel injection does not change only by correcting the invalid injection time according to the battery voltage. Therefore, the amount of injected fuel is insufficient by the amount that the fuel pressure decreases at the time of engine start, and the amount of injected fuel shown in FIG.
The engine cannot be started as shown in (b).

【0025】これに対し、本実施例では、バッテリ電圧
(燃料ポンプ12の駆動電圧)と吸気温度(燃料ポンプ
12の温度)に応じて始動時の有効噴射時間を補正する
ようにしたので、電圧低下時や極低温時でもエンジン始
動に必要な燃料量を噴射することができて、図4(a)
に示すようにエンジンを数秒で始動させることができ
て、良好な始動性を確保することができる。このため、
従来のように燃料ポンプ12の容量を増加させる必要が
無く、コストアップを招かずに済むと共に、燃料タンク
11内に戻される燃料量の増加による燃料温度上昇・ベ
ーパ量増大を招かずに済む。
On the other hand, in this embodiment, the effective injection time at the start is corrected according to the battery voltage (driving voltage of the fuel pump 12) and the intake air temperature (temperature of the fuel pump 12). It is possible to inject the amount of fuel required to start the engine even when the temperature drops or when the temperature is extremely low.
As shown in (4), the engine can be started in a few seconds, and good startability can be secured. For this reason,
It is not necessary to increase the capacity of the fuel pump 12 as in the conventional case, and the cost is not increased, and the fuel temperature and the vapor amount are not increased due to the increase in the amount of fuel returned to the fuel tank 11.

【0026】また、本実施例では、冷却水温が所定温度
以下のとき、つまり、エンジン始動に厳しい高フリクシ
ョン時のみ、電圧・温度に応じた始動時の有効噴射時間
の補正を行い、冷却水温が所定温度より高いとき、つま
りエンジン暖機後のように空燃比がリーン側であっても
始動性にほとんど影響がないときには、上述の補正を行
わずに、リーン設定を残すことで、燃料増量によるプラ
グかぶり等の不具合の発生を抑えることができる。
Further, in this embodiment, when the cooling water temperature is equal to or lower than the predetermined temperature, that is, only when the engine is in a high friction mode, the effective injection time at the time of starting is corrected according to the voltage and temperature, and the cooling water temperature is adjusted. When the temperature is higher than the predetermined temperature, that is, when the air-fuel ratio is on the lean side, such as after engine warm-up, has little effect on startability, the lean setting is left without performing the above correction, and It is possible to suppress the occurrence of defects such as plug covering.

【0027】尚、前記実施例では、燃料タンク11内に
調圧弁14を設けることで、デリバリパイプ16内の余
剰燃料を燃料タンク11内に戻すリターン配管を廃止し
た構成となっているが、図5に示す本発明の他の実施例
のように、デリバリパイプ16内の余剰燃料を、デリバ
リパイプ16の近傍に設置された調圧弁24とリターン
配管25を通して燃料タンク11内に戻す構成としても
良い。尚、図2のリターンレス配管構成と、図5のリタ
ーン配管25付きの構成とを比較した場合、エンジン始
動時の燃圧低下は図2のリターンレス配管構成の方が大
きく、本発明の補正による効果は大きい。
In the above embodiment, the pressure regulating valve 14 is provided in the fuel tank 11 so that the return pipe for returning the surplus fuel in the delivery pipe 16 to the fuel tank 11 is eliminated. As in the other embodiment of the present invention shown in FIG. 5, the surplus fuel in the delivery pipe 16 may be returned into the fuel tank 11 through the pressure regulating valve 24 and the return pipe 25 installed near the delivery pipe 16. . When the returnless piping configuration of FIG. 2 and the configuration with the return piping 25 of FIG. 5 are compared, the fuel pressure drop at the time of engine start is larger in the returnless piping configuration of FIG. The effect is great.

【0028】また、前記実施例では、バッテリ電圧(燃
料ポンプ12の駆動電圧)と吸気温度(燃料ポンプ12
の温度)の双方を考慮して始動時の有効噴射時間を補正
するようにしたが、電圧と温度のいずれか一方のみによ
って始動時の有効噴射時間を補正するようにしても良
く、この場合でも、従来よりエンジン始動性を向上する
ことができる。
In the above embodiment, the battery voltage (driving voltage of the fuel pump 12) and the intake air temperature (fuel pump 12).
Although the effective injection time at the start is corrected in consideration of both the temperature and the temperature), the effective injection time at the start may be corrected by only one of the voltage and the temperature. The engine startability can be improved as compared with the conventional case.

【0029】また、前記実施例では、燃料ポンプ12の
駆動電圧に関する情報としてバッテリ電圧を検出するよ
うにしたが、燃料ポンプ12の駆動電圧を直接検出する
ようにしても良い。また、前記実施例では、燃料ポンプ
12の温度に関する情報として吸気温度を検出するよう
にしたが、燃料タンク11内の燃料温度又は外気温度を
検出したり、或はこれらの検出値を組み合わせて燃料ポ
ンプ12の温度を総合的に判断するようにしても良く、
勿論、燃料ポンプ12の温度を温度センサにより直接検
出するようにしても良いことは言うまでもない。
In the above embodiment, the battery voltage is detected as the information about the drive voltage of the fuel pump 12, but the drive voltage of the fuel pump 12 may be directly detected. Further, in the above-described embodiment, the intake air temperature is detected as the information on the temperature of the fuel pump 12, but the fuel temperature in the fuel tank 11 or the outside air temperature is detected, or these detected values are combined to detect the fuel temperature. The temperature of the pump 12 may be judged comprehensively,
Of course, it goes without saying that the temperature of the fuel pump 12 may be directly detected by a temperature sensor.

【0030】また、前記実施例では、バッテリ電圧VB
(燃料ポンプ12の駆動電圧)による補正係数FVB
と、吸気温度THA(燃料ポンプ12の温度)による補
正係数FTHAとを別々に算出したが、これら両者を総
合した補正係数をVB とTHAとの二次元マップ等によ
り求め、当該補正係数を始動時の有効噴射時間に乗算し
て始動時の有効噴射時間を補正するようにしても良い。
更には、図1のステップ103の処理を省略し、冷却水
温THW、バッテリ電圧VB (燃料ポンプ12の駆動電
圧)及び吸気温度THA(燃料ポンプ12の温度)によ
る三次元マップから補正係数を求めるようにしても良
く、この場合でも、本実施例と実質的に同じ補正を行う
ことができる。
Further, in the above embodiment, the battery voltage V B
Correction coefficient FVB based on (driving voltage of fuel pump 12)
And the correction coefficient FTHA based on the intake air temperature THA (temperature of the fuel pump 12) were calculated separately, but a correction coefficient that combines these two is obtained from a two-dimensional map of V B and THA, and the correction coefficient is started. The effective injection time at the start may be corrected by multiplying the effective injection time at the time.
Further, the processing of step 103 in FIG. 1 is omitted, and the correction coefficient is obtained from the three-dimensional map based on the cooling water temperature THW, the battery voltage V B (driving voltage of the fuel pump 12) and the intake air temperature THA (temperature of the fuel pump 12). However, even in this case, substantially the same correction as in the present embodiment can be performed.

【0031】また、前記実施例では、エンジンのフリク
ションを代用する信号として冷却水温THWを用いた
が、これに代えて、油温又はクランキング回転速度を用
いるようにしても良い。
In the above embodiment, the cooling water temperature THW is used as a signal that substitutes the friction of the engine. However, instead of this, the oil temperature or the cranking rotation speed may be used.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
の請求項1の構成によれば、エンジン始動時に、燃料ポ
ンプの駆動電圧に応じて求めた補正係数を始動時の有効
噴射時間に乗算して始動時の有効噴射時間を補正するよ
うにしたので、電圧低下によるポンプ能力の低下を始動
時の有効噴射時間の延長によって補うことができ、通常
の運転状態で適した容量の燃料ポンプを使用しながら、
電圧低下時でもエンジン始動に必要な燃料量を噴射する
ことができて、良好な始動性を確保することができる。
As is apparent from the above description, according to the structure of claim 1 of the present invention, the correction coefficient obtained according to the drive voltage of the fuel pump is set as the effective injection time at the start of the engine. Since the effective injection time at the start is multiplied to correct the deterioration of the pump capacity due to the voltage drop, the effective injection time at the start can be compensated for, and the fuel pump with the capacity suitable for normal operating conditions can be used. While using
It is possible to inject the amount of fuel necessary for starting the engine even when the voltage drops, and it is possible to ensure good startability.

【0033】また、請求項2では、燃料ポンプの駆動電
圧をバッテリ電圧により間接的に検出するようにしたの
で、燃料ポンプの駆動電圧を直接検出するよりも、部品
点数の増加を招かずに済み、コストダウンを図ることが
できる。
Further, according to the second aspect, the drive voltage of the fuel pump is indirectly detected by the battery voltage. Therefore, the number of parts is not increased as compared with the case where the drive voltage of the fuel pump is directly detected. Therefore, the cost can be reduced.

【0034】更に、請求項3では、燃料ポンプの駆動電
圧と燃料ポンプの温度とによる個々の補正係数を求める
か若しくは両者を総合した補正係数をマップ等により求
め、当該補正係数を始動時の有効噴射時間に乗算して始
動時の有効噴射時間を補正するようにしたので、電圧低
下のみならず低温によるポンプ能力低下も、始動時の有
効噴射時間に反映させることができ、始動性を一層向上
させることができる。
Further, in claim 3, an individual correction coefficient depending on the driving voltage of the fuel pump and the temperature of the fuel pump is calculated, or a correction coefficient which is a combination of both is calculated by a map or the like, and the correction coefficient is effective at the time of starting. Since the effective injection time at the start is corrected by multiplying the injection time, not only the voltage decrease but also the pump performance decrease due to the low temperature can be reflected in the effective injection time at the start, further improving the startability. Can be made.

【0035】また、請求項4では、燃料ポンプの温度
を、他のエンジン制御にも利用できる温度情報である燃
料温度、外気温度、吸気温度のうちの少なくとも一つで
代用するようにしたので、燃料ポンプの温度を直接検出
するよりも部品点数の増加を招かずに済み、コスト的に
有利である。
Further, in the present invention, the temperature of the fuel pump is substituted by at least one of the fuel temperature, the outside air temperature, and the intake air temperature which are temperature information that can be used for other engine control. It is more cost effective than directly detecting the temperature of the fuel pump without increasing the number of parts.

【0036】また、請求項5では、冷却水温が所定温度
以上のときには前記補正係数による始動時の有効噴射時
間の補正を行わないようにしたので、エンジン暖機後の
ように空燃比がリーン側であっても始動性にほとんど影
響がないときには、リーン設定を残すことができて、燃
料増量によるプラグかぶり等の不具合の発生を抑えるこ
とができる。
Further, in the present invention, when the cooling water temperature is equal to or higher than the predetermined temperature, the effective injection time at the start is not corrected by the correction coefficient. Therefore, the air-fuel ratio is lean to the lean side as after the engine is warmed up. However, when the startability is hardly affected, the lean setting can be left and the occurrence of problems such as plug fogging due to increased fuel can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における燃料噴射時間演算ル
ーチンの処理の流れを示すフローチャート
FIG. 1 is a flowchart showing a processing flow of a fuel injection time calculation routine in an embodiment of the present invention.

【図2】燃料噴射システム全体の概略構成を示すブロッ
ク図
FIG. 2 is a block diagram showing a schematic configuration of the entire fuel injection system.

【図3】燃料ポンプの吐出圧力−吐出流量特性を示す図FIG. 3 is a diagram showing discharge pressure-discharge flow rate characteristics of a fuel pump.

【図4】(a)は本発明の一実施例における始動時のバ
ッテリ電圧、燃圧、エンジン回転数の経時的変化を示す
図、(b)は従来の始動時のバッテリ電圧、燃圧、エン
ジン回転数の経時的変化を示す図
FIG. 4A is a diagram showing changes over time in battery voltage, fuel pressure, and engine speed at the time of starting in one embodiment of the present invention; FIG. 4B is a conventional battery voltage, fuel pressure, and engine speed at starting. Diagram showing changes in number over time

【図5】本発明の他の実施例における燃料噴射システム
全体の概略構成を示すブロック図
FIG. 5 is a block diagram showing a schematic configuration of the entire fuel injection system in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…燃料タンク、12…燃料ポンプ、13…フィル
タ、14…調圧弁、16…デリバリパイプ、18…イン
ジェクタ、19…燃料噴射制御装置(電圧情報検出手
段,補正係数決定手段,有効噴射時間補正手段,無効噴
射時間設定手段,噴射時間算出手段)、20…バッテ
リ、22…水温センサ(水温情報検出手段)、23…吸
気温度センサ(ポンプ温度情報検出手段)、24…調圧
弁、25…リターン配管。
11 ... Fuel tank, 12 ... Fuel pump, 13 ... Filter, 14 ... Pressure regulating valve, 16 ... Delivery pipe, 18 ... Injector, 19 ... Fuel injection control device (voltage information detection means, correction coefficient determination means, effective injection time correction means) , Invalid injection time setting means, injection time calculating means), 20 ... battery, 22 ... water temperature sensor (water temperature information detecting means), 23 ... intake air temperature sensor (pump temperature information detecting means), 24 ... pressure regulating valve, 25 ... return piping .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料ポンプにより供給される燃料を内燃
機関に噴射するインジェクタを制御する内燃機関の燃料
噴射制御装置において、 前記燃料ポンプの駆動電圧に関する情報を検出する電圧
情報検出手段と、 前記内燃機関の始動時に前記燃料ポンプの駆動電圧に応
じて補正係数を求める補正係数決定手段と、 前記補正係数を始動時の有効噴射時間に乗算して始動時
の有効噴射時間を補正する有効噴射時間補正手段と、 補正された始動時の有効噴射時間に無効噴射時間を加算
して始動時の燃料噴射時間を求める噴射時間算出手段と
を備えたことを特徴とする内燃機関の燃料噴射制御装
置。
1. A fuel injection control device for an internal combustion engine, which controls an injector for injecting fuel supplied from a fuel pump into the internal combustion engine, comprising: voltage information detecting means for detecting information about a drive voltage of the fuel pump; A correction coefficient determining means for obtaining a correction coefficient according to the drive voltage of the fuel pump at the time of starting the engine, and an effective injection time correction for correcting the effective injection time at the start by multiplying the effective injection time at the start by the correction coefficient. A fuel injection control device for an internal combustion engine, comprising: means and an injection time calculation means for adding an invalid injection time to a corrected effective injection time at startup to obtain a fuel injection time at startup.
【請求項2】 前記電圧情報検出手段は、前記燃料ポン
プの駆動電圧に関する情報としてバッテリ電圧を検出す
ることを特徴とする請求項1に記載の内燃機関の燃料噴
射制御装置。
2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the voltage information detecting means detects a battery voltage as information on a driving voltage of the fuel pump.
【請求項3】 前記燃料ポンプの温度に関する情報を検
出するポンプ温度情報検出手段を備え、 前記補正係数決定手段は、前記燃料ポンプの駆動電圧と
前記燃料ポンプの温度とによる個々の補正係数若しくは
両者を総合した補正係数を求めることを特徴とする請求
項1又は2に記載の内燃機関の燃料噴射制御装置。
3. A pump temperature information detecting means for detecting information on the temperature of the fuel pump, wherein the correction coefficient determining means is an individual correction coefficient depending on a driving voltage of the fuel pump and a temperature of the fuel pump, or both. The fuel injection control device for an internal combustion engine according to claim 1 or 2, wherein a correction coefficient that combines the above is calculated.
【請求項4】 前記ポンプ温度情報検出手段は、前記燃
料ポンプの温度に関する情報として、燃料温度、外気温
度、吸気温度のうちの少なくとも一つを検出することを
特徴とする請求項3に記載の内燃機関の燃料噴射制御装
置。
4. The pump temperature information detecting means detects at least one of a fuel temperature, an outside air temperature, and an intake air temperature as the information on the temperature of the fuel pump. Fuel injection control device for internal combustion engine.
【請求項5】 前記内燃機関の冷却水温に関する情報を
検出する水温情報検出手段を備え、 前記有効噴射時間補正手段は、前記冷却水温が所定温度
以上のときには前記補正係数による前記有効噴射時間の
補正を行わないようにしたことを特徴とする請求項1乃
至4のいずれかに記載の内燃機関の燃料噴射制御装置。
5. A water temperature information detecting means for detecting information on a cooling water temperature of the internal combustion engine, wherein the effective injection time correcting means corrects the effective injection time by the correction coefficient when the cooling water temperature is equal to or higher than a predetermined temperature. 5. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection control device is not performed.
JP6326508A 1994-12-28 1994-12-28 Fuel injection control device for internal combustion engine Pending JPH08177552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6326508A JPH08177552A (en) 1994-12-28 1994-12-28 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6326508A JPH08177552A (en) 1994-12-28 1994-12-28 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08177552A true JPH08177552A (en) 1996-07-09

Family

ID=18188614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6326508A Pending JPH08177552A (en) 1994-12-28 1994-12-28 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08177552A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268718A (en) * 2003-03-07 2004-09-30 Sanwa Seiki Co Ltd Hydraulic pump and load receiving platform lift
KR100591368B1 (en) * 2003-03-19 2006-06-19 혼다 기켄 고교 가부시키가이샤 Fuel injection correction device and correction method when air cooling type internal combustion engine is warm-up
KR100653520B1 (en) * 2004-10-21 2006-12-04 씨멘스 오토모티브 주식회사 apparatus and method For controlling pressure of fuel in LPI car
JP2007040252A (en) * 2005-08-05 2007-02-15 Keihin Corp Electronic fuel injection control device
JP2010216363A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Engine control device of automobile

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268718A (en) * 2003-03-07 2004-09-30 Sanwa Seiki Co Ltd Hydraulic pump and load receiving platform lift
KR100591368B1 (en) * 2003-03-19 2006-06-19 혼다 기켄 고교 가부시키가이샤 Fuel injection correction device and correction method when air cooling type internal combustion engine is warm-up
KR100653520B1 (en) * 2004-10-21 2006-12-04 씨멘스 오토모티브 주식회사 apparatus and method For controlling pressure of fuel in LPI car
JP2007040252A (en) * 2005-08-05 2007-02-15 Keihin Corp Electronic fuel injection control device
US7905217B2 (en) 2005-08-05 2011-03-15 Keihin Corporation Electronic fuel injection control device
JP2010216363A (en) * 2009-03-17 2010-09-30 Mazda Motor Corp Engine control device of automobile

Similar Documents

Publication Publication Date Title
JP2767352B2 (en) Air-fuel ratio control device for starting internal combustion engine
JPH08177590A (en) Fuel supply device for internal combustion engine
JP4366706B2 (en) Fuel property determination device for internal combustion engine
JPH04231638A (en) Method of adaptively adjusting mixture of fuel and air
JP4613121B2 (en) Intake air amount detection device for internal combustion engine
JP3856252B2 (en) Fuel supply control device for internal combustion engine
JP3859733B2 (en) Fuel injection control device for internal combustion engine
JP3250092B2 (en) Characteristic learning device for fuel pressure sensor
JPH08177552A (en) Fuel injection control device for internal combustion engine
JP4211455B2 (en) Control device for internal combustion engine
JP2007231861A (en) Oil temperature estimation device for internal combustion engine
JP2003227379A (en) Fuel injection control device for internal combustion engine
JP4052521B2 (en) Control device for internal combustion engine
JP3183040B2 (en) Fuel injection control device for internal combustion engine
JPH05340286A (en) Fuel control device for internal combustion engine
US6705288B2 (en) Starting control apparatus for internal combustion engine
JPH04101032A (en) Fuel feeder of internal combustion engine
JP2665247B2 (en) Fuel control method after engine restart
JPH07224708A (en) Fuel injection control device of internal combustion engine
JPS58144634A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH109017A (en) Starting fuel injection quantity control device of internal combustion engine
JP2002021607A (en) Air/fuel ratio control device of engine
JPH055439A (en) Fuel injection device for engine
JPH04213057A (en) Fuel-property detecting apparatus
JPS6255433A (en) Fuel injection controller