JPH03171636A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH03171636A
JPH03171636A JP31044289A JP31044289A JPH03171636A JP H03171636 A JPH03171636 A JP H03171636A JP 31044289 A JP31044289 A JP 31044289A JP 31044289 A JP31044289 A JP 31044289A JP H03171636 A JPH03171636 A JP H03171636A
Authority
JP
Japan
Prior art keywords
layer
electrode
quantum well
channel
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31044289A
Other languages
Japanese (ja)
Inventor
Hironori Fujishiro
博記 藤代
Tadashi Saito
正 斉藤
Seiji Nishi
清次 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP31044289A priority Critical patent/JPH03171636A/en
Publication of JPH03171636A publication Critical patent/JPH03171636A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a modulation in a drain current from causing even if a drain voltage becomes high by a method wherein a field-effect transistor is provided with a quantum well formation layer for accumulating holes provided in a buffer layer and an electrode for hole lead-out use, which is electrically connected with the quantum well formation layer. CONSTITUTION:A field-effect transistor is provided with a buffer layer 12 and a channel layer 16, which are provided in order on a substrate 10, and is provided with a quantum well formation layer 1 for accumulating holes provided in the layer 12 and an electrode 16 for hole lead-out use, which is electrically connected with this layer 14. When such a high drain voltage that collision ionization is caused in a channel is applied, the holes injected in a buffer layer 14b are led to an InGaAs layer 12b and are discharged to an external circuit through an electrode 18, whose potential connected with the external circuit is held in 0V or a negative potential. As the hole mobility in the layer 12b is high, a reduction in the time of a hole conduction ranging from the channel to the electrode 18 can be made small. Accordingly, a reduction in an electron potential due to the hole conduction can sufficiently be lessened.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電界効果トランジスタに間する.(従来の技
術) 従来提案ざれている電界効果トランジスタとして、例え
ば文献I:IEEE  ElectronDevice
  Letters(アイイーイーイー エレクトロン
 デバイス レターズ)vo1.EDL−6,No.1
.1985年1月に開示ざれているものがある. この従来の電界効果トランジスタは、分子線エビタキシ
ャル成長法(MBE法)等の結晶戒長法を用いて半絶縁
′aGaAs基板上に順次に積層した、アンドーブGa
Asバッファ層、Siドーブn−GaAsチャネル層、
Siドープn” −GaAsキャップ層を備え、ンース
領域及びドレイン領域のキャップ層にそれぞれオーミッ
ク電極を設けると共にチャネル領域のキャップ層をチャ
ネル層までリセスエツチングし、これにより露出させた
チャネル層にゲート電極を設けた構造を有する. (発明が解決しようとする課題) 上述した従来の電界効果トランジスタでは、トレイン電
圧が高くなりチャネルの電界強度が大きくなると、チャ
ネルで電子衝突電Mを生しる.この衝突電離で生じた電
子及び正孔のうち、電子はトレイン電極に及び正孔の一
部はゲート電極に導かれるが、正孔の他の一部はバッフ
ァ層及び半絶縁性基板に注入される.この注入ざれた正
孔はバッファ層或は半w!締牲基板の深い準位に捕獲ざ
れ当該層の電子ポテンシャルを引き下げる.この結果、
チャネルとバッファ層との間の空乏層の幅が狭まり、ド
レイン電流が急激に増加してキンクそ生しトレイン電流
の飽和特性は急激に劣化する. この発明の目的は、上述した従来の問題点を解決し、ト
レイン電圧が高くなってもトレイン電流の変調を起さな
い或は変調の程度が小さい電界効果トランジスタを提供
することにある.(課題を解決するための手段) この目的の遠戊を図るため、この発明の電界効果トラン
ジスタは、基板上に順次に設けたバッファ層及びチャネ
ル層を備えて成る電界効果トランジスタにおいて、バッ
ファ層{こ設けた正孔を溜゜めるための量子井戸形成層
と、量子井戸形成層と電気的に接続する正孔導出用電極
とを備えて成ることを特徴とする. (作用) このような構或によれば、量子井戸形戒層は価電子帯(
バレンスバンド)に正孔を溜めるための量子井戸層を形
戒する。従って衝突電離により生しバッファ層へ注入さ
れる正孔は、量子井戸形戒層に溜つ正孔導出用電極を介
して外部の電気回路等へと排出ざれる。
[Detailed Description of the Invention] (Field of Industrial Application) This invention relates to field effect transistors. (Prior Art) As a conventionally proposed field effect transistor, for example, Document I: IEEE Electron Device
Letters (IEE Electron Device Letters) vol.1. EDL-6, No. 1
.. There is something that was not disclosed in January 1985. This conventional field effect transistor consists of undoped GaAs that is sequentially stacked on a semi-insulating 'aGaAs substrate using a crystal lengthening method such as molecular beam epitaxial growth (MBE).
As buffer layer, Si-doped n-GaAs channel layer,
A Si-doped n''-GaAs cap layer is provided, and an ohmic electrode is provided in each of the cap layers of the source region and drain region, and the cap layer of the channel region is recessed to the channel layer, thereby forming a gate electrode on the exposed channel layer. (Problems to be Solved by the Invention) In the conventional field effect transistor described above, when the train voltage increases and the electric field strength in the channel increases, an electron collision electric field M is generated in the channel. Of the electrons and holes generated by ionization, some of the electrons are guided to the train electrode and some of the holes are guided to the gate electrode, but the other part of the holes is injected into the buffer layer and the semi-insulating substrate. These injected holes are captured in the deep level of the buffer layer or half-w! fastener substrate, lowering the electron potential of the layer.As a result,
The width of the depletion layer between the channel and the buffer layer narrows, the drain current increases rapidly, a kink occurs, and the saturation characteristics of the train current deteriorate rapidly. An object of the present invention is to solve the above-mentioned conventional problems and to provide a field effect transistor in which the train current does not undergo modulation or the degree of modulation is small even when the train voltage increases. (Means for Solving the Problems) In order to further achieve this object, a field effect transistor of the present invention includes a buffer layer and a channel layer sequentially provided on a substrate. It is characterized by comprising a quantum well forming layer for accumulating the provided holes, and a hole extraction electrode electrically connected to the quantum well forming layer. (Function) According to such a structure, the quantum well type layer has a valence band (
A quantum well layer is created to store holes in the valence band. Therefore, holes injected into the buffer layer due to impact ionization are discharged to an external electric circuit or the like via the hole extraction electrode accumulated in the quantum well type barrier layer.

(実施例) 以下、図面ヲ参照し、この発明の実施例1こつき説明す
る。尚、図面はこの発明が理解できる程度に概略的に示
してあるにすぎず、従って各構或或分の形状、寸法、配
設位8%図示例に限定するものではない. 第1図はこの発明の実施例の構戒を概略的に示す断面図
であり、素子分離層で分Hされた電界効果トランジスタ
1素子分の構造を示す.同図にも示すように、この実施
例の電界効果トランジスタは、基板10上に順次に設け
たバッファ層12及びチャネル層16を備え、バッファ
層12に設けた正孔を溜めるための量子井戸形成層14
と、量子井戸形戒層14と電気的に接続する正孔導出用
電極]6とを備えた構或を有する. 以下、より詳細にこの実施例につき説明する.この実施
例では半絶締性GaAs基板10上に順次にアンドーブ
GaAs下側バッファ層12a,!1子井戸形成層14
及びアンドープGaAs上側バッファ層12b!設け量
子井戸形成層14をバッファ層12a及び12bにより
挟持する構造とする.量子井戸形成層14は下側バッフ
ァ層12a側から順次に設けたp−GaAs層14a,
p−InGaAs層14b及びp−GaAs層14cか
ら或る,InGaAs層14t)に二次元正孔が誘起さ
れ、従ってチャネルで衝突電M(こより生した正孔は上
側バッファ層12t)及びGaAs層14cを通遇した
の5InGaAs層14bに溜る. I nGaAs層14bにおける正孔の移動度を高める
ため、I nGaAs層14bの層厚を臨界膜厚t M
AX以下とする.膜厚t MAXは転位の導入による格
子歪みの緩和が起らない最大の膜厚であり、膜厚t M
AXはGaAs層12a、12Cの格子定数及びI n
x Ga+−x As層14t)(X>O)の格子定数
の不整合の大きさによって決まる.例えばInGaAS
層141)をIno.2Gaa..As層とした場合、
t MAXは200λ程度となる.膜厚t MAXは、
I nx Ga+−. As層14bの×が大きくなる
ほどすなわちInxG a +−x A S層14bと
GaAs層12a、12Cとの間の格子定数の差が大き
くなるほど、小ざ〈なる.臨界膜厚t MAX以下のI
 nGaAs層14bには格子不整合による格子歪みが
加わっているので、価電子帯の正孔の単位が分裂し、こ
の結果正孔の有効質量は小さ〈なる.従って歪みが加わ
っているInGaAs層14k)に誘起される二次元正
孔の移動度は、GaAs層12a、12bにおける正孔
の移動度及び歪みの加わっていない場合のI nGaA
s層14bにおける二次元正孔の移動度よりも高くなる
. ざらにこの実施例では、上側バッファ層12bの中央部
に順次にn−GaAsチャネル層16及びn” −Ga
Asコンタクト層20を設ける.また上側バッファ層1
2bの一方の側部に正孔導出用電極(オーミック電極)
18を設ける.電極18はシンタリングにより形或ざれ
た合金層22を介して、I nGaAs層14bと電気
的に接続する. そしてチャネル層16の中央g!3ヲ露出させるように
コンタクト層20からチャネル層16に至る深さの凹部
24を設け、露出したチャネル層16にゲート電極26
を設ける.またコンタクト層20の一方及び他方の側部
にはソース電極(オーミツウ電極)28及びドレイン電
極(オーミック電極)30を設ける.電極28及び30
はそれぞれシンタリングにより形成された合金層32及
び34を介して、チャネル層16と電気的に接続する. ざらにこの実施例の電界効果トランジスタ1素子を分離
するため、上側バツファ層12bから下側バッファ層1
2aに至る深さの素子分離層36を設ける。
(Embodiment) Hereinafter, embodiment 1 of the present invention will be explained with reference to the drawings. It should be noted that the drawings are merely shown schematically to the extent that the invention can be understood, and therefore, the shapes, dimensions, and locations of the various structures are not limited to the 8% illustrated examples. FIG. 1 is a cross-sectional view schematically showing the structure of an embodiment of the present invention, showing the structure of one field effect transistor separated by an element isolation layer. As shown in the figure, the field effect transistor of this embodiment includes a buffer layer 12 and a channel layer 16 that are sequentially provided on a substrate 10, and quantum wells are formed in the buffer layer 12 for storing holes. layer 14
and a hole deriving electrode] 6 electrically connected to the quantum well type barrier layer 14. This example will be explained in more detail below. In this embodiment, undoped GaAs lower buffer layers 12a, ! Single well formation layer 14
and undoped GaAs upper buffer layer 12b! The quantum well forming layer 14 is sandwiched between buffer layers 12a and 12b. The quantum well forming layer 14 includes a p-GaAs layer 14a, which is sequentially provided from the lower buffer layer 12a side.
Two-dimensional holes are induced from the p-InGaAs layer 14b and the p-GaAs layer 14c to a certain InGaAs layer 14t), and therefore, a collision electric charge M is generated in the channel (the holes generated thereby are in the upper buffer layer 12t) and the GaAs layer 14c. The 5InGaAs layer 14b that passes through it accumulates. In order to increase the mobility of holes in the InGaAs layer 14b, the layer thickness of the InGaAs layer 14b is set to a critical thickness tM.
Must be less than or equal to AX. The film thickness t MAX is the maximum film thickness at which lattice strain relaxation due to the introduction of dislocations does not occur, and the film thickness t M
AX is the lattice constant of the GaAs layers 12a and 12C and In
It is determined by the magnitude of the mismatch in the lattice constant of the x Ga+-x As layer 14t) (X>O). For example, InGaAS
layer 141) in Ino. 2Gaa. .. In the case of As layer,
t MAX is approximately 200λ. The film thickness t MAX is
Inx Ga+-. The larger the x of the As layer 14b, that is, the larger the difference in lattice constant between the InxG a + -x A S layer 14b and the GaAs layers 12a and 12C, the smaller the difference. I below critical film thickness t MAX
Since lattice strain due to lattice mismatch is applied to the nGaAs layer 14b, the hole unit in the valence band is split, and as a result, the effective mass of the hole becomes small. Therefore, the two-dimensional hole mobility induced in the strained InGaAs layer 14k) is the same as the hole mobility in the GaAs layers 12a and 12b and the strain-free InGaAs layer 14k).
This becomes higher than the two-dimensional hole mobility in the s-layer 14b. Roughly speaking, in this embodiment, an n-GaAs channel layer 16 and an n''-GaAs channel layer 16 are sequentially formed in the center of the upper buffer layer 12b.
An As contact layer 20 is provided. Also, the upper buffer layer 1
Hole deriving electrode (ohmic electrode) on one side of 2b
18 will be provided. The electrode 18 is electrically connected to the InGaAs layer 14b via the alloy layer 22 which is shaped by sintering. And the center g of the channel layer 16! A recess 24 having a depth extending from the contact layer 20 to the channel layer 16 is provided so as to expose the contact layer 3, and a gate electrode 26 is formed in the exposed channel layer 16.
Establish. Further, a source electrode (ohmic electrode) 28 and a drain electrode (ohmic electrode) 30 are provided on one side and the other side of the contact layer 20. electrodes 28 and 30
are electrically connected to the channel layer 16 through alloy layers 32 and 34 formed by sintering, respectively. In order to roughly separate one field effect transistor element of this embodiment, the lower buffer layer 1 is separated from the upper buffer layer 12b.
An element isolation layer 36 having a depth of 2a is provided.

上述のように構11iざれたこの実施例において、チャ
ネルで衝突電M18生じるような高いドレイン電圧を印
加した場合、バッファ層14t)に注入ざれた正孔は、
I nGaAs層14bに導かれ、外部回路と接続ざれ
電位がOv又は負電位に保持ざれた電極18より外部回
路へと排出される.またI nGaAs層14bにおけ
る正孔の移動度は高いので、正孔がチャネルから電極1
8に伝導するまでの間の抵抗を小さくてき、従って正孔
の伝導による電子ポテンシャルの低下を充分に少なくで
きる.このように正孔が外部回路へと排出ざれまた正孔
の伝導による電子ポテンシャルの低下を少なくできるの
で、バッファ層14bの正孔注入による電位の変動をな
くし或は少くでき、この結果、ドレイン電流の飽和特性
を従来よりも良好にすることができる. 次にこの発明の理解を深めるために、この実施例の製造
工程につき第2図及び第1図を参照し一例を挙げて説明
する.第2図(A)〜CC’)はこの実施例の主要な製
造工程を段階的に示す断面図である. まず第2図(A)にも示すように、半絶繍性GaAs基
板10上に順次に、アンドーブGaAsバッファ層12
a,Beドーブp−GaAs#14a,Beドーブp−
InGaAS層14b,Beドーブp−GaAs層14
C2アンドーブGaAsバッファ層12b,Siドープ
n一G’ a A sチャネル層16及びSiドーブn
 + ++GaAsコンタクト層20%、分子線或長法
(MBE法)によりエビタキシャル成長させる.次に第
2図CB)にも示すように、コンタクト層20、チャネ
ル層16及びバツファ層121)を部分的にエッチング
除去してバツファ層12bの中央部にメサ部38を形或
し、そののちバツファ層12bからバツファ層14aま
で部分的に酸素イオンを注入することによって素子分離
層36を形戒する。
In this embodiment configured as described above, when a high drain voltage is applied that generates an impact charge M18 in the channel, the holes injected into the buffer layer 14t) are
It is led to the InGaAs layer 14b, connected to an external circuit, and discharged to the external circuit through an electrode 18 whose potential is maintained at Ov or a negative potential. Furthermore, since the mobility of holes in the InGaAs layer 14b is high, holes are transferred from the channel to the electrode 1.
8, the resistance until the hole conducts is reduced, and therefore the drop in electron potential due to hole conduction can be sufficiently reduced. In this way, the holes are not discharged to the external circuit, and the decrease in electron potential due to hole conduction can be reduced, so it is possible to eliminate or reduce potential fluctuations due to hole injection into the buffer layer 14b, and as a result, the drain current can be reduced. It is possible to improve the saturation characteristics of the conventional method. Next, in order to deepen the understanding of this invention, the manufacturing process of this embodiment will be explained by way of an example with reference to FIGS. 2 and 1. Figures 2 (A) to CC') are cross-sectional views showing step by step the main manufacturing steps of this embodiment. First, as shown in FIG. 2(A), an undoped GaAs buffer layer 12 is sequentially formed on a semi-embossed GaAs substrate 10.
a, Be dove p-GaAs#14a, Be dove p-
InGaAS layer 14b, Be-doped p-GaAs layer 14
C2 undoped GaAs buffer layer 12b, Si doped n-G' a As channel layer 16 and Si doped n
+ ++ 20% GaAs contact layer, epitaxially grown by molecular beam elongation method (MBE method). Next, as shown in FIG. 2 CB), the contact layer 20, the channel layer 16, and the buffer layer 121) are partially etched away to form a mesa portion 38 in the center of the buffer layer 12b. The element isolation layer 36 is shaped by partially implanting oxygen ions from the buffer layer 12b to the buffer layer 14a.

次に第2図(C)にも示すように、コンタクト層20に
ソース電極28及びドレイン電極30を設けそののちシ
ンタリングを行なって電極28及び30の下側にそれぞ
れ合金層32及び34を形威し、ざらにバッファ層12
bに正孔導出用電極]8を設けそののちシンタリングを
行なって電極]8の下側に合金層22を形戒する. 次に第1図にも示すように、コンタクト層20及びチャ
ネル層16をリセスエッチングにより部分的に除去して
凹部24を形戒し、凹部24を介して露出したチャネル
層16の中央部にゲート電極を形成し、所定の電界効果
トランジスタを得る. この発明は上述した実施例にのみ限定ざれるものではな
く、従って各構戊戒分の導電型、形戊材料、ドーピング
材料、形或方法、配設位置、寸法、形状及びその他の条
件を任意好適に変更できる. 例えば、上述の実施例ではアンドープGaAsバッファ
層12にInGaAs層を挿入しInGaAs層及びこ
のInGaAs層近傍領域のGaAsバッファ層12に
アクセブタ不純物をドーブすることによって、p−Ga
As層14a,p−InGaAs層14b及びp−Ga
As層14cから戊る量子井戸形成層14を形成し、p
−InGaAs層14t)に二次元正孔を誘起させるよ
うにしたが、量子井戸形成層の構成をこれに限定するも
のではない.このほか、例えば量子井戸形成層をp−I
nGaAs層のみから構戒しアンドーブGaAs上側バ
ッファ層及びアンドーブGaAs下側バッファ層で扶持
する構成としてもよい.或は量子井戸形成層を下側バッ
ファ層側から順次に設けたp−GaAs層、アンドーブ
InGaAs層及びp−GaAs層から構成するように
してもよい. またチャネル層及びコンタクト層の形成ヲMBE法等の
エビタキシャル成長法のほか、イオン注入法を用いて行
なってもよい. (発明の効果) 上述した説明からも明らかなように、この発明の電界効
果トランジスタによれば、量子井戸形成層は価電子帯(
バレンスバンド)に正孔を溜めるための量子井戸層を形
戒する.従って衝突電離により生しパッファ層へ注入さ
れる正孔は、量子井戸形成層に溜り正孔導出用電極を介
して外部の電気回路等へと排出ざれる.その結果、正孔
の注入によるバッファ層の電位の変動をなくし或は小さ
くでき、これかため従来よりもトレイン電流の飽和特性
か良好な電界効果トランジスタを提供できる.
Next, as shown in FIG. 2(C), a source electrode 28 and a drain electrode 30 are provided on the contact layer 20, and then sintering is performed to form alloy layers 32 and 34 under the electrodes 28 and 30, respectively. Buffer layer 12
A hole deriving electrode 8 is provided on b, and then sintering is performed to form an alloy layer 22 on the lower side of the electrode 8. Next, as shown in FIG. 1, the contact layer 20 and the channel layer 16 are partially removed by recess etching to form the recess 24, and a gate is placed in the center of the channel layer 16 exposed through the recess 24. Form electrodes and obtain the desired field effect transistor. The present invention is not limited to the embodiments described above, and therefore, the conductivity type, forming material, doping material, shape or method, arrangement position, size, shape, and other conditions of each component can be arbitrarily changed. You can change it as you like. For example, in the above-described embodiment, an InGaAs layer is inserted into the undoped GaAs buffer layer 12, and the InGaAs layer and the GaAs buffer layer 12 in the vicinity of this InGaAs layer are doped with an acceptor impurity.
As layer 14a, p-InGaAs layer 14b and p-Ga
A quantum well forming layer 14 is formed from the As layer 14c, and p
-Although two-dimensional holes are induced in the InGaAs layer 14t), the structure of the quantum well forming layer is not limited to this. In addition, for example, the quantum well forming layer may be
It is also possible to adopt a structure in which only the nGaAs layer is used and supported by an undoped GaAs upper buffer layer and an undoped GaAs lower buffer layer. Alternatively, the quantum well forming layer may be composed of a p-GaAs layer, an undoped InGaAs layer, and a p-GaAs layer, which are sequentially provided from the lower buffer layer side. In addition to the epitaxial growth method such as the MBE method, the formation of the channel layer and the contact layer may be performed using an ion implantation method. (Effects of the Invention) As is clear from the above explanation, according to the field effect transistor of the present invention, the quantum well forming layer has a valence band (
A quantum well layer is formed to store holes in the valence band). Therefore, holes that are generated and injected into the puffer layer due to impact ionization accumulate in the quantum well forming layer and are discharged to the external electric circuit etc. via the hole extraction electrode. As a result, fluctuations in the potential of the buffer layer due to hole injection can be eliminated or reduced, making it possible to provide a field effect transistor with better train current saturation characteristics than conventional ones.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の構或を概略的に示す断面図
、 第2図(A)〜(C)は実施例の主要な製造工程を段階
的に示す断面図である. 10・・・基板、     12・・・バッファ層]4
・・・量子井戸形或層 18・・・正孔導出用電極。
FIG. 1 is a sectional view schematically showing the structure of an embodiment of the present invention, and FIGS. 2(A) to 2(C) are sectional views showing step-by-step the main manufacturing steps of the embodiment. 10...Substrate, 12...Buffer layer] 4
... Quantum well type layer 18 ... Electrode for leading out holes.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に順次に設けたバッファ層及びチャネル層
を備えて成る電界効果トランジスタにおいて、 前記バッファ層に設けた正孔を溜めるための量子井戸形
成層と、該量子井戸形成層と電気的に接続する正孔導出
用電極とを備えて成ることを特徴とする電界効果トラン
ジスタ。
(1) In a field effect transistor comprising a buffer layer and a channel layer sequentially provided on a substrate, a quantum well forming layer provided in the buffer layer for storing holes, and an electrical connection between the quantum well forming layer and the quantum well forming layer. 1. A field effect transistor comprising: a hole deriving electrode connected to a hole deriving electrode;
JP31044289A 1989-11-29 1989-11-29 Field-effect transistor Pending JPH03171636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31044289A JPH03171636A (en) 1989-11-29 1989-11-29 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31044289A JPH03171636A (en) 1989-11-29 1989-11-29 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03171636A true JPH03171636A (en) 1991-07-25

Family

ID=18005298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31044289A Pending JPH03171636A (en) 1989-11-29 1989-11-29 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03171636A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260339A (en) * 1990-10-19 1992-09-16 Philips Gloeilampenfab:Nv Semiconductor device
JP2007059589A (en) * 2005-08-24 2007-03-08 Toshiba Corp Nitride semiconductor element
JP2008532261A (en) * 2005-01-25 2008-08-14 モクストロニクス,インコーポレイテッド High performance FET devices and methods
JP2013201189A (en) * 2012-03-23 2013-10-03 Toyota Central R&D Labs Inc Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260339A (en) * 1990-10-19 1992-09-16 Philips Gloeilampenfab:Nv Semiconductor device
JP2008532261A (en) * 2005-01-25 2008-08-14 モクストロニクス,インコーポレイテッド High performance FET devices and methods
JP2007059589A (en) * 2005-08-24 2007-03-08 Toshiba Corp Nitride semiconductor element
JP2013201189A (en) * 2012-03-23 2013-10-03 Toyota Central R&D Labs Inc Semiconductor device

Similar Documents

Publication Publication Date Title
US6465814B2 (en) Semiconductor device
KR100204688B1 (en) Heterojunction field effect transistor
EP0555886A2 (en) Hetero-junction field effect transistor
EP0194197B1 (en) Heterojunction bipolar transistor and process for fabricating same
JP5179694B2 (en) Heterostructure doped with donor on the back side
JP2008258299A (en) Field-effect transistor
JP2008258261A (en) Semiconductor device
US8587027B2 (en) Field effect transistor, method of manufacturing the same, and semiconductor device
JP3262056B2 (en) Bipolar transistor and manufacturing method thereof
JPS59207667A (en) Semiconductor device
JPH0324782B2 (en)
JP3127874B2 (en) Field effect transistor and method of manufacturing the same
JP4899077B2 (en) Field effect transistor using III-V compound semiconductor
JP2005302916A (en) Semiconductor device
JPH03171636A (en) Field-effect transistor
EP0602671B1 (en) Heterojunction field effect transistor having an improved transistor characteristic
JPH03145139A (en) Field-effect transistor and manufacture thereof
KR100752538B1 (en) Bipolar transistor
JP2815642B2 (en) Field effect transistor
JPS6242569A (en) Field effect transistor
US20010019123A1 (en) Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JPS63161677A (en) Field effect transistor
JPH0684959A (en) High electron mobility field effect semiconductor device
JP3053862B2 (en) Semiconductor device
JP3054216B2 (en) Semiconductor device